aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/keras/engine/training.py
blob: 4df739254bea624daae886dddcac77f43f2068fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Training-related part of the Keras engine.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import weakref
import numpy as np

from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import losses
from tensorflow.python.keras import metrics as metrics_module
from tensorflow.python.keras import optimizers
from tensorflow.python.keras.engine import base_layer
from tensorflow.python.keras.engine import training_arrays
from tensorflow.python.keras.engine import training_eager
from tensorflow.python.keras.engine import training_generator
from tensorflow.python.keras.engine import training_utils
from tensorflow.python.keras.engine.network import Network
from tensorflow.python.keras.utils.generic_utils import slice_arrays
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import optimizer as tf_optimizer_module
from tensorflow.python.training.checkpointable import base as checkpointable
from tensorflow.python.util import tf_inspect
from tensorflow.python.util.tf_export import tf_export


@tf_export('keras.models.Model', 'keras.Model')
class Model(Network):
  """`Model` groups layers into an object with training and inference features.

  There are two ways to instantiate a `Model`:

  1 - With the "functional API", where you start from `Input`,
  you chain layer calls to specify the model's forward pass,
  and finally you create your model from inputs and outputs:

  ```python
  import tensorflow as tf

  inputs = tf.keras.Input(shape=(3,))
  x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs)
  outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x)
  model = tf.keras.Model(inputs=inputs, outputs=outputs)
  ```

  2 - By subclassing the `Model` class: in that case, you should define your
  layers in `__init__` and you should implement the model's forward pass
  in `call`.

  ```python
  import tensorflow as tf

  class MyModel(tf.keras.Model):

    def __init__(self):
      self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
      self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)

    def call(self, inputs):
      x = self.dense1(inputs)
      return self.dense2(x)

  model = MyModel()
  ```

  If you subclass `Model`, you can optionally have
  a `training` argument (boolean) in `call`, which you can use to specify
  a different behavior in training and inference:

  ```python
  import tensorflow as tf

  class MyModel(tf.keras.Model):

    def __init__(self):
      self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
      self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)
      self.dropout = tf.keras.layers.Dropout(0.5)

    def call(self, inputs, training=False):
      x = self.dense1(inputs)
      if training:
        x = self.dropout(x, training=training)
      return self.dense2(x)

  model = MyModel()
  ```
  """

  def __init__(self, *args, **kwargs):
    super(Model, self).__init__(*args, **kwargs)
    # Create a cache for iterator get_next op.
    self._iterator_get_next = weakref.WeakKeyDictionary()
    # Create a cache for dataset - uninitialized iterators
    self._dataset_iterator_cache = weakref.WeakKeyDictionary()

  @checkpointable.no_automatic_dependency_tracking
  def compile(self,
              optimizer,
              loss=None,
              metrics=None,
              loss_weights=None,
              sample_weight_mode=None,
              weighted_metrics=None,
              target_tensors=None,
              **kwargs):
    """Configures the model for training.

    Arguments:
        optimizer: String (name of optimizer) or optimizer instance.
            See [optimizers](/optimizers).
        loss: String (name of objective function) or objective function.
            See [losses](/losses).
            If the model has multiple outputs, you can use a different loss
            on each output by passing a dictionary or a list of losses.
            The loss value that will be minimized by the model
            will then be the sum of all individual losses.
        metrics: List of metrics to be evaluated by the model
            during training and testing.
            Typically you will use `metrics=['accuracy']`.
            To specify different metrics for different outputs of a
            multi-output model, you could also pass a dictionary,
            such as `metrics={'output_a': 'accuracy'}`.
        loss_weights: Optional list or dictionary specifying scalar
            coefficients (Python floats) to weight the loss contributions
            of different model outputs.
            The loss value that will be minimized by the model
            will then be the *weighted sum* of all individual losses,
            weighted by the `loss_weights` coefficients.
            If a list, it is expected to have a 1:1 mapping
            to the model's outputs. If a tensor, it is expected to map
            output names (strings) to scalar coefficients.
        sample_weight_mode: If you need to do timestep-wise
            sample weighting (2D weights), set this to `"temporal"`.
            `None` defaults to sample-wise weights (1D).
            If the model has multiple outputs, you can use a different
            `sample_weight_mode` on each output by passing a
            dictionary or a list of modes.
        weighted_metrics: List of metrics to be evaluated and weighted
            by sample_weight or class_weight during training and testing.
        target_tensors: By default, Keras will create placeholders for the
            model's target, which will be fed with the target data during
            training. If instead you would like to use your own
            target tensors (in turn, Keras will not expect external
            Numpy data for these targets at training time), you
            can specify them via the `target_tensors` argument. It can be
            a single tensor (for a single-output model), a list of tensors,
            or a dict mapping output names to target tensors.
        **kwargs: These arguments are passed to `tf.Session.run`.

    Raises:
        ValueError: In case of invalid arguments for
            `optimizer`, `loss`, `metrics` or `sample_weight_mode`.
    """
    loss = loss or {}
    if context.executing_eagerly() and not isinstance(
        optimizer, (tf_optimizer_module.Optimizer, optimizers.TFOptimizer)):
      raise ValueError('Only TF native optimizers are supported in Eager mode.')

    self.optimizer = optimizers.get(optimizer)
    # We've disabled automatic dependency tracking for this method, but do want
    # to add a checkpoint dependency on the optimizer if it's checkpointable.
    if isinstance(self.optimizer, checkpointable.CheckpointableBase):
      self._track_checkpointable(
          self.optimizer, name='optimizer', overwrite=True)
    self.loss = loss
    self.metrics = metrics or []
    self.loss_weights = loss_weights
    if context.executing_eagerly() and sample_weight_mode is not None:
      raise ValueError('sample_weight_mode is not supported in Eager mode.')
    self.sample_weight_mode = sample_weight_mode
    if context.executing_eagerly() and weighted_metrics is not None:
      raise ValueError('weighted_metrics is not supported in Eager mode.')
    self.weighted_metrics = weighted_metrics
    if context.executing_eagerly() and target_tensors is not None:
      raise ValueError('target_tensors is not supported in Eager mode.')
    self.target_tensors = target_tensors

    if not self.built:
      # Model is not compilable because it does not know its number of inputs
      # and outputs, nor their shapes and names. We will compile after the first
      # time the model gets called on training data.
      return
    self._is_compiled = True

    # Prepare loss functions.
    if isinstance(loss, dict):
      for name in loss:
        if name not in self.output_names:
          raise ValueError(
              'Unknown entry in loss '
              'dictionary: "' + name + '". '
              'Only expected the following keys: ' + str(self.output_names))
      loss_functions = []
      for name in self.output_names:
        if name not in loss:
          logging.warning(
              'Output "' + name + '" missing from loss dictionary. We assume '
              'this was done on purpose. The fit and evaluate APIs will not be '
              'expecting any data to be passed to "' + name + '".')
        loss_functions.append(losses.get(loss.get(name)))
    elif isinstance(loss, list):
      if len(loss) != len(self.outputs):
        raise ValueError('When passing a list as loss, '
                         'it should have one entry per model outputs. '
                         'The model has ' + str(len(self.outputs)) +
                         ' outputs, but you passed loss=' + str(loss))
      loss_functions = [losses.get(l) for l in loss]
    else:
      loss_function = losses.get(loss)
      loss_functions = [loss_function for _ in range(len(self.outputs))]
    self.loss_functions = loss_functions

    weighted_losses = [training_utils.weighted_masked_objective(fn)
                       for fn in loss_functions]
    skip_target_indices = []
    skip_target_weighing_indices = []
    self._feed_outputs = []
    self._feed_output_names = []
    self._feed_output_shapes = []
    self._feed_loss_fns = []
    for i in range(len(weighted_losses)):
      if weighted_losses[i] is None:
        skip_target_indices.append(i)
        skip_target_weighing_indices.append(i)

    # Prepare output masks.
    if not context.executing_eagerly():
      masks = self.compute_mask(self.inputs, mask=None)
      if masks is None:
        masks = [None for _ in self.outputs]
      if not isinstance(masks, list):
        masks = [masks]

    # Prepare loss weights.
    if loss_weights is None:
      loss_weights_list = [1. for _ in range(len(self.outputs))]
    elif isinstance(loss_weights, dict):
      for name in loss_weights:
        if name not in self.output_names:
          raise ValueError(
              'Unknown entry in loss_weights '
              'dictionary: "' + name + '". '
              'Only expected the following keys: ' + str(self.output_names))
      loss_weights_list = []
      for name in self.output_names:
        loss_weights_list.append(loss_weights.get(name, 1.))
    elif isinstance(loss_weights, list):
      if len(loss_weights) != len(self.outputs):
        raise ValueError(
            'When passing a list as loss_weights, '
            'it should have one entry per model output. '
            'The model has ' + str(len(self.outputs)) +
            ' outputs, but you passed loss_weights=' + str(loss_weights))
      loss_weights_list = loss_weights
    else:
      raise TypeError('Could not interpret loss_weights argument: ' +
                      str(loss_weights) + ' - expected a list of dicts.')
    self.loss_weights_list = loss_weights_list

    # initialization for Eager mode execution
    if context.executing_eagerly():
      if target_tensors is not None:
        raise ValueError('target_tensors are not currently supported in Eager '
                         'mode.')
      self.total_loss = None
      self.metrics_tensors = []
      self.metrics_names = ['loss']
      for i in range(len(self.outputs)):
        if len(self.outputs) > 1:
          self.metrics_names.append(self.output_names[i] + '_loss')
      self.nested_metrics = training_utils.collect_metrics(metrics,
                                                           self.output_names)
      # TODO(fchollet): support stateful metrics in eager execution.
      self.stateful_metric_functions = []
      self.stateful_metric_names = []

      with K.name_scope('metrics'):
        training_utils.populate_metric_names(self)
      self._feed_sample_weight_modes = []
      for i in range(len(self.outputs)):
        self._feed_sample_weight_modes.append(None)
      self.sample_weights = []
      self.targets = []
      for i in range(len(self.outputs)):
        self._feed_output_names.append(self.output_names[i])
      self._collected_trainable_weights = self.trainable_weights
      return

    # Prepare targets of model.
    self.targets = []
    self._feed_targets = []
    if target_tensors not in (None, []):
      if isinstance(target_tensors, list):
        if len(target_tensors) != len(self.outputs):
          raise ValueError(
              'When passing a list as `target_tensors`, '
              'it should have one entry per model output. '
              'The model has ' + str(len(self.outputs)) +
              ' outputs, but you passed target_tensors=' + str(target_tensors))
      elif isinstance(target_tensors, dict):
        for name in target_tensors:
          if name not in self.output_names:
            raise ValueError(
                'Unknown entry in `target_tensors` '
                'dictionary: "' + name + '". '
                'Only expected the following keys: ' + str(self.output_names))
        tmp_target_tensors = []
        for name in self.output_names:
          tmp_target_tensors.append(target_tensors.get(name, None))
        target_tensors = tmp_target_tensors
      else:
        raise TypeError('Expected `target_tensors` to be '
                        'a list or dict, but got:', target_tensors)

    for i in range(len(self.outputs)):
      if i in skip_target_indices:
        self.targets.append(None)
      else:
        shape = K.int_shape(self.outputs[i])
        name = self.output_names[i]
        if target_tensors not in (None, []):
          target = target_tensors[i]
        else:
          target = None
        if target is None or K.is_placeholder(target):
          if target is None:
            target = K.placeholder(
                ndim=len(shape),
                name=name + '_target',
                sparse=K.is_sparse(self.outputs[i]),
                dtype=K.dtype(self.outputs[i]))
          self._feed_targets.append(target)
          self._feed_outputs.append(self.outputs[i])
          self._feed_output_names.append(name)
          self._feed_output_shapes.append(shape)
          self._feed_loss_fns.append(self.loss_functions[i])
        else:
          skip_target_weighing_indices.append(i)
        self.targets.append(target)

    # Prepare sample weights.
    sample_weights = []
    sample_weight_modes = []
    if isinstance(sample_weight_mode, dict):
      for name in sample_weight_mode:
        if name not in self.output_names:
          raise ValueError(
              'Unknown entry in '
              'sample_weight_mode dictionary: "' + name + '". '
              'Only expected the following keys: ' + str(self.output_names))
      for i, name in enumerate(self.output_names):
        if i in skip_target_weighing_indices:
          weight = None
          sample_weight_modes.append(None)
        else:
          if name not in sample_weight_mode:
            raise ValueError(
                'Output "' + name + '" missing from sample_weight_modes '
                'dictionary')
          if sample_weight_mode.get(name) == 'temporal':
            weight = K.placeholder(ndim=2, name=name + '_sample_weights')
            sample_weight_modes.append('temporal')
          else:
            weight = K.placeholder(ndim=1, name=name + 'sample_weights')
            sample_weight_modes.append(None)
        sample_weights.append(weight)
    elif isinstance(sample_weight_mode, list):
      if len(sample_weight_mode) != len(self.outputs):
        raise ValueError('When passing a list as sample_weight_mode, '
                         'it should have one entry per model output. '
                         'The model has ' + str(len(self.outputs)) +
                         ' outputs, but you passed '
                         'sample_weight_mode=' + str(sample_weight_mode))
      for i in range(len(self.output_names)):
        if i in skip_target_weighing_indices:
          weight = None
          sample_weight_modes.append(None)
        else:
          mode = sample_weight_mode[i]
          name = self.output_names[i]
          if mode == 'temporal':
            weight = K.placeholder(ndim=2, name=name + '_sample_weights')
            sample_weight_modes.append('temporal')
          else:
            weight = K.placeholder(ndim=1, name=name + '_sample_weights')
            sample_weight_modes.append(None)
        sample_weights.append(weight)
    else:
      for i, name in enumerate(self.output_names):
        if i in skip_target_weighing_indices:
          sample_weight_modes.append(None)
          sample_weights.append(None)
        else:
          if sample_weight_mode == 'temporal':
            sample_weights.append(array_ops.placeholder_with_default(
                constant_op.constant([[1.]], dtype=K.floatx()),
                shape=[None, None], name=name + '_sample_weights'))
            sample_weight_modes.append('temporal')
          else:
            sample_weights.append(array_ops.placeholder_with_default(
                constant_op.constant([1.], dtype=K.floatx()),
                shape=[None], name=name + '_sample_weights'))
            sample_weight_modes.append(None)
    self.sample_weight_modes = sample_weight_modes
    self._feed_sample_weight_modes = []
    for i in range(len(self.outputs)):
      if i not in skip_target_weighing_indices:
        self._feed_sample_weight_modes.append(self.sample_weight_modes[i])

    # Prepare metrics.
    self.weighted_metrics = weighted_metrics
    self.metrics_names = ['loss']
    self.metrics_tensors = []

    # Compute total loss.
    total_loss = None
    with K.name_scope('loss'):
      for i in range(len(self.outputs)):
        if i in skip_target_indices:
          continue
        y_true = self.targets[i]
        y_pred = self.outputs[i]
        weighted_loss = weighted_losses[i]
        sample_weight = sample_weights[i]
        mask = masks[i]
        loss_weight = loss_weights_list[i]
        with K.name_scope(self.output_names[i] + '_loss'):
          output_loss = weighted_loss(y_true, y_pred, sample_weight, mask)
        if len(self.outputs) > 1:
          self.metrics_tensors.append(output_loss)
          self.metrics_names.append(self.output_names[i] + '_loss')
        if total_loss is None:
          total_loss = loss_weight * output_loss
        else:
          total_loss += loss_weight * output_loss
      if total_loss is None:
        if not self.losses:
          raise ValueError('The model cannot be compiled '
                           'because it has no loss to optimize.')
        else:
          total_loss = 0.

      # Add regularization penalties
      # and other layer-specific losses.
      for loss_tensor in self.losses:
        total_loss += loss_tensor

    # List of same size as output_names.
    # contains tuples (metrics for output, names of metrics).
    nested_metrics = training_utils.collect_metrics(metrics, self.output_names)
    nested_weighted_metrics = training_utils.collect_metrics(weighted_metrics,
                                                             self.output_names)
    self.metrics_updates = []
    self.stateful_metric_names = []
    self.stateful_metric_functions = []
    with K.name_scope('metrics'):
      for i in range(len(self.outputs)):
        if i in skip_target_indices:
          continue

        y_true = self.targets[i]
        y_pred = self.outputs[i]
        weights = sample_weights[i]
        output_metrics = nested_metrics[i]
        output_weighted_metrics = nested_weighted_metrics[i]

        def handle_metrics(metrics, weights=None):

          for metric in metrics:
            if metric in ('accuracy', 'acc', 'crossentropy', 'ce'):
              # custom handling of accuracy/crossentropy
              # (because of class mode duality)
              output_shape = self.outputs[i].get_shape().as_list()
              if (output_shape[-1] == 1 or
                  self.loss_functions[i] == losses.binary_crossentropy):
                # case: binary accuracy/crossentropy
                if metric in ('accuracy', 'acc'):
                  metric_fn = metrics_module.binary_accuracy
                elif metric in ('crossentropy', 'ce'):
                  metric_fn = metrics_module.binary_crossentropy
              elif self.loss_functions[
                  i] == losses.sparse_categorical_crossentropy:
                # case: categorical accuracy/crossentropy with sparse targets
                if metric in ('accuracy', 'acc'):
                  metric_fn = metrics_module.sparse_categorical_accuracy
                elif metric in ('crossentropy', 'ce'):
                  metric_fn = metrics_module.sparse_categorical_crossentropy
              else:
                # case: categorical accuracy/crossentropy
                if metric in ('accuracy', 'acc'):
                  metric_fn = metrics_module.categorical_accuracy
                elif metric in ('crossentropy', 'ce'):
                  metric_fn = metrics_module.categorical_crossentropy
              weighted_metric_fn = training_utils.weighted_masked_objective(
                  metric_fn)
            else:
              metric_fn = metrics_module.get(metric)
              weighted_metric_fn = training_utils.weighted_masked_objective(
                  metric_fn)
            metric_name = training_utils.get_base_metric_name(
                metric, weighted=weights is not None)
            with K.name_scope(metric_name):
              metric_result = weighted_metric_fn(
                  y_true, y_pred, weights=weights, mask=masks[i])

            training_utils.add_metric_name(self, metric_name, i)
            self.metrics_tensors.append(metric_result)

            # Keep track of state updates created by
            # stateful metrics (i.e. metrics layers).
            if isinstance(metric_fn, base_layer.Layer) and metric_fn.stateful:
              self.stateful_metric_names.append(metric_name)
              self.stateful_metric_functions.append(metric_fn)
              self.metrics_updates += metric_fn.updates

        handle_metrics(output_metrics)
        handle_metrics(output_weighted_metrics, weights=weights)

    # Prepare gradient updates and state updates.
    self.total_loss = total_loss
    self.sample_weights = sample_weights
    self._feed_sample_weights = []
    for i in range(len(self.sample_weights)):
      if i not in skip_target_weighing_indices:
        self._feed_sample_weights.append(self.sample_weights[i])

    # Functions for train, test and predict will
    # be compiled lazily when required.
    # This saves time when the user is not using all functions.
    self._function_kwargs = kwargs

    self.train_function = None
    self.test_function = None
    self.predict_function = None

    # Collected trainable weights, sorted in topological order.
    trainable_weights = self.trainable_weights
    self._collected_trainable_weights = trainable_weights

  def build(self, input_shape):
    """Build the model based on input shapes received.

    This is to be used for subclassed models, which do not know at instantiation
    time what their inputs look like.

    Args:
     input_shape: Single tuple, TensorShape, or list of shapes, where shapes
         are tuples, integers, or TensorShapes.

    Raises:
      ValueError:
        1. In case of invalid user-provided data (not of type tuple,
           list, or TensorShape).
        2. If the model requires call arguments that are agnostic
           to the input shapes (positional or kwarg in call signature).
        3. If not all layers were properly built.
        4. If float type inputs are not supported within the layers.

      In each of these cases, the user should build their model by calling it
      on real tensor data.
    """
    if self._is_graph_network:
      self.built = True
      return

    # If subclass network
    if input_shape is None:
      raise ValueError('Input shape must be defined when calling build on a '
                       'model subclass network.')
    valid_types = (tuple, list, tensor_shape.TensorShape)
    if not isinstance(input_shape, valid_types):
      raise ValueError('Specified input shape is not one of the valid types. '
                       'Please specify a batch input shape of type tuple or '
                       'list of input shapes. User provided '
                       'input type: {}'.format(type(input_shape)))

    def _generate_dummy_data_from_shape(shape):
      if isinstance(shape, tensor_shape.TensorShape):
        shape = shape.as_list()

      # Replace Nones in input shape with dummy `1` value
      shape = [x.value if isinstance(x, tensor_shape.Dimension) else x
               for x in shape]
      shape = [1 if x is None else x for x in shape]
      return array_ops.ones(shape, dtype=K.floatx())

    if input_shape and not self.inputs:
      if isinstance(input_shape, list):
        # List of input shapes
        x = [_generate_dummy_data_from_shape(shape) for shape in input_shape]
      else:
        x = _generate_dummy_data_from_shape(input_shape)

      kwargs = {}
      num_call_args = len(tf_inspect.getargspec(self.call).args)
      if self._expects_training_arg and num_call_args == 3:
        # Has call signature of call(self, input, training)
        kwargs['training'] = False
      elif num_call_args > 2:
        # Has invalid call signature of call(self, input, *args, **kwargs)
        raise ValueError('Currently, you cannot build your model if it has '
                         'positional or keyword arguments that are not '
                         'inputs to the model, but are required for its '
                         '`call` method. Instead, in order to instantiate '
                         'and build your model, `call` your model on real '
                         'tensor data with all expected call arguments.')

      try:
        self.call(x, **kwargs)
      except (errors.InvalidArgumentError, TypeError):
        raise ValueError('You cannot build your model by calling `build` '
                         'if your layers do not support float type inputs. '
                         'Instead, in order to instantiate and build your '
                         'model, `call` your model on real tensor data (of '
                         'the correct dtype).')

    if self._layers:
      self._track_layers(self._layers)
    if self.layers:
      for layer in self.layers:
        if not layer.built:
          raise ValueError('Layer: {} was not built in your model. Calling '
                           '`build` manually on a subclassed model is only '
                           'allowed for models with a static topology. '
                           'In this case, you can build your model by '
                           'calling it on real tensor data.'.format(layer))
    self.built = True

  def _check_trainable_weights_consistency(self):
    """Check trainable weights count consistency.

    This will raise a warning if `trainable_weights` and
    `_collected_trainable_weights` are inconsistent (i.e. have different
    number of parameters).
    Inconsistency will typically arise when one modifies `model.trainable`
    without calling `model.compile` again.
    """
    if not hasattr(self, '_collected_trainable_weights'):
      return

    if len(self.trainable_weights) != len(self._collected_trainable_weights):
      logging.warning(
          UserWarning(
              'Discrepancy between trainable weights and collected trainable'
              ' weights, did you set `model.trainable` without calling'
              ' `model.compile` after ?'))

  def _make_train_function(self):
    if not hasattr(self, 'train_function'):
      raise RuntimeError('You must compile your model before using it.')
    self._check_trainable_weights_consistency()
    if self.train_function is None:
      inputs = (self._feed_inputs +
                self._feed_targets +
                self._feed_sample_weights)
      if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
        inputs += [K.learning_phase()]

      with K.name_scope('training'):
        with K.name_scope(self.optimizer.__class__.__name__):
          # Training updates
          updates = self.optimizer.get_updates(
              params=self._collected_trainable_weights, loss=self.total_loss)
        # Unconditional updates
        updates += self.get_updates_for(None)
        # Conditional updates relevant to this model
        updates += self.get_updates_for(self.inputs)
        # Stateful metrics updates
        updates += self.metrics_updates
        # Gets loss and metrics. Updates weights at each call.
        self.train_function = K.function(
            inputs, [self.total_loss] + self.metrics_tensors,
            updates=updates,
            name='train_function',
            **self._function_kwargs)
    self._post_build_cleanup()

  def _make_test_function(self):
    if not hasattr(self, 'test_function'):
      raise RuntimeError('You must compile your model before using it.')
    if self.test_function is None:
      inputs = (self._feed_inputs +
                self._feed_targets +
                self._feed_sample_weights)
      if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
        inputs += [K.learning_phase()]
      # Return loss and metrics, no gradient updates.
      # Does update the network states.
      self.test_function = K.function(
          inputs, [self.total_loss] + self.metrics_tensors,
          updates=self.state_updates + self.metrics_updates,
          name='test_function',
          **self._function_kwargs)
    self._post_build_cleanup()

  def _make_predict_function(self):
    if not hasattr(self, 'predict_function'):
      self.predict_function = None
    if self.predict_function is None:
      if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
        inputs = self._feed_inputs + [K.learning_phase()]
      else:
        inputs = self._feed_inputs
      # Gets network outputs. Does not update weights.
      # Does update the network states.
      kwargs = getattr(self, '_function_kwargs', {})
      self.predict_function = K.function(
          inputs,
          self.outputs,
          updates=self.state_updates,
          name='predict_function',
          **kwargs)
    self._post_build_cleanup()

  def _get_iterator_get_next_tensors(self, iterator):
    get_next_op = self._iterator_get_next.get(iterator, None)
    if get_next_op is None:
      get_next_op = iterator.get_next()
      self._iterator_get_next[iterator] = get_next_op
    return get_next_op

  def _standardize_user_data(self,
                             x,
                             y=None,
                             sample_weight=None,
                             class_weight=None,
                             batch_size=None,
                             check_steps=False,
                             steps_name='steps',
                             steps=None,
                             validation_split=0):
    """Runs validation checks on input and target data passed by the user.

    Also standardizes the data to lists of arrays, in order.

    Also builds and compiles the model on the fly if it is a subclassed model
    that has never been called before (and thus has no inputs/outputs).

    This is a purely internal method, subject to refactoring at any time.

    Args:
      x: Input data. It could be:
        - A Numpy array (or array-like), or a list of arrays
          (in case the model has multiple inputs).
        - A TensorFlow tensor, or a list of tensors
          (in case the model has multiple inputs).
        - A dict mapping input names to the corresponding array/tensors,
          if the model has named inputs.
        - A `tf.data` dataset or a dataset iterator.
      y: Target data. Like the input data `x`,
        it could be either Numpy array(s) or TensorFlow tensor(s).
        It should be consistent with `x` (you cannot have Numpy inputs and
        tensor targets, or inversely). If `x` is a dataset or a
        dataset iterator, `y` should not be specified
        (since targets will be obtained from the iterator).
      sample_weight: An optional sample-weight array passed by the user to
        weight the importance of each sample in `x`.
      class_weight: An optional class-weight array by the user to
        weight the importance of samples in `x` based on the class they belong
        to, as conveyed by `y`.
      batch_size: Integer batch size. If provided, it is used to run additional
        validation checks on stateful models.
      check_steps: boolean, True if we want to check for validity of `steps` and
        False, otherwise. For example, when we are standardizing one batch of
        data for train_on_batch/predict_on_batch/test_on_batch APIs, `steps`
        value is not required and we should not check for its validity in these
        cases.
      steps_name: The public API's parameter name for `steps`.
      steps: Integer or `None`. Total number of steps (batches of samples) to
        execute.
      validation_split: Float between 0 and 1.
        Fraction of the training data to be used as validation data.

    Returns:
      A tuple of 3 lists: input arrays, target arrays, sample-weight arrays.
      If the model's input and targets are symbolic, these lists are empty
      (since the model takes no user-provided data, instead the data comes
      from the symbolic inputs/targets).

    Raises:
      ValueError: In case of invalid user-provided data.
      RuntimeError: If the model was never compiled.
    """
    if isinstance(x, dataset_ops.Dataset):
      if context.executing_eagerly():
        x = x.make_one_shot_iterator()
      else:
        if x in self._dataset_iterator_cache:
          x = self._dataset_iterator_cache[x]
        else:
          iterator = x.make_initializable_iterator()
          self._dataset_iterator_cache[x] = iterator
          x = iterator
        K.get_session().run(x.initializer)

    # Validates `steps` argument based on x's type.
    if check_steps:
      training_utils.check_steps_argument(x, steps, steps_name)

    is_x_eager_iterator = isinstance(x, iterator_ops.EagerIterator)
    is_x_iterator = isinstance(x, iterator_ops.Iterator)

    # Validate user inputs when data is given as a dataset or dataset iterator.
    if is_x_iterator or is_x_eager_iterator:
      training_utils.validate_iterator_input(x, y, sample_weight,
                                             validation_split)

    # For eager iterators, when we have to process multiple batches of samples,
    # we will standardize the data when we actually loop over iterator and get
    # the batches. For now, we just return the iterator as is.
    if is_x_eager_iterator and steps is not None:
      return x, y, sample_weight

    # If input data is a dataset iterator in graph mode or if it is an eager
    # iterator and only one batch of samples is required, we fetch the data
    # tensors from the iterator and then standardize them.
    if is_x_iterator or is_x_eager_iterator:
      try:
        if is_x_iterator:
          next_element = self._get_iterator_get_next_tensors(x)
        else:
          next_element = x.get_next()
      except errors.OutOfRangeError:
        raise RuntimeError('Your dataset iterator ran out of data; '
                           'Make sure that your dataset can generate '
                           'required number of samples.')

      if not isinstance(next_element, (list, tuple)) or len(next_element) != 2:
        raise ValueError('Please provide data as a list or tuple of 2 elements '
                         ' - input and target pair. Received %s' % next_element)
      x, y = next_element

    # First, we build/compile the model on the fly if necessary.
    all_inputs = []
    is_build_called = False
    is_compile_called = False
    if not self.built:
      # We need to use `x` to set the model inputs.
      # We type-check that `x` and `y` are either single arrays
      # or lists of arrays.
      if isinstance(x, (list, tuple)):
        if not all(isinstance(v, np.ndarray) or
                   tensor_util.is_tensor(v) for v in x):
          raise ValueError('Please provide as model inputs either a single '
                           'array or a list of arrays. You passed: x=' + str(x))
        all_inputs += list(x)
      elif isinstance(x, dict):
        raise ValueError('Please do not pass a dictionary as model inputs.')
      else:
        if not isinstance(x, np.ndarray) and not tensor_util.is_tensor(x):
          raise ValueError('Please provide as model inputs either a single '
                           'array or a list of arrays. You passed: x=' + str(x))
        all_inputs.append(x)

      # Build the model using the retrieved inputs (value or symbolic).
      # If values, then in symbolic-mode placeholders will be created
      # to match the value shapes.
      if not self.inputs:
        is_build_called = True
        self._set_inputs(x)

    if y is not None:
      if not self.optimizer:
        raise RuntimeError('You must compile a model before '
                           'training/testing. '
                           'Use `model.compile(optimizer, loss)`.')
      if not self._is_compiled:
        # On-the-fly compilation of the model.
        # We need to use `y` to set the model targets.
        if isinstance(y, (list, tuple)):
          if not all(isinstance(v, np.ndarray) or
                     tensor_util.is_tensor(v) for v in y):
            raise ValueError('Please provide as model targets either a single '
                             'array or a list of arrays. '
                             'You passed: y=' + str(y))
          all_inputs += list(y)
        elif isinstance(y, dict):
          raise ValueError('Please do not pass a dictionary as model targets.')
        else:
          if not isinstance(y, np.ndarray) and not tensor_util.is_tensor(y):
            raise ValueError('Please provide as model targets either a single '
                             'array or a list of arrays. '
                             'You passed: y=' + str(y))
          all_inputs.append(y)

        # Typecheck that all inputs are *either* value *or* symbolic.
        # TODO(fchollet): this check could be removed in Eager mode?
        if any(tensor_util.is_tensor(v) for v in all_inputs):
          if not all(tensor_util.is_tensor(v) for v in all_inputs):
            raise ValueError('Do not pass inputs that mix Numpy arrays and '
                             'TensorFlow tensors. '
                             'You passed: x=' + str(x) + '; y=' + str(y))

        if context.executing_eagerly():
          target_tensors = None
        else:
          # Handle target tensors if any passed.
          if not isinstance(y, (list, tuple)):
            y = [y]
          target_tensors = [v for v in y if tensor_util.is_tensor(v)]
        is_compile_called = True
        self.compile(optimizer=self.optimizer,
                     loss=self.loss,
                     metrics=self.metrics,
                     loss_weights=self.loss_weights,
                     target_tensors=target_tensors)

    # In graph mode, if we had just set inputs and targets as symbolic tensors
    # by invoking build and compile on the model respectively, we do not have to
    # feed anything to the model. Model already has input and target data as
    # part of the graph.
    # Note: in this case, `any` and `all` are equivalent since we disallow
    # mixed symbolic/value inputs.
    if (not context.executing_eagerly() and is_build_called and
        is_compile_called and
        any(tensor_util.is_tensor(v) for v in all_inputs)):
      return [], [], []

    # What follows is input validation and standardization to list format,
    # in the case where all inputs are value arrays.

    if context.executing_eagerly():
      # In eager mode, do not do shape validation
      # since the network has no input nodes (placeholders) to be fed.
      feed_input_names = self.input_names
      feed_input_shapes = None
    elif not self._is_graph_network:
      # Case: symbolic-mode subclassed network. Do not do shape validation.
      feed_input_names = self._feed_input_names
      feed_input_shapes = None
    else:
      # Case: symbolic-mode graph network.
      # In this case, we run extensive shape validation checks.
      feed_input_names = self._feed_input_names
      feed_input_shapes = self._feed_input_shapes

    # Standardize the inputs.
    x = training_utils.standardize_input_data(
        x,
        feed_input_names,
        feed_input_shapes,
        check_batch_axis=False,  # Don't enforce the batch size.
        exception_prefix='input')

    if y is not None:
      if context.executing_eagerly():
        feed_output_names = self.output_names
        feed_output_shapes = None
        # Sample weighting not supported in this case.
        # TODO(fchollet): consider supporting it.
        feed_sample_weight_modes = [None for _ in self.outputs]
      elif not self._is_graph_network:
        feed_output_names = self._feed_output_names
        feed_output_shapes = None
        # Sample weighting not supported in this case.
        # TODO(fchollet): consider supporting it.
        feed_sample_weight_modes = [None for _ in self.outputs]
      else:
        feed_output_names = self._feed_output_names
        feed_sample_weight_modes = self._feed_sample_weight_modes
        feed_output_shapes = []
        for output_shape, loss_fn in zip(self._feed_output_shapes,
                                         self._feed_loss_fns):
          if loss_fn is losses.sparse_categorical_crossentropy:
            if K.image_data_format() == 'channels_first':
              feed_output_shapes.append(
                  (output_shape[0], 1) + output_shape[2:])
            else:
              feed_output_shapes.append(output_shape[:-1] + (1,))
          elif (not hasattr(loss_fn, '__name__') or
                getattr(losses, loss_fn.__name__, None) is None):
            # If `loss_fn` is not a function (e.g. callable class)
            # or if it not in the `losses` module, then
            # it is a user-defined loss and we make no assumptions
            # about it.
            feed_output_shapes.append(None)
          else:
            feed_output_shapes.append(output_shape)

      # Standardize the outputs.
      y = training_utils.standardize_input_data(
          y,
          feed_output_names,
          feed_output_shapes,
          check_batch_axis=False,  # Don't enforce the batch size.
          exception_prefix='target')

      # Generate sample-wise weight values given the `sample_weight` and
      # `class_weight` arguments.
      sample_weights = training_utils.standardize_sample_weights(
          sample_weight, feed_output_names)
      class_weights = training_utils.standardize_class_weights(
          class_weight, feed_output_names)
      sample_weights = [
          training_utils.standardize_weights(ref, sw, cw, mode)
          for (ref, sw, cw, mode) in zip(y, sample_weights, class_weights,
                                         feed_sample_weight_modes)
      ]
      # Check that all arrays have the same length.
      training_utils.check_array_lengths(x, y, sample_weights)
      if self._is_graph_network and not context.executing_eagerly():
        # Additional checks to avoid users mistakenly using improper loss fns.
        training_utils.check_loss_and_target_compatibility(
            y, self._feed_loss_fns, feed_output_shapes)
    else:
      y = []
      sample_weights = []

    if self.stateful and batch_size:
      # Check that for stateful networks, number of samples is a multiple
      # of the static batch size.
      if x[0].shape[0] % batch_size != 0:
        raise ValueError('In a stateful network, '
                         'you should only pass inputs with '
                         'a number of samples that can be '
                         'divided by the batch size. Found: ' +
                         str(x[0].shape[0]) + ' samples')
    return x, y, sample_weights

  @checkpointable.no_automatic_dependency_tracking
  def _set_inputs(self, inputs, training=None):
    """Set model's input and output specs based on the input data received.

    This is to be used for Model subclasses, which do not know at instantiation
    time what their inputs look like.

    Args:
      inputs: Single array, or list of arrays. The arrays could be placeholders,
        Numpy arrays, or data tensors.
        - if placeholders: the model is built on top of these placeholders,
          and we expect Numpy data to be fed for them when calling `fit`/etc.
        - if Numpy data: we create placeholders matching the shape of the Numpy
          arrays. We expect Numpy data to be fed for these placeholders
          when calling `fit`/etc.
        - if data tensors: the model is built on top of these tensors.
          We do not expect any Numpy data to be provided when calling `fit`/etc.
      training: Boolean or None. Only relevant in symbolic mode. Specifies
        whether to build the model's graph in inference mode (False), training
        mode (True), or using the Keras learning phase (None).
    """
    call_convention = getattr(
        self,
        '_call_convention',
        base_layer.CallConvention.EXPLICIT_INPUTS_ARGUMENT)
    if call_convention not in (
        base_layer.CallConvention.EXPLICIT_INPUTS_ARGUMENT,
        base_layer.CallConvention.SINGLE_POSITIONAL_ARGUMENT):
      raise NotImplementedError(
          'Subclassed Models without "inputs" (or single positional arguments) '
          'in their call() signatures do not yet support shape inference. File '
          'a feature request if this limitation bothers you.')
    if self.__class__.__name__ == 'Sequential':
      # Note: we can't test whether the model is `Sequential` via `isinstance`
      # since `Sequential` depends on `Model`.
      if isinstance(inputs, list):
        assert len(inputs) == 1
        inputs = inputs[0]

      if tensor_util.is_tensor(inputs):
        if context.executing_eagerly():
          input_shape = (None,) + tuple(inputs.get_shape().as_list()[1:])
          self.build(input_shape=input_shape)
        else:
          self.symbolic_set_inputs(inputs)
      else:
        input_shape = (None,) + inputs.shape[1:]
        self.build(input_shape=input_shape)
    elif context.executing_eagerly():
      self._eager_set_inputs(inputs)
    else:
      self._symbolic_set_inputs(inputs, training=training)

  @checkpointable.no_automatic_dependency_tracking
  def _eager_set_inputs(self, inputs):
    """Set model's input and output specs based on the input data received.

    This is to be used for Model subclasses, which do not know at instantiation
    time what their inputs look like.

    We assume the number and ndim of outputs
    does not change over different calls.

    Args:
      inputs: Argument `x` (input data) passed by the user upon first model use.

    Raises:
      ValueError: If the model's inputs are already set.
    """
    assert context.executing_eagerly()
    if self.inputs:
      raise ValueError('Model inputs are already set.')
    # On-the-fly setting of model inputs/outputs as DeferredTensors,
    # to keep track of number of inputs and outputs and their ndim.
    if isinstance(inputs, (list, tuple)):
      if tensor_util.is_tensor(inputs[0]):
        dummy_output_values = self.call(
            training_utils.cast_if_floating_dtype(inputs))
      else:
        dummy_output_values = self.call(
            [ops.convert_to_tensor(v, dtype=K.floatx()) for v in inputs])
      dummy_input_values = list(inputs)
    else:
      if tensor_util.is_tensor(inputs):
        dummy_output_values = self.call(
            training_utils.cast_if_floating_dtype(inputs))
      else:
        dummy_output_values = self.call(
            ops.convert_to_tensor(inputs, dtype=K.floatx()))
      dummy_input_values = [inputs]
    if isinstance(dummy_output_values, (list, tuple)):
      dummy_output_values = list(dummy_output_values)
    else:
      dummy_output_values = [dummy_output_values]
    self.outputs = [
        base_layer.DeferredTensor(shape=(None for _ in v.shape),
                                  dtype=v.dtype) for v in dummy_output_values]
    self.inputs = [
        base_layer.DeferredTensor(shape=(None for _ in v.shape),
                                  dtype=v.dtype) for v in dummy_input_values]
    self.input_names = [
        'input_%d' % (i + 1) for i in range(len(dummy_input_values))]
    self.output_names = [
        'output_%d' % (i + 1) for i in range(len(dummy_output_values))]
    self.built = True

  @checkpointable.no_automatic_dependency_tracking
  def _symbolic_set_inputs(self, inputs, outputs=None, training=None):
    """Set model's inputs and output specs based.

    This is to be used for Model subclasses, which do not know at instantiation
    time what their inputs look like.

    Args:
      inputs: Argument `x` (input data) passed by the user upon first model use.
      outputs: None, a data tensor, or a list of data tensors. If None, the
        outputs will be determined by invoking self.call(), otherwise the
        provided value will be used.
      training: Boolean or None. Only relevant in symbolic mode. Specifies
        whether to build the model's graph in inference mode (False), training
        mode (True), or using the Keras learning phase (None).

    Raises:
      ValueError: If the model's inputs are already set.
    """
    assert not context.executing_eagerly()
    if self.inputs:
      raise ValueError('Model inputs are already set.')

    # On-the-fly setting of symbolic model inputs (either by using the tensor
    # provided, or by creating a placeholder if Numpy data was provided).
    self.inputs = []
    self.input_names = []
    self._feed_inputs = []
    self._feed_input_names = []
    self._feed_input_shapes = []
    if isinstance(inputs, (list, tuple)):
      inputs = list(inputs)
    else:
      inputs = [inputs]

    for i, v in enumerate(inputs):
      name = 'input_%d' % (i + 1)
      self.input_names.append(name)
      if isinstance(v, list):
        v = np.asarray(v)
        if v.ndim == 1:
          v = np.expand_dims(v, 1)
      if isinstance(v, (np.ndarray)):
        # We fix the placeholder shape except the batch size.
        # This is suboptimal, but it is the best we can do with the info
        # we have. The user should call `model._set_inputs(placeholders)`
        # to specify custom placeholders if the need arises.
        shape = (None,) + v.shape[1:]
        placeholder = K.placeholder(shape=shape, name=name)
        self.inputs.append(placeholder)
        self._feed_inputs.append(placeholder)
        self._feed_input_names.append(name)
        self._feed_input_shapes.append(shape)
      else:
        # Assumed tensor - TODO(fchollet) additional type check?
        self.inputs.append(v)
        if K.is_placeholder(v):
          self._feed_inputs.append(v)
          self._feed_input_names.append(name)
          self._feed_input_shapes.append(K.int_shape(v))

    if outputs is None:
      # Obtain symbolic outputs by calling the model.
      if len(self.inputs) == 1:
        if self._expects_training_arg:
          outputs = self.call(self.inputs[0], training=training)
        else:
          outputs = self.call(self.inputs[0])
      else:
        if self._expects_training_arg:
          outputs = self.call(self.inputs, training=training)
        else:
          outputs = self.call(self.inputs)
    if isinstance(outputs, (list, tuple)):
      outputs = list(outputs)
    else:
      outputs = [outputs]
    self.outputs = outputs
    self.output_names = [
        'output_%d' % (i + 1) for i in range(len(self.outputs))]
    self.built = True

  def fit(self,
          x=None,
          y=None,
          batch_size=None,
          epochs=1,
          verbose=1,
          callbacks=None,
          validation_split=0.,
          validation_data=None,
          shuffle=True,
          class_weight=None,
          sample_weight=None,
          initial_epoch=0,
          steps_per_epoch=None,
          validation_steps=None,
          **kwargs):
    """Trains the model for a fixed number of epochs (iterations on a dataset).

    Arguments:
        x: Input data. It could be:
          - A Numpy array (or array-like), or a list of arrays
            (in case the model has multiple inputs).
          - A TensorFlow tensor, or a list of tensors
            (in case the model has multiple inputs).
          - A dict mapping input names to the corresponding array/tensors,
            if the model has named inputs.
          - A `tf.data` dataset or a dataset iterator.
        y: Target data. Like the input data `x`,
          it could be either Numpy array(s) or TensorFlow tensor(s).
          It should be consistent with `x` (you cannot have Numpy inputs and
          tensor targets, or inversely). If `x` is a dataset or dataset
          iterator, `y` should not be specified
          (since targets will be obtained from the iterator).
        batch_size: Integer or `None`.
            Number of samples per gradient update.
            If unspecified, `batch_size` will default to 32.
            Do not specify the `batch_size` if your data is in the
            form of symbolic tensors, datasets, or dataset iterators
            (since they generate batches).
        epochs: Integer. Number of epochs to train the model.
            An epoch is an iteration over the entire `x` and `y`
            data provided.
            Note that in conjunction with `initial_epoch`,
            `epochs` is to be understood as "final epoch".
            The model is not trained for a number of iterations
            given by `epochs`, but merely until the epoch
            of index `epochs` is reached.
        verbose: Integer. 0, 1, or 2. Verbosity mode.
            0 = silent, 1 = progress bar, 2 = one line per epoch.
        callbacks: List of `keras.callbacks.Callback` instances.
            List of callbacks to apply during training.
            See [callbacks](/callbacks).
        validation_split: Float between 0 and 1.
            Fraction of the training data to be used as validation data.
            The model will set apart this fraction of the training data,
            will not train on it, and will evaluate
            the loss and any model metrics
            on this data at the end of each epoch.
            The validation data is selected from the last samples
            in the `x` and `y` data provided, before shuffling. This argument is
            not supported when `x` is a dataset or a dataset iterator.
        validation_data: Data on which to evaluate
            the loss and any model metrics at the end of each epoch.
            The model will not be trained on this data.
            `validation_data` will override `validation_split`.
            `validation_data` could be:
              - tuple `(x_val, y_val)` of Numpy arrays or tensors
              - tuple `(x_val, y_val, val_sample_weights)` of Numpy arrays
              - dataset or a dataset iterator
        shuffle: Boolean (whether to shuffle the training data
            before each epoch) or str (for 'batch').
            'batch' is a special option for dealing with the
            limitations of HDF5 data; it shuffles in batch-sized chunks.
            Has no effect when `steps_per_epoch` is not `None`.
        class_weight: Optional dictionary mapping class indices (integers)
            to a weight (float) value, used for weighting the loss function
            (during training only).
            This can be useful to tell the model to
            "pay more attention" to samples from
            an under-represented class.
        sample_weight: Optional Numpy array of weights for
            the training samples, used for weighting the loss function
            (during training only). You can either pass a flat (1D)
            Numpy array with the same length as the input samples
            (1:1 mapping between weights and samples),
            or in the case of temporal data,
            you can pass a 2D array with shape
            `(samples, sequence_length)`,
            to apply a different weight to every timestep of every sample.
            In this case you should make sure to specify
            `sample_weight_mode="temporal"` in `compile()`. This argument is not
            supported when `x` is a dataset or a dataset iterator.
        initial_epoch: Integer.
            Epoch at which to start training
            (useful for resuming a previous training run).
        steps_per_epoch: Integer or `None`.
            Total number of steps (batches of samples)
            before declaring one epoch finished and starting the
            next epoch. When training with input tensors such as
            TensorFlow data tensors, the default `None` is equal to
            the number of samples in your dataset divided by
            the batch size, or 1 if that cannot be determined.
        validation_steps: Only relevant if `steps_per_epoch`
            is specified. Total number of steps (batches of samples)
            to validate before stopping.
        **kwargs: Used for backwards compatibility.

    Returns:
        A `History` object. Its `History.history` attribute is
        a record of training loss values and metrics values
        at successive epochs, as well as validation loss values
        and validation metrics values (if applicable).

    Raises:
        RuntimeError: If the model was never compiled.
        ValueError: In case of mismatch between the provided input data
            and what the model expects.
    """
    # TODO(fchollet): this method may be creating reference cycles, which would
    # lead to accumulating garbage in memory when called in a loop. Investigate.

    # Backwards compatibility
    if batch_size is None and steps_per_epoch is None:
      batch_size = 32
    # Legacy support
    if 'nb_epoch' in kwargs:
      logging.warning(
          'The `nb_epoch` argument in `fit` '
          'has been renamed `epochs`.')
      epochs = kwargs.pop('nb_epoch')
    if kwargs:
      raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))

    # Validate and standardize user data.
    x, y, sample_weights = self._standardize_user_data(
        x,
        y,
        sample_weight=sample_weight,
        class_weight=class_weight,
        batch_size=batch_size,
        check_steps=True,
        steps_name='steps_per_epoch',
        steps=steps_per_epoch,
        validation_split=validation_split)

    # Prepare validation data.
    if validation_data:
      if (isinstance(validation_data, iterator_ops.Iterator) or
          isinstance(validation_data, iterator_ops.EagerIterator) or
          isinstance(validation_data, dataset_ops.Dataset)):
        val_x = validation_data
        val_y = None
        val_sample_weight = None
      elif len(validation_data) == 2:
        val_x, val_y = validation_data  # pylint: disable=unpacking-non-sequence
        val_sample_weight = None
      elif len(validation_data) == 3:
        val_x, val_y, val_sample_weight = validation_data  # pylint: disable=unpacking-non-sequence
      else:
        raise ValueError(
            'When passing a `validation_data` argument, '
            'it must contain either 2 items (x_val, y_val), '
            'or 3 items (x_val, y_val, val_sample_weights), '
            'or alternatively it could be a dataset or a '
            'dataset or a dataset iterator. '
            'However we received `validation_data=%s`' % validation_data)

      # Validate and standardize validation data.
      val_x, val_y, val_sample_weights = self._standardize_user_data(
          val_x,
          val_y,
          sample_weight=val_sample_weight,
          batch_size=batch_size,
          steps=validation_steps)

    elif validation_split and 0. < validation_split < 1.:
      if training_utils.has_symbolic_tensors(x):
        raise ValueError('If your data is in the form of symbolic tensors, '
                         'you cannot use `validation_split`.')
      if hasattr(x[0], 'shape'):
        split_at = int(x[0].shape[0] * (1. - validation_split))
      else:
        split_at = int(len(x[0]) * (1. - validation_split))
      x, val_x = (slice_arrays(x, 0, split_at), slice_arrays(x, split_at))
      y, val_y = (slice_arrays(y, 0, split_at), slice_arrays(y, split_at))
      sample_weights, val_sample_weights = (slice_arrays(
          sample_weights, 0, split_at), slice_arrays(sample_weights, split_at))
    elif validation_steps:
      val_x = []
      val_y = []
      val_sample_weights = []
    else:
      val_x = None
      val_y = None
      val_sample_weights = None

    if context.executing_eagerly():
      return training_eager.fit_loop(
          self,
          inputs=x,
          targets=y,
          sample_weights=sample_weights,
          class_weight=class_weight,
          batch_size=batch_size,
          epochs=epochs,
          verbose=verbose,
          callbacks=callbacks,
          val_inputs=val_x,
          val_targets=val_y,
          val_sample_weights=val_sample_weights,
          shuffle=shuffle,
          initial_epoch=initial_epoch,
          steps_per_epoch=steps_per_epoch,
          validation_steps=validation_steps)
    else:
      return training_arrays.fit_loop(
          self, x, y,
          sample_weights=sample_weights,
          batch_size=batch_size,
          epochs=epochs,
          verbose=verbose,
          callbacks=callbacks,
          val_inputs=val_x,
          val_targets=val_y,
          val_sample_weights=val_sample_weights,
          shuffle=shuffle,
          initial_epoch=initial_epoch,
          steps_per_epoch=steps_per_epoch,
          validation_steps=validation_steps)

  def evaluate(self,
               x=None,
               y=None,
               batch_size=None,
               verbose=1,
               sample_weight=None,
               steps=None):
    """Returns the loss value & metrics values for the model in test mode.

    Computation is done in batches.

    Arguments:
        x: Input data. It could be:
          - A Numpy array (or array-like), or a list of arrays
            (in case the model has multiple inputs).
          - A TensorFlow tensor, or a list of tensors
            (in case the model has multiple inputs).
          - A dict mapping input names to the corresponding array/tensors,
            if the model has named inputs.
          - A `tf.data` dataset or a dataset iterator.
        y: Target data. Like the input data `x`,
          it could be either Numpy array(s) or TensorFlow tensor(s).
          It should be consistent with `x` (you cannot have Numpy inputs and
          tensor targets, or inversely).
          If `x` is a dataset or a dataset iterator, `y` should not be specified
          (since targets will be obtained from the iterator/dataset).
        batch_size: Integer or `None`.
            Number of samples per gradient update.
            If unspecified, `batch_size` will default to 32.
            Do not specify the `batch_size` is your data is in the
            form of symbolic tensors, datasets, or dataset iterators
            (since they generate batches).
        verbose: 0 or 1. Verbosity mode.
            0 = silent, 1 = progress bar.
        sample_weight: Optional Numpy array of weights for
            the test samples, used for weighting the loss function.
            You can either pass a flat (1D)
            Numpy array with the same length as the input samples
            (1:1 mapping between weights and samples),
            or in the case of temporal data,
            you can pass a 2D array with shape
            `(samples, sequence_length)`,
            to apply a different weight to every timestep of every sample.
            In this case you should make sure to specify
            `sample_weight_mode="temporal"` in `compile()`. This argument is not
            supported when `x` is a dataset or a dataset iterator.
        steps: Integer or `None`.
            Total number of steps (batches of samples)
            before declaring the evaluation round finished.
            Ignored with the default value of `None`.

    Returns:
        Scalar test loss (if the model has a single output and no metrics)
        or list of scalars (if the model has multiple outputs
        and/or metrics). The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        ValueError: in case of invalid arguments.
    """
    # Backwards compatibility.
    if batch_size is None and steps is None:
      batch_size = 32

    # Validate and standardize user data.
    x, y, sample_weights = self._standardize_user_data(
        x,
        y,
        sample_weight=sample_weight,
        batch_size=batch_size,
        check_steps=True,
        steps_name='steps',
        steps=steps)

    if context.executing_eagerly():
      return training_eager.test_loop(
          self, inputs=x, targets=y, sample_weights=sample_weights,
          batch_size=batch_size, verbose=verbose, steps=steps)
    else:
      return training_arrays.test_loop(
          self, inputs=x, targets=y, sample_weights=sample_weights,
          batch_size=batch_size, verbose=verbose, steps=steps)

  def predict(self, x, batch_size=None, verbose=0, steps=None):
    """Generates output predictions for the input samples.

    Computation is done in batches.

    Arguments:
         x: Input samples. It could be:
          - A Numpy array (or array-like), or a list of arrays
            (in case the model has multiple inputs).
          - A TensorFlow tensor, or a list of tensors
            (in case the model has multiple inputs).
          - A `tf.data` dataset or a dataset iterator.
        batch_size: Integer or `None`.
            Number of samples per gradient update.
            If unspecified, `batch_size` will default to 32.
            Do not specify the `batch_size` is your data is in the
            form of symbolic tensors, dataset, or dataset iterators
            (since they generate batches).
        verbose: Verbosity mode, 0 or 1.
        steps: Total number of steps (batches of samples)
            before declaring the prediction round finished.
            Ignored with the default value of `None`.

    Returns:
        Numpy array(s) of predictions.

    Raises:
        ValueError: In case of mismatch between the provided
            input data and the model's expectations,
            or in case a stateful model receives a number of samples
            that is not a multiple of the batch size.
    """
    # Backwards compatibility.
    if batch_size is None and steps is None:
      batch_size = 32

    # Validate and standardize user data.
    x, _, _ = self._standardize_user_data(
        x, check_steps=True, steps_name='steps', steps=steps)

    if context.executing_eagerly():
      return training_eager.predict_loop(
          self, x, batch_size=batch_size, verbose=verbose, steps=steps)
    else:
      return training_arrays.predict_loop(
          self, x, batch_size=batch_size, verbose=verbose, steps=steps)

  def train_on_batch(self, x, y=None, sample_weight=None, class_weight=None):
    """Runs a single gradient update on a single batch of data.

    Arguments:
        x: Input data. It could be:
          - A Numpy array (or array-like), or a list of arrays
            (in case the model has multiple inputs).
          - A TensorFlow tensor, or a list of tensors
            (in case the model has multiple inputs).
          - A dict mapping input names to the corresponding array/tensors,
            if the model has named inputs.
          - A `tf.data` dataset or a dataset iterator.
        y: Target data. Like the input data `x`,
          it could be either Numpy array(s) or TensorFlow tensor(s).
          It should be consistent with `x` (you cannot have Numpy inputs and
          tensor targets, or inversely). If `x` is a dataset or a
          dataset iterator, `y` should not be specified
          (since targets will be obtained from the iterator).
        sample_weight: Optional array of the same length as x, containing
            weights to apply to the model's loss for each sample.
            In the case of temporal data, you can pass a 2D array
            with shape (samples, sequence_length),
            to apply a different weight to every timestep of every sample.
            In this case you should make sure to specify
            sample_weight_mode="temporal" in compile(). This argument is not
            supported when `x` is a dataset or a dataset iterator.
        class_weight: Optional dictionary mapping
            class indices (integers) to
            a weight (float) to apply to the model's loss for the samples
            from this class during training.
            This can be useful to tell the model to "pay more attention" to
            samples from an under-represented class.

    Returns:
        Scalar training loss
        (if the model has a single output and no metrics)
        or list of scalars (if the model has multiple outputs
        and/or metrics). The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
      ValueError: In case of invalid user-provided arguments.
    """
    # Validate and standardize user data.
    x, y, sample_weights = self._standardize_user_data(
        x, y, sample_weight=sample_weight, class_weight=class_weight)

    if context.executing_eagerly():
      outputs = training_eager.train_on_batch(
          self, x, y, sample_weights=sample_weights)
    else:
      if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
        ins = x + y + sample_weights + [1]
      else:
        ins = x + y + sample_weights

      self._make_train_function()
      outputs = self.train_function(ins)

    if len(outputs) == 1:
      return outputs[0]
    return outputs

  def test_on_batch(self, x, y=None, sample_weight=None):
    """Test the model on a single batch of samples.

    Arguments:
        x: Input data. It could be:
          - A Numpy array (or array-like), or a list of arrays
            (in case the model has multiple inputs).
          - A TensorFlow tensor, or a list of tensors
            (in case the model has multiple inputs).
          - A dict mapping input names to the corresponding array/tensors,
            if the model has named inputs.
          - A `tf.data` dataset or a dataset iterator.
        y: Target data. Like the input data `x`,
          it could be either Numpy array(s) or TensorFlow tensor(s).
          It should be consistent with `x` (you cannot have Numpy inputs and
          tensor targets, or inversely). If `x` is a dataset or a
          dataset iterator, `y` should not be specified
          (since targets will be obtained from the iterator).
        sample_weight: Optional array of the same length as x, containing
            weights to apply to the model's loss for each sample.
            In the case of temporal data, you can pass a 2D array
            with shape (samples, sequence_length),
            to apply a different weight to every timestep of every sample.
            In this case you should make sure to specify
            sample_weight_mode="temporal" in compile(). This argument is not
            supported when `x` is a dataset or a dataset iterator.

    Returns:
        Scalar test loss (if the model has a single output and no metrics)
        or list of scalars (if the model has multiple outputs
        and/or metrics). The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        ValueError: In case of invalid user-provided arguments.
    """
    # Validate and standardize user data.
    x, y, sample_weights = self._standardize_user_data(
        x, y, sample_weight=sample_weight)

    if context.executing_eagerly():
      outputs = training_eager.test_on_batch(
          self, x, y, sample_weights=sample_weights)
    else:
      if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
        ins = x + y + sample_weights + [0]
      else:
        ins = x + y + sample_weights
      self._make_test_function()
      outputs = self.test_function(ins)

    if len(outputs) == 1:
      return outputs[0]
    return outputs

  def predict_on_batch(self, x):
    """Returns predictions for a single batch of samples.

    Arguments:
        x: Input data. It could be:
          - A Numpy array (or array-like), or a list of arrays
            (in case the model has multiple inputs).
          - A TensorFlow tensor, or a list of tensors
            (in case the model has multiple inputs).
          - A `tf.data` dataset or a dataset iterator.

    Returns:
        Numpy array(s) of predictions.

    Raises:
        ValueError: In case of mismatch between given number of inputs and
          expectations of the model.
    """
    # Validate and standardize user data.
    inputs, _, _ = self._standardize_user_data(x)
    if context.executing_eagerly():
      if (isinstance(x, iterator_ops.EagerIterator) or
          (isinstance(x, dataset_ops.Dataset) and context.executing_eagerly())):
        inputs = training_utils.cast_if_floating_dtype(inputs)
      else:
        inputs = [
            ops.convert_to_tensor(val, dtype=K.floatx()) for val in inputs
        ]
      return self(inputs)  # pylint: disable=not-callable

    if not context.executing_eagerly():
      if self.uses_learning_phase and not isinstance(K.learning_phase(), int):
        ins = inputs + [0]
      else:
        ins = inputs

      self._make_predict_function()
      outputs = self.predict_function(ins)

      if len(outputs) == 1:
        return outputs[0]
      return outputs

  def fit_generator(self,
                    generator,
                    steps_per_epoch=None,
                    epochs=1,
                    verbose=1,
                    callbacks=None,
                    validation_data=None,
                    validation_steps=None,
                    class_weight=None,
                    max_queue_size=10,
                    workers=1,
                    use_multiprocessing=False,
                    shuffle=True,
                    initial_epoch=0):
    """Fits the model on data yielded batch-by-batch by a Python generator.

    The generator is run in parallel to the model, for efficiency.
    For instance, this allows you to do real-time data augmentation
    on images on CPU in parallel to training your model on GPU.

    The use of `keras.utils.Sequence` guarantees the ordering
    and guarantees the single use of every input per epoch when
    using `use_multiprocessing=True`.

    Arguments:
        generator: A generator or an instance of `Sequence`
          (`keras.utils.Sequence`)
            object in order to avoid duplicate data
            when using multiprocessing.
            The output of the generator must be either
            - a tuple `(inputs, targets)`
            - a tuple `(inputs, targets, sample_weights)`.
            This tuple (a single output of the generator) makes a single batch.
            Therefore, all arrays in this tuple must have the same length (equal
            to the size of this batch). Different batches may have different
              sizes.
            For example, the last batch of the epoch is commonly smaller than
              the
            others, if the size of the dataset is not divisible by the batch
              size.
            The generator is expected to loop over its data
            indefinitely. An epoch finishes when `steps_per_epoch`
            batches have been seen by the model.
        steps_per_epoch: Total number of steps (batches of samples)
            to yield from `generator` before declaring one epoch
            finished and starting the next epoch. It should typically
            be equal to the number of samples of your dataset
            divided by the batch size.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        epochs: Integer, total number of iterations on the data.
        verbose: Verbosity mode, 0, 1, or 2.
        callbacks: List of callbacks to be called during training.
        validation_data: This can be either
            - a generator for the validation data
            - a tuple (inputs, targets)
            - a tuple (inputs, targets, sample_weights).
        validation_steps: Only relevant if `validation_data`
            is a generator. Total number of steps (batches of samples)
            to yield from `generator` before stopping.
            Optional for `Sequence`: if unspecified, will use
            the `len(validation_data)` as a number of steps.
        class_weight: Dictionary mapping class indices to a weight
            for the class.
        max_queue_size: Integer. Maximum size for the generator queue.
            If unspecified, `max_queue_size` will default to 10.
        workers: Integer. Maximum number of processes to spin up
            when using process-based threading.
            If unspecified, `workers` will default to 1. If 0, will
            execute the generator on the main thread.
        use_multiprocessing: Boolean.
            If `True`, use process-based threading.
            If unspecified, `use_multiprocessing` will default to `False`.
            Note that because this implementation relies on multiprocessing,
            you should not pass non-picklable arguments to the generator
            as they can't be passed easily to children processes.
        shuffle: Boolean. Whether to shuffle the order of the batches at
            the beginning of each epoch. Only used with instances
            of `Sequence` (`keras.utils.Sequence`).
            Has no effect when `steps_per_epoch` is not `None`.
        initial_epoch: Epoch at which to start training
            (useful for resuming a previous training run)

    Returns:
        A `History` object.

    Example:

    ```python
        def generate_arrays_from_file(path):
            while 1:
                f = open(path)
                for line in f:
                    # create numpy arrays of input data
                    # and labels, from each line in the file
                    x1, x2, y = process_line(line)
                    yield ({'input_1': x1, 'input_2': x2}, {'output': y})
                f.close()

        model.fit_generator(generate_arrays_from_file('/my_file.txt'),
                            steps_per_epoch=10000, epochs=10)
    ```
    Raises:
        ValueError: In case the generator yields data in an invalid format.
    """
    if not self.built and not self._is_graph_network:
      raise NotImplementedError(
          '`fit_generator` is not yet enabled for unbuilt Model subclasses')

    return training_generator.fit_generator(
        self,
        generator,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        verbose=verbose,
        callbacks=callbacks,
        validation_data=validation_data,
        validation_steps=validation_steps,
        class_weight=class_weight,
        max_queue_size=max_queue_size,
        workers=workers,
        use_multiprocessing=use_multiprocessing,
        shuffle=shuffle,
        initial_epoch=initial_epoch)

  def evaluate_generator(self,
                         generator,
                         steps=None,
                         max_queue_size=10,
                         workers=1,
                         use_multiprocessing=False,
                         verbose=0):
    """Evaluates the model on a data generator.

    The generator should return the same kind of data
    as accepted by `test_on_batch`.

    Arguments:
        generator: Generator yielding tuples (inputs, targets)
            or (inputs, targets, sample_weights)
            or an instance of Sequence (keras.utils.Sequence)
            object in order to avoid duplicate data
            when using multiprocessing.
        steps: Total number of steps (batches of samples)
            to yield from `generator` before stopping.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        max_queue_size: maximum size for the generator queue
        workers: Integer. Maximum number of processes to spin up
            when using process-based threading.
            If unspecified, `workers` will default to 1. If 0, will
            execute the generator on the main thread.
        use_multiprocessing: Boolean.
            If `True`, use process-based threading.
            If unspecified, `use_multiprocessing` will default to `False`.
            Note that because this implementation relies on multiprocessing,
            you should not pass non-picklable arguments to the generator
            as they can't be passed easily to children processes.
        verbose: Verbosity mode, 0 or 1.

    Returns:
        Scalar test loss (if the model has a single output and no metrics)
        or list of scalars (if the model has multiple outputs
        and/or metrics). The attribute `model.metrics_names` will give you
        the display labels for the scalar outputs.

    Raises:
        ValueError: in case of invalid arguments.

    Raises:
        ValueError: In case the generator yields data in an invalid format.
    """
    if not self.built and not self._is_graph_network:
      raise NotImplementedError(
          '`evaluate_generator` is not yet enabled for '
          'unbuilt Model subclasses')

    return training_generator.evaluate_generator(
        self,
        generator,
        steps=steps,
        max_queue_size=max_queue_size,
        workers=workers,
        use_multiprocessing=use_multiprocessing,
        verbose=verbose)

  def predict_generator(self,
                        generator,
                        steps=None,
                        max_queue_size=10,
                        workers=1,
                        use_multiprocessing=False,
                        verbose=0):
    """Generates predictions for the input samples from a data generator.

    The generator should return the same kind of data as accepted by
    `predict_on_batch`.

    Arguments:
        generator: Generator yielding batches of input samples
            or an instance of Sequence (keras.utils.Sequence)
            object in order to avoid duplicate data
            when using multiprocessing.
        steps: Total number of steps (batches of samples)
            to yield from `generator` before stopping.
            Optional for `Sequence`: if unspecified, will use
            the `len(generator)` as a number of steps.
        max_queue_size: Maximum size for the generator queue.
        workers: Integer. Maximum number of processes to spin up
            when using process-based threading.
            If unspecified, `workers` will default to 1. If 0, will
            execute the generator on the main thread.
        use_multiprocessing: Boolean.
            If `True`, use process-based threading.
            If unspecified, `use_multiprocessing` will default to `False`.
            Note that because this implementation relies on multiprocessing,
            you should not pass non-picklable arguments to the generator
            as they can't be passed easily to children processes.
        verbose: verbosity mode, 0 or 1.

    Returns:
        Numpy array(s) of predictions.

    Raises:
        ValueError: In case the generator yields data in an invalid format.
    """
    if not self.built and not self._is_graph_network:
      raise NotImplementedError(
          '`predict_generator` is not yet enabled for unbuilt Model subclasses')

    return training_generator.predict_generator(
        self,
        generator,
        steps=steps,
        max_queue_size=max_queue_size,
        workers=workers,
        use_multiprocessing=use_multiprocessing,
        verbose=verbose)