aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/keras/engine/saving.py
blob: 5e95cd4340b0438af4c82757f34c472a5392a82c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
"""Model saving utilities.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os

import numpy as np
from six.moves import zip  # pylint: disable=redefined-builtin

from tensorflow.python.keras import backend as K
from tensorflow.python.keras import optimizers
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.keras.utils.io_utils import ask_to_proceed_with_overwrite
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import serialization
from tensorflow.python.util.tf_export import tf_export

# pylint: disable=g-import-not-at-top
try:
  import h5py
  HDF5_OBJECT_HEADER_LIMIT = 64512
except ImportError:
  h5py = None

try:
  import yaml
except ImportError:
  yaml = None
# pylint: enable=g-import-not-at-top


@tf_export('keras.models.save_model')
def save_model(model, filepath, overwrite=True, include_optimizer=True):
  """Saves a model to a HDF5 file.

  The saved model contains:
      - the model's configuration (topology)
      - the model's weights
      - the model's optimizer's state (if any)

  Thus the saved model can be reinstantiated in
  the exact same state, without any of the code
  used for model definition or training.

  Arguments:
      model: Keras model instance to be saved.
      filepath: One of the following:
          - String, path where to save the model
          - `h5py.File` object where to save the model
      overwrite: Whether we should overwrite any existing
          model at the target location, or instead
          ask the user with a manual prompt.
      include_optimizer: If True, save optimizer's state together.

  Raises:
      ImportError: if h5py is not available.
  """

  if h5py is None:
    raise ImportError('`save_model` requires h5py.')

  from tensorflow.python.keras import __version__ as keras_version  # pylint: disable=g-import-not-at-top

  if not isinstance(filepath, h5py.File):
    # If file exists and should not be overwritten.
    if not overwrite and os.path.isfile(filepath):
      proceed = ask_to_proceed_with_overwrite(filepath)
      if not proceed:
        return

    f = h5py.File(filepath, mode='w')
    opened_new_file = True
  else:
    f = filepath
    opened_new_file = False

  try:
    f.attrs['keras_version'] = str(keras_version).encode('utf8')
    f.attrs['backend'] = K.backend().encode('utf8')
    f.attrs['model_config'] = json.dumps(
        {
            'class_name': model.__class__.__name__,
            'config': model.get_config()
        },
        default=serialization.get_json_type).encode('utf8')

    model_weights_group = f.create_group('model_weights')
    model_layers = model.layers
    save_weights_to_hdf5_group(model_weights_group, model_layers)

    if include_optimizer and model.optimizer:
      if isinstance(model.optimizer, optimizers.TFOptimizer):
        logging.warning(
            'TensorFlow optimizers do not '
            'make it possible to access '
            'optimizer attributes or optimizer state '
            'after instantiation. '
            'As a result, we cannot save the optimizer '
            'as part of the model save file.'
            'You will have to compile your model again after loading it. '
            'Prefer using a Keras optimizer instead '
            '(see keras.io/optimizers).')
      else:
        f.attrs['training_config'] = json.dumps(
            {
                'optimizer_config': {
                    'class_name': model.optimizer.__class__.__name__,
                    'config': model.optimizer.get_config()
                },
                'loss': model.loss,
                'metrics': model.metrics,
                'sample_weight_mode': model.sample_weight_mode,
                'loss_weights': model.loss_weights,
            },
            default=serialization.get_json_type).encode('utf8')

        # Save optimizer weights.
        symbolic_weights = getattr(model.optimizer, 'weights')
        if symbolic_weights:
          optimizer_weights_group = f.create_group('optimizer_weights')
          weight_values = K.batch_get_value(symbolic_weights)
          weight_names = []
          for w, val in zip(symbolic_weights, weight_values):
            name = str(w.name)
            weight_names.append(name.encode('utf8'))
          optimizer_weights_group.attrs['weight_names'] = weight_names
          for name, val in zip(weight_names, weight_values):
            param_dset = optimizer_weights_group.create_dataset(
                name, val.shape, dtype=val.dtype)
            if not val.shape:
              # scalar
              param_dset[()] = val
            else:
              param_dset[:] = val
    f.flush()
  finally:
    if opened_new_file:
      f.close()


@tf_export('keras.models.load_model')
def load_model(filepath, custom_objects=None, compile=True):  # pylint: disable=redefined-builtin
  """Loads a model saved via `save_model`.

  Arguments:
      filepath: One of the following:
          - String, path to the saved model
          - `h5py.File` object from which to load the model
      custom_objects: Optional dictionary mapping names
          (strings) to custom classes or functions to be
          considered during deserialization.
      compile: Boolean, whether to compile the model
          after loading.

  Returns:
      A Keras model instance. If an optimizer was found
      as part of the saved model, the model is already
      compiled. Otherwise, the model is uncompiled and
      a warning will be displayed. When `compile` is set
      to False, the compilation is omitted without any
      warning.

  Raises:
      ImportError: if h5py is not available.
      ValueError: In case of an invalid savefile.
  """
  if h5py is None:
    raise ImportError('`load_model` requires h5py.')

  if not custom_objects:
    custom_objects = {}

  def convert_custom_objects(obj):
    """Handles custom object lookup.

    Arguments:
        obj: object, dict, or list.

    Returns:
        The same structure, where occurrences
            of a custom object name have been replaced
            with the custom object.
    """
    if isinstance(obj, list):
      deserialized = []
      for value in obj:
        deserialized.append(convert_custom_objects(value))
      return deserialized
    if isinstance(obj, dict):
      deserialized = {}
      for key, value in obj.items():
        deserialized[key] = convert_custom_objects(value)
      return deserialized
    if obj in custom_objects:
      return custom_objects[obj]
    return obj

  opened_new_file = not isinstance(filepath, h5py.File)
  if opened_new_file:
    f = h5py.File(filepath, mode='r')
  else:
    f = filepath

  model = None
  try:
    # instantiate model
    model_config = f.attrs.get('model_config')
    if model_config is None:
      raise ValueError('No model found in config file.')
    model_config = json.loads(model_config.decode('utf-8'))
    model = model_from_config(model_config, custom_objects=custom_objects)

    # set weights
    load_weights_from_hdf5_group(f['model_weights'], model.layers)

    if compile:
      # instantiate optimizer
      training_config = f.attrs.get('training_config')
      if training_config is None:
        logging.warning('No training configuration found in save file: '
                        'the model was *not* compiled. Compile it manually.')
        return model
      training_config = json.loads(training_config.decode('utf-8'))
      optimizer_config = training_config['optimizer_config']
      optimizer = optimizers.deserialize(
          optimizer_config, custom_objects=custom_objects)

      # Recover loss functions and metrics.
      loss = convert_custom_objects(training_config['loss'])
      metrics = convert_custom_objects(training_config['metrics'])
      sample_weight_mode = training_config['sample_weight_mode']
      loss_weights = training_config['loss_weights']

      # Compile model.
      model.compile(
          optimizer=optimizer,
          loss=loss,
          metrics=metrics,
          loss_weights=loss_weights,
          sample_weight_mode=sample_weight_mode)

      # Set optimizer weights.
      if 'optimizer_weights' in f:
        # Build train function (to get weight updates).
        model._make_train_function()
        optimizer_weights_group = f['optimizer_weights']
        optimizer_weight_names = [
            n.decode('utf8')
            for n in optimizer_weights_group.attrs['weight_names']
        ]
        optimizer_weight_values = [
            optimizer_weights_group[n] for n in optimizer_weight_names
        ]
        try:
          model.optimizer.set_weights(optimizer_weight_values)
        except ValueError:
          logging.warning('Error in loading the saved optimizer '
                          'state. As a result, your model is '
                          'starting with a freshly initialized '
                          'optimizer.')
  finally:
    if opened_new_file:
      f.close()
  return model


@tf_export('keras.models.model_from_config')
def model_from_config(config, custom_objects=None):
  """Instantiates a Keras model from its config.

  Arguments:
      config: Configuration dictionary.
      custom_objects: Optional dictionary mapping names
          (strings) to custom classes or functions to be
          considered during deserialization.

  Returns:
      A Keras model instance (uncompiled).

  Raises:
      TypeError: if `config` is not a dictionary.
  """
  if isinstance(config, list):
    raise TypeError('`model_from_config` expects a dictionary, not a list. '
                    'Maybe you meant to use '
                    '`Sequential.from_config(config)`?')
  from tensorflow.python.keras.layers import deserialize  # pylint: disable=g-import-not-at-top
  return deserialize(config, custom_objects=custom_objects)


@tf_export('keras.models.model_from_yaml')
def model_from_yaml(yaml_string, custom_objects=None):
  """Parses a yaml model configuration file and returns a model instance.

  Arguments:
      yaml_string: YAML string encoding a model configuration.
      custom_objects: Optional dictionary mapping names
          (strings) to custom classes or functions to be
          considered during deserialization.

  Returns:
      A Keras model instance (uncompiled).

  Raises:
      ImportError: if yaml module is not found.
  """
  if yaml is None:
    raise ImportError('Requires yaml module installed (`pip install pyyaml`).')
  config = yaml.load(yaml_string)
  from tensorflow.python.keras.layers import deserialize  # pylint: disable=g-import-not-at-top
  return deserialize(config, custom_objects=custom_objects)


@tf_export('keras.models.model_from_json')
def model_from_json(json_string, custom_objects=None):
  """Parses a JSON model configuration file and returns a model instance.

  Arguments:
      json_string: JSON string encoding a model configuration.
      custom_objects: Optional dictionary mapping names
          (strings) to custom classes or functions to be
          considered during deserialization.

  Returns:
      A Keras model instance (uncompiled).
  """
  config = json.loads(json_string)
  from tensorflow.python.keras.layers import deserialize  # pylint: disable=g-import-not-at-top
  return deserialize(config, custom_objects=custom_objects)


def preprocess_weights_for_loading(layer,
                                   weights,
                                   original_keras_version=None,
                                   original_backend=None):
  """Preprocess layer weights between different Keras formats.

  Converts layers weights from Keras 1 format to Keras 2 and also weights of
  CuDNN layers in Keras 2.

  Arguments:
      layer: Layer instance.
      weights: List of weights values (Numpy arrays).
      original_keras_version: Keras version for the weights, as a string.
      original_backend: Keras backend the weights were trained with,
          as a string.

  Returns:
      A list of weights values (Numpy arrays).
  """
  def convert_nested_bidirectional(weights):
    """Converts layers nested in `Bidirectional` wrapper.

    This function uses `preprocess_weights_for_loading()` for converting
    layers.

    Arguments:
        weights: List of weights values (Numpy arrays).

    Returns:
        A list of weights values (Numpy arrays).
    """
    num_weights_per_layer = len(weights) // 2
    forward_weights = preprocess_weights_for_loading(
        layer.forward_layer, weights[:num_weights_per_layer],
        original_keras_version, original_backend)
    backward_weights = preprocess_weights_for_loading(
        layer.backward_layer, weights[num_weights_per_layer:],
        original_keras_version, original_backend)
    return forward_weights + backward_weights

  def convert_nested_time_distributed(weights):
    """Converts layers nested in `TimeDistributed` wrapper.

    This function uses `preprocess_weights_for_loading()` for converting nested
    layers.

    Arguments:
        weights: List of weights values (Numpy arrays).

    Returns:
        A list of weights values (Numpy arrays).
    """
    return preprocess_weights_for_loading(
        layer.layer, weights, original_keras_version, original_backend)

  def convert_nested_model(weights):
    """Converts layers nested in `Model` or `Sequential`.

    This function uses `preprocess_weights_for_loading()` for converting nested
    layers.

    Arguments:
        weights: List of weights values (Numpy arrays).

    Returns:
        A list of weights values (Numpy arrays).
    """
    new_weights = []
    # trainable weights
    for sublayer in layer.layers:
      num_weights = len(sublayer.trainable_weights)
      if num_weights > 0:
        new_weights.extend(preprocess_weights_for_loading(
            layer=sublayer,
            weights=weights[:num_weights],
            original_keras_version=original_keras_version,
            original_backend=original_backend))
        weights = weights[num_weights:]

    # non-trainable weights
    for sublayer in layer.layers:
      num_weights = len([l for l in sublayer.weights
                         if l not in sublayer.trainable_weights])
      if num_weights > 0:
        new_weights.extend(preprocess_weights_for_loading(
            layer=sublayer,
            weights=weights[:num_weights],
            original_keras_version=original_keras_version,
            original_backend=original_backend))
        weights = weights[num_weights:]
    return new_weights

  # Convert layers nested in Bidirectional/Model/Sequential.
  # Both transformation should be ran for both Keras 1->2 conversion
  # and for conversion of CuDNN layers.
  if layer.__class__.__name__ == 'Bidirectional':
    weights = convert_nested_bidirectional(weights)
  if layer.__class__.__name__ == 'TimeDistributed':
    weights = convert_nested_time_distributed(weights)
  elif layer.__class__.__name__ in ['Model', 'Sequential']:
    weights = convert_nested_model(weights)

  if original_keras_version == '1':
    if layer.__class__.__name__ == 'TimeDistributed':
      weights = preprocess_weights_for_loading(
          layer.layer, weights, original_keras_version, original_backend)

    if layer.__class__.__name__ == 'Conv1D':
      shape = weights[0].shape
      # Handle Keras 1.1 format
      if shape[:2] != (layer.kernel_size[0], 1) or shape[3] != layer.filters:
        # Legacy shape:
        # (filters, input_dim, filter_length, 1)
        assert shape[0] == layer.filters and shape[2:] == (layer.kernel_size[0],
                                                           1)
        weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
      weights[0] = weights[0][:, 0, :, :]

    if layer.__class__.__name__ == 'Conv2D':
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, kernel_rows, kernel_cols)
        # new: (kernel_rows, kernel_cols, stack_size, filters)
        weights[0] = np.transpose(weights[0], (2, 3, 1, 0))

    if layer.__class__.__name__ == 'Conv2DTranspose':
      if layer.data_format == 'channels_last':
        # old: (kernel_rows, kernel_cols, stack_size, filters)
        # new: (kernel_rows, kernel_cols, filters, stack_size)
        weights[0] = np.transpose(weights[0], (0, 1, 3, 2))
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, kernel_rows, kernel_cols)
        # new: (kernel_rows, kernel_cols, filters, stack_size)
        weights[0] = np.transpose(weights[0], (2, 3, 0, 1))

    if layer.__class__.__name__ == 'Conv3D':
      if layer.data_format == 'channels_first':
        # old: (filters, stack_size, ...)
        # new: (..., stack_size, filters)
        weights[0] = np.transpose(weights[0], (2, 3, 4, 1, 0))

    if layer.__class__.__name__ == 'GRU':
      if len(weights) == 9:
        kernel = np.concatenate([weights[0], weights[3], weights[6]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[4], weights[7]], axis=-1)
        bias = np.concatenate([weights[2], weights[5], weights[8]], axis=-1)
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ == 'LSTM':
      if len(weights) == 12:
        # old: i, c, f, o
        # new: i, f, c, o
        kernel = np.concatenate(
            [weights[0], weights[6], weights[3], weights[9]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[7], weights[4], weights[10]], axis=-1)
        bias = np.concatenate(
            [weights[2], weights[8], weights[5], weights[11]], axis=-1)
        weights = [kernel, recurrent_kernel, bias]

    if layer.__class__.__name__ == 'ConvLSTM2D':
      if len(weights) == 12:
        kernel = np.concatenate(
            [weights[0], weights[6], weights[3], weights[9]], axis=-1)
        recurrent_kernel = np.concatenate(
            [weights[1], weights[7], weights[4], weights[10]], axis=-1)
        bias = np.concatenate(
            [weights[2], weights[8], weights[5], weights[11]], axis=-1)
        if layer.data_format == 'channels_first':
          # old: (filters, stack_size, kernel_rows, kernel_cols)
          # new: (kernel_rows, kernel_cols, stack_size, filters)
          kernel = np.transpose(kernel, (2, 3, 1, 0))
          recurrent_kernel = np.transpose(recurrent_kernel, (2, 3, 1, 0))
        weights = [kernel, recurrent_kernel, bias]

  conv_layers = ['Conv1D', 'Conv2D', 'Conv3D', 'Conv2DTranspose', 'ConvLSTM2D']
  if layer.__class__.__name__ in conv_layers:
    if original_backend == 'theano':
      weights[0] = conv_utils.convert_kernel(weights[0])
      if layer.__class__.__name__ == 'ConvLSTM2D':
        weights[1] = conv_utils.convert_kernel(weights[1])
    if K.int_shape(layer.weights[0]) != weights[0].shape:
      weights[0] = np.transpose(weights[0], (3, 2, 0, 1))
      if layer.__class__.__name__ == 'ConvLSTM2D':
        weights[1] = np.transpose(weights[1], (3, 2, 0, 1))

  # convert CuDNN layers
  return _convert_rnn_weights(layer, weights)


def _convert_rnn_weights(layer, weights):
  """Converts weights for RNN layers between native and CuDNN format.

  Input kernels for each gate are transposed and converted between Fortran
  and C layout, recurrent kernels are transposed. For LSTM biases are summed/
  split in half, for GRU biases are reshaped.

  Weights can be converted in both directions between `LSTM` and`CuDNNSLTM`
  and between `CuDNNGRU` and `GRU(reset_after=True)`. Default `GRU` is not
  compatible with `CuDNNGRU`.

  For missing biases in `LSTM`/`GRU` (`use_bias=False`) no conversion is made.

  Arguments:
      layer: Target layer instance.
      weights: List of source weights values (input kernels, recurrent
          kernels, [biases]) (Numpy arrays).

  Returns:
      A list of converted weights values (Numpy arrays).

  Raises:
      ValueError: for incompatible GRU layer/weights or incompatible biases
  """

  def transform_kernels(kernels, func, n_gates):
    """Transforms kernel for each gate separately using given function.

    Arguments:
        kernels: Stacked array of kernels for individual gates.
        func: Function applied to kernel of each gate.
        n_gates: Number of gates (4 for LSTM, 3 for GRU).

    Returns:
        Stacked array of transformed kernels.
    """
    return np.hstack([func(k) for k in np.hsplit(kernels, n_gates)])

  def transpose_input(from_cudnn):
    """Makes a function that transforms input kernels from/to CuDNN format.

    It keeps the shape, but changes between the layout (Fortran/C). Eg.:

    ```
    Keras                 CuDNN
    [[0, 1, 2],  <--->  [[0, 2, 4],
     [3, 4, 5]]          [1, 3, 5]]
    ```

    It can be passed to `transform_kernels()`.

    Arguments:
        from_cudnn: `True` if source weights are in CuDNN format, `False`
            if they're in plain Keras format.

    Returns:
        Function that converts input kernel to the other format.
    """
    order = 'F' if from_cudnn else 'C'

    def transform(kernel):
      return kernel.T.reshape(kernel.shape, order=order)

    return transform

  target_class = layer.__class__.__name__

  # convert the weights between CuDNNLSTM and LSTM
  if target_class in ['LSTM', 'CuDNNLSTM'] and len(weights) == 3:
    # determine if we're loading a CuDNNLSTM layer
    # from the number of bias weights:
    # CuDNNLSTM has (units * 8) weights; while LSTM has (units * 4)
    # if there's no bias weight in the file, skip this conversion
    units = weights[1].shape[0]
    bias_shape = weights[2].shape
    n_gates = 4

    if bias_shape == (2 * units * n_gates,):
      source = 'CuDNNLSTM'
    elif bias_shape == (units * n_gates,):
      source = 'LSTM'
    else:
      raise ValueError('Invalid bias shape: ' + str(bias_shape))

    def convert_lstm_weights(weights, from_cudnn=True):
      """Converts the weights between CuDNNLSTM and LSTM.

      Arguments:
        weights: Original weights.
        from_cudnn: Indicates whether original weights are from CuDNN layer.

      Returns:
        Updated weights compatible with LSTM.
      """

      # Transpose (and reshape) input and recurrent kernels
      kernels = transform_kernels(weights[0], transpose_input(from_cudnn),
                                  n_gates)
      recurrent_kernels = transform_kernels(weights[1], lambda k: k.T, n_gates)
      if from_cudnn:
        # merge input and recurrent biases into a single set
        biases = np.sum(np.split(weights[2], 2, axis=0), axis=0)
      else:
        # Split single set of biases evenly to two sets. The way of
        # splitting doesn't matter as long as the two sets sum is kept.
        biases = np.tile(0.5 * weights[2], 2)
      return [kernels, recurrent_kernels, biases]

    if source != target_class:
      weights = convert_lstm_weights(weights, from_cudnn=source == 'CuDNNLSTM')

  # convert the weights between CuDNNGRU and GRU(reset_after=True)
  if target_class in ['GRU', 'CuDNNGRU'] and len(weights) == 3:
    # We can determine the source of the weights from the shape of the bias.
    # If there is no bias we skip the conversion since
    # CuDNNGRU always has biases.

    units = weights[1].shape[0]
    bias_shape = weights[2].shape
    n_gates = 3

    def convert_gru_weights(weights, from_cudnn=True):
      """Converts the weights between CuDNNGRU and GRU.

      Arguments:
        weights: Original weights.
        from_cudnn: Indicates whether original weights are from CuDNN layer.

      Returns:
        Updated weights compatible with GRU.
      """

      kernels = transform_kernels(weights[0], transpose_input(from_cudnn),
                                  n_gates)
      recurrent_kernels = transform_kernels(weights[1], lambda k: k.T, n_gates)
      biases = np.array(weights[2]).reshape((2, -1) if from_cudnn else -1)
      return [kernels, recurrent_kernels, biases]

    if bias_shape == (2 * units * n_gates,):
      source = 'CuDNNGRU'
    elif bias_shape == (2, units * n_gates):
      source = 'GRU(reset_after=True)'
    elif bias_shape == (units * n_gates,):
      source = 'GRU(reset_after=False)'
    else:
      raise ValueError('Invalid bias shape: ' + str(bias_shape))

    if target_class == 'CuDNNGRU':
      target = 'CuDNNGRU'
    elif layer.reset_after:
      target = 'GRU(reset_after=True)'
    else:
      target = 'GRU(reset_after=False)'

    # only convert between different types
    if source != target:
      types = (source, target)
      if 'GRU(reset_after=False)' in types:
        raise ValueError('%s is not compatible with %s' % types)
      if source == 'CuDNNGRU':
        weights = convert_gru_weights(weights, from_cudnn=True)
      elif source == 'GRU(reset_after=True)':
        weights = convert_gru_weights(weights, from_cudnn=False)

  return weights


def save_weights_to_hdf5_group(f, layers):
  """Saves the weights of a list of layers to a HDF5 group.

  Arguments:
      f: HDF5 group.
      layers: List of layer instances.
  """
  from tensorflow.python.keras import __version__ as keras_version  # pylint: disable=g-import-not-at-top

  save_attributes_to_hdf5_group(
      f, 'layer_names', [layer.name.encode('utf8') for layer in layers])
  f.attrs['backend'] = K.backend().encode('utf8')
  f.attrs['keras_version'] = str(keras_version).encode('utf8')

  for layer in layers:
    g = f.create_group(layer.name)
    symbolic_weights = layer.weights
    weight_values = K.batch_get_value(symbolic_weights)
    weight_names = []
    for i, (w, val) in enumerate(zip(symbolic_weights, weight_values)):
      if hasattr(w, 'name') and w.name:
        name = str(w.name)
      else:
        name = 'param_' + str(i)
      weight_names.append(name.encode('utf8'))
    save_attributes_to_hdf5_group(g, 'weight_names', weight_names)
    for name, val in zip(weight_names, weight_values):
      param_dset = g.create_dataset(name, val.shape, dtype=val.dtype)
      if not val.shape:
        # scalar
        param_dset[()] = val
      else:
        param_dset[:] = val


def load_weights_from_hdf5_group(f, layers):
  """Implements topological (order-based) weight loading.

  Arguments:
      f: A pointer to a HDF5 group.
      layers: a list of target layers.

  Raises:
      ValueError: in case of mismatch between provided layers
          and weights file.
  """
  if 'keras_version' in f.attrs:
    original_keras_version = f.attrs['keras_version'].decode('utf8')
  else:
    original_keras_version = '1'
  if 'backend' in f.attrs:
    original_backend = f.attrs['backend'].decode('utf8')
  else:
    original_backend = None

  filtered_layers = []
  for layer in layers:
    weights = layer.weights
    if weights:
      filtered_layers.append(layer)

  layer_names = load_attributes_from_hdf5_group(f, 'layer_names')
  filtered_layer_names = []
  for name in layer_names:
    g = f[name]
    weight_names = load_attributes_from_hdf5_group(g, 'weight_names')
    if weight_names:
      filtered_layer_names.append(name)
  layer_names = filtered_layer_names
  if len(layer_names) != len(filtered_layers):
    raise ValueError('You are trying to load a weight file '
                     'containing ' + str(len(layer_names)) +
                     ' layers into a model with ' + str(len(filtered_layers)) +
                     ' layers.')

  # We batch weight value assignments in a single backend call
  # which provides a speedup in TensorFlow.
  weight_value_tuples = []
  for k, name in enumerate(layer_names):
    g = f[name]
    weight_names = load_attributes_from_hdf5_group(g, 'weight_names')
    weight_values = [np.asarray(g[weight_name]) for weight_name in weight_names]
    layer = filtered_layers[k]
    symbolic_weights = layer.weights
    weight_values = preprocess_weights_for_loading(
        layer, weight_values, original_keras_version, original_backend)
    if len(weight_values) != len(symbolic_weights):
      raise ValueError('Layer #' + str(k) + ' (named "' + layer.name +
                       '" in the current model) was found to '
                       'correspond to layer ' + name + ' in the save file. '
                       'However the new layer ' + layer.name + ' expects ' +
                       str(len(symbolic_weights)) +
                       ' weights, but the saved weights have ' +
                       str(len(weight_values)) + ' elements.')
    weight_value_tuples += zip(symbolic_weights, weight_values)
  K.batch_set_value(weight_value_tuples)


def load_weights_from_hdf5_group_by_name(f, layers):
  """Implements name-based weight loading.

  (instead of topological weight loading).

  Layers that have no matching name are skipped.

  Arguments:
      f: A pointer to a HDF5 group.
      layers: a list of target layers.

  Raises:
      ValueError: in case of mismatch between provided layers
          and weights file.
  """
  if 'keras_version' in f.attrs:
    original_keras_version = f.attrs['keras_version'].decode('utf8')
  else:
    original_keras_version = '1'
  if 'backend' in f.attrs:
    original_backend = f.attrs['backend'].decode('utf8')
  else:
    original_backend = None

  # New file format.
  layer_names = load_attributes_from_hdf5_group(f, 'layer_names')

  # Reverse index of layer name to list of layers with name.
  index = {}
  for layer in layers:
    if layer.name:
      index.setdefault(layer.name, []).append(layer)

  # We batch weight value assignments in a single backend call
  # which provides a speedup in TensorFlow.
  weight_value_tuples = []
  for k, name in enumerate(layer_names):
    g = f[name]
    weight_names = load_attributes_from_hdf5_group(g, 'weight_names')
    weight_values = [np.asarray(g[weight_name]) for weight_name in weight_names]

    for layer in index.get(name, []):
      symbolic_weights = layer.weights
      weight_values = preprocess_weights_for_loading(
          layer, weight_values, original_keras_version, original_backend)
      if len(weight_values) != len(symbolic_weights):
        raise ValueError('Layer #' + str(k) + ' (named "' + layer.name +
                         '") expects ' + str(len(symbolic_weights)) +
                         ' weight(s), but the saved weights' + ' have ' +
                         str(len(weight_values)) + ' element(s).')
      # Set values.
      for i in range(len(weight_values)):
        weight_value_tuples.append((symbolic_weights[i], weight_values[i]))
  K.batch_set_value(weight_value_tuples)


def save_attributes_to_hdf5_group(group, name, data):
  """Saves attributes (data) of the specified name into the HDF5 group.

  This method deals with an inherent problem of HDF5 file which is not
  able to store data larger than HDF5_OBJECT_HEADER_LIMIT bytes.

  Arguments:
      group: A pointer to a HDF5 group.
      name: A name of the attributes to save.
      data: Attributes data to store.

  Raises:
    RuntimeError: If any single attribute is too large to be saved.
  """
  # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
  # because in that case even chunking the array would not make the saving
  # possible.
  bad_attributes = [x for x in data if len(x) > HDF5_OBJECT_HEADER_LIMIT]

  # Expecting this to never be true.
  if bad_attributes:
    raise RuntimeError('The following attributes cannot be saved to HDF5 '
                       'file because they are larger than %d bytes: %s' %
                       (HDF5_OBJECT_HEADER_LIMIT,
                        ', '.join([x for x in bad_attributes])))

  data_npy = np.asarray(data)

  num_chunks = 1
  chunked_data = np.array_split(data_npy, num_chunks)

  # This will never loop forever thanks to the test above.
  while any([x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data]):
    num_chunks += 1
    chunked_data = np.array_split(data_npy, num_chunks)

  if num_chunks > 1:
    for chunk_id, chunk_data in enumerate(chunked_data):
      group.attrs['%s%d' % (name, chunk_id)] = chunk_data
  else:
    group.attrs[name] = data


def load_attributes_from_hdf5_group(group, name):
  """Loads attributes of the specified name from the HDF5 group.

  This method deals with an inherent problem
  of HDF5 file which is not able to store
  data larger than HDF5_OBJECT_HEADER_LIMIT bytes.

  Arguments:
      group: A pointer to a HDF5 group.
      name: A name of the attributes to load.

  Returns:
      data: Attributes data.
  """
  if name in group.attrs:
    data = [n.decode('utf8') for n in group.attrs[name]]
  else:
    data = []
    chunk_id = 0
    while '%s%d' % (name, chunk_id) in group.attrs:
      data.extend(
          [n.decode('utf8') for n in group.attrs['%s%d' % (name, chunk_id)]])
      chunk_id += 1
  return data