aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/framework/tensor_util.py
blob: ae4e73a36306adbb7724695bc6c9a40bc8be3c67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Utilities to create TensorProtos."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import six

from tensorflow.core.framework import tensor_pb2
from tensorflow.core.framework import tensor_shape_pb2
from tensorflow.python.framework import tensor_shape
from tensorflow.python.util import compat

# TODO(opensource): Add support for pyx_library in the open-source build.
# For now, we use the slow versions that fast_tensor_util replaces.
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.python.framework import fast_tensor_util
  _FAST_TENSOR_UTIL_AVAILABLE = True
except ImportError:
  _FAST_TENSOR_UTIL_AVAILABLE = False

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
# pylint: enable=g-import-not-at-top


if _FAST_TENSOR_UTIL_AVAILABLE:
  _NP_TO_APPEND_FN = {
      np.float32: fast_tensor_util.AppendFloat32ArrayToTensorProto,
      np.float64: fast_tensor_util.AppendFloat64ArrayToTensorProto,
      np.int32: fast_tensor_util.AppendInt32ArrayToTensorProto,
      np.int64: fast_tensor_util.AppendInt64ArrayToTensorProto,
      np.uint8: fast_tensor_util.AppendUInt8ArrayToTensorProto,
      np.uint16: fast_tensor_util.AppendUInt16ArrayToTensorProto,
      np.int16: fast_tensor_util.AppendInt16ArrayToTensorProto,
      np.int8: fast_tensor_util.AppendInt8ArrayToTensorProto,
      np.complex64: fast_tensor_util.AppendComplex64ArrayToTensorProto,
      np.complex128: fast_tensor_util.AppendComplex128ArrayToTensorProto,
      np.object: fast_tensor_util.AppendObjectArrayToTensorProto,
      np.bool: fast_tensor_util.AppendBoolArrayToTensorProto,
      dtypes.qint8.as_numpy_dtype:
          fast_tensor_util.AppendInt8ArrayToTensorProto,
      dtypes.quint8.as_numpy_dtype:
          fast_tensor_util.AppendUInt8ArrayToTensorProto,
      dtypes.qint32.as_numpy_dtype:
          fast_tensor_util.AppendInt32ArrayToTensorProto,
      # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16.
  }
else:

  def SlowAppendFloat32ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.float_val.extend([np.asscalar(x) for x in proto_values])

  def SlowAppendFloat64ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.double_val.extend([np.asscalar(x) for x in proto_values])

  def SlowAppendIntArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.int_val.extend([np.asscalar(x) for x in proto_values])

  def SlowAppendInt64ArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.int64_val.extend([np.asscalar(x) for x in proto_values])

  def SlowAppendComplexArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.scomplex_val.extend([np.asscalar(v)
                                      for x in proto_values
                                      for v in [x.real, x.imag]])

  def SlowAppendObjectArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values])

  def SlowAppendBoolArrayToTensorProto(tensor_proto, proto_values):
    tensor_proto.bool_val.extend([np.asscalar(x) for x in proto_values])

  _NP_TO_APPEND_FN = {
      np.float32: SlowAppendFloat32ArrayToTensorProto,
      np.float64: SlowAppendFloat64ArrayToTensorProto,
      np.int32: SlowAppendIntArrayToTensorProto,
      np.int64: SlowAppendInt64ArrayToTensorProto,
      np.uint8: SlowAppendIntArrayToTensorProto,
      np.uint16: SlowAppendIntArrayToTensorProto,
      np.int16: SlowAppendIntArrayToTensorProto,
      np.int8: SlowAppendIntArrayToTensorProto,
      np.complex64: SlowAppendComplexArrayToTensorProto,
      np.complex128: SlowAppendComplexArrayToTensorProto,
      np.object: SlowAppendObjectArrayToTensorProto,
      np.bool: SlowAppendBoolArrayToTensorProto,
      dtypes.qint8.as_numpy_dtype: SlowAppendIntArrayToTensorProto,
      dtypes.quint8.as_numpy_dtype: SlowAppendIntArrayToTensorProto,
      dtypes.qint32.as_numpy_dtype: SlowAppendIntArrayToTensorProto,
      # NOTE(touts): Intentionally no way to feed a DT_BFLOAT16.
  }


def GetFromNumpyDTypeDict(dtype_dict, dtype):
  # NOTE: dtype_dict.get(dtype) always returns None.
  for key, val in six.iteritems(dtype_dict):
    if key == dtype:
      return val
  return None


def GetNumpyAppendFn(dtype):
  # numpy dtype for strings are variable length. We can not compare
  # dtype with a single constant (np.string does not exist) to decide
  # dtype is a "string" type. We need to compare the dtype.type to be
  # sure it's a string type.
  if dtype.type == np.string_ or dtype.type == np.unicode_:
    if _FAST_TENSOR_UTIL_AVAILABLE:
      return fast_tensor_util.AppendObjectArrayToTensorProto
    else:
      return SlowAppendObjectArrayToTensorProto
  return GetFromNumpyDTypeDict(_NP_TO_APPEND_FN, dtype)


def TensorShapeProtoToList(shape):
  """Convert a TensorShape to a list.

  Args:
    shape: A TensorShapeProto.

  Returns:
    List of integers representing the dimensions of the tensor.
  """
  return [dim.size for dim in shape.dim]


def _GetDenseDimensions(list_of_lists):
  """Returns the inferred dense dimensions of a list of lists."""
  if not isinstance(list_of_lists, (list, tuple)):
    return []
  elif not list_of_lists:
    return [0]
  else:
    return [len(list_of_lists)] + _GetDenseDimensions(list_of_lists[0])


def _FlattenToStrings(nested_strings):
  if isinstance(nested_strings, list):
    for inner in nested_strings:
      for flattened_string in _FlattenToStrings(inner):
        yield flattened_string
  else:
    yield nested_strings


_TENSOR_CONTENT_TYPES = frozenset([
    dtypes.float32, dtypes.float64, dtypes.int32, dtypes.uint8, dtypes.int16,
    dtypes.int8, dtypes.int64
])


class _Message(object):

  def __init__(self, message):
    self._message = message

  def __repr__(self):
    return self._message


def _FirstNotNone(l):
  for x in l:
    if x is not None:
      if isinstance(x, ops.Tensor):
        return _Message("list containing Tensors")
      else:
        return x
  return None


def _NotNone(v):
  if v is None:
    return _Message("None")
  else:
    return v


def _FilterInt(v):
  if isinstance(v, (list, tuple)):
    return _FirstNotNone([_FilterInt(x) for x in v])
  return None if isinstance(v, compat.integral_types) else _NotNone(v)


def _FilterFloat(v):
  if isinstance(v, (list, tuple)):
    return _FirstNotNone([_FilterFloat(x) for x in v])
  return None if isinstance(v, compat.real_types) else _NotNone(v)


def _FilterComplex(v):
  if isinstance(v, (list, tuple)):
    return _FirstNotNone([_FilterComplex(x) for x in v])
  return None if isinstance(v, compat.complex_types) else _NotNone(v)


def _FilterStr(v):
  if isinstance(v, (list, tuple)):
    return _FirstNotNone([_FilterStr(x) for x in v])
  if isinstance(v, compat.bytes_or_text_types):
    return None
  else:
    return _NotNone(v)


def _FilterBool(v):
  if isinstance(v, (list, tuple)):
    return _FirstNotNone([_FilterBool(x) for x in v])
  return None if isinstance(v, bool) else _NotNone(v)


def _FilterNotTensor(v):
  if isinstance(v, (list, tuple)):
    return _FirstNotNone([_FilterNotTensor(x) for x in v])
  return str(v) if isinstance(v, ops.Tensor) else None


_TF_TO_IS_OK = {
    dtypes.float32: _FilterFloat,
    dtypes.float64: _FilterFloat,
    dtypes.int32: _FilterInt,
    dtypes.uint8: _FilterInt,
    dtypes.uint16: _FilterInt,
    dtypes.int16: _FilterInt,
    dtypes.int8: _FilterInt,
    dtypes.string: _FilterStr,
    dtypes.complex64: _FilterComplex,
    dtypes.int64: _FilterInt,
    dtypes.bool: _FilterBool,
    dtypes.qint32: _FilterInt,
    dtypes.quint8: _FilterInt,
    dtypes.qint8: _FilterInt,
}


def _AssertCompatible(values, dtype):
  fn = _TF_TO_IS_OK.get(dtype, _FilterNotTensor)
  mismatch = fn(values)
  if mismatch is not None:
    if dtype is None:
      raise TypeError("List of Tensors when single Tensor expected")
    else:
      raise TypeError("Expected %s, got %s of type '%s' instead." %
                      (dtype.name, repr(mismatch), type(mismatch).__name__))


def make_tensor_proto(values, dtype=None, shape=None):
  """Create a TensorProto.

  Args:
    values:    Values to put in the TensorProto.
    dtype:     Optional tensor_pb2 DataType value.
    shape:     List of integers representing the dimensions of tensor.

  Returns:
    A TensorProto. Depending on the type, it may contain data in the
    "tensor_content" attribute, which is not directly useful to Python programs.
    To access the values you should convert the proto back to a numpy ndarray
    with tensor_util.MakeNdarray(proto).

  Raises:
    TypeError:  if unsupported types are provided.
    ValueError: if arguments have inappropriate values.

  make_tensor_proto accepts "values" of a python scalar, a python list, a
  numpy ndarray, or a numpy scalar.

  If "values" is a python scalar or a python list, make_tensor_proto
  first convert it to numpy ndarray. If dtype is None, the
  conversion tries its best to infer the right numpy data
  type. Otherwise, the resulting numpy array has a compatible data
  type with the given dtype.

  In either case above, the numpy ndarray (either the caller provided
  or the auto converted) must have the compatible type with dtype.

  make_tensor_proto then converts the numpy array to a tensor proto.

  If "shape" is None, the resulting tensor proto represents the numpy
  array precisely.

  Otherwise, "shape" specifies the tensor's shape and the numpy array
  can not have more elements than what "shape" specifies.

  """
  if dtype:
    dtype = dtypes.as_dtype(dtype)

  # We first convert value to a numpy array or scalar.
  if isinstance(values, (np.ndarray, np.generic)):
    if dtype:
      nparray = values.astype(dtype.as_numpy_dtype)
    else:
      nparray = values
  else:
    if values is None:
      raise ValueError("None values not supported.")
    # if dtype is provided, forces numpy array to be the type
    # provided if possible.
    np_dt = dtype.as_numpy_dtype if dtype else None
    if np.prod(shape) == 0:
      nparray = np.empty(shape, dtype=np_dt)
    else:
      _AssertCompatible(values, dtype)
      nparray = np.array(values, dtype=np_dt)
      if list(nparray.shape) != _GetDenseDimensions(values):
        raise ValueError("Argument must be a dense tensor: %s" % values)
    # python/numpy default float type is float64. We prefer float32 instead.
    if (nparray.dtype == np.float64) and dtype is None:
      nparray = nparray.astype(np.float32)
    # python/numpy default int type is int64. We prefer int32 instead.
    elif (nparray.dtype == np.int64) and dtype is None:
      nparray = nparray.astype(np.int32)

  # if dtype is provided, it must be compatible with what numpy
  # conversion says.
  numpy_dtype = dtypes.as_dtype(nparray.dtype)
  if numpy_dtype is None:
    raise TypeError("Unrecognized data type: %s" % nparray.dtype)

  # If dtype was specified and is a quantized type, we convert
  # numpy_dtype back into the quantized version.
  if dtype in [dtypes.qint8, dtypes.quint8, dtypes.qint32]:
    numpy_dtype = dtype

  if dtype is not None and not dtype.base_dtype == numpy_dtype.base_dtype:
    raise TypeError("Incompatible types: %s vs. %s" % (dtype, nparray.dtype))

  # If shape is not given, get the shape from the numpy array.
  if shape is None:
    shape = nparray.shape
    is_same_size = True
    shape_size = nparray.size
  else:
    shape = [int(dim) for dim in shape]
    shape_size = np.prod(shape)
    is_same_size = shape_size == nparray.size

    if nparray.size > shape_size:
      raise ValueError(
          "Too many elements provided. Needed at most %d, but received %d" %
          (shape_size, nparray.size))

  tensor_proto = tensor_pb2.TensorProto(
      dtype=numpy_dtype.as_datatype_enum,
      tensor_shape=tensor_shape.as_shape(shape).as_proto())

  if is_same_size and numpy_dtype in _TENSOR_CONTENT_TYPES and shape_size > 1:
    if nparray.size * nparray.itemsize >= (1 << 31):
      raise ValueError(
          "Cannot create a tensor proto whose content is larger than 2GB.")
    tensor_proto.tensor_content = nparray.tostring()
    return tensor_proto

  # If we were not given values as a numpy array, compute the proto_values
  # from the given values directly, to avoid numpy trimming nulls from the
  # strings. Since values could be a list of strings, or a multi-dimensional
  # list of lists that might or might not correspond to the given shape,
  # we flatten it conservatively.
  if numpy_dtype == dtypes.string and not isinstance(values, np.ndarray):
    proto_values = _FlattenToStrings(values)
    tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values])
    return tensor_proto

  # TensorFlow expects C order (a.k.a., eigen row major).
  proto_values = nparray.ravel()

  append_fn = GetNumpyAppendFn(proto_values.dtype)
  if append_fn is None:
    raise TypeError("Element type not supported in TensorProto: %s" %
                    numpy_dtype.name)
  append_fn(tensor_proto, proto_values)

  return tensor_proto


def MakeNdarray(tensor):
  """Create a numpy ndarray from a tensor.

  Create a numpy ndarray with the same shape and data as the tensor.

  Args:
    tensor: A TensorProto.

  Returns:
    A numpy array with the tensor contents.

  Raises:
    TypeError: if tensor has unsupported type.

  """
  shape = [d.size for d in tensor.tensor_shape.dim]
  num_elements = np.prod(shape)
  tensor_dtype = dtypes.as_dtype(tensor.dtype)
  dtype = tensor_dtype.as_numpy_dtype

  if tensor.tensor_content:
    return np.fromstring(tensor.tensor_content, dtype=dtype).reshape(shape)
  elif tensor_dtype == dtypes.float32:
    if len(tensor.float_val) == 1:
      return np.repeat(np.array(tensor.float_val[0], dtype=dtype),
                       num_elements).reshape(shape)
    else:
      return np.fromiter(tensor.float_val, dtype=dtype).reshape(shape)
  elif tensor_dtype == dtypes.float64:
    if len(tensor.double_val) == 1:
      return np.repeat(np.array(tensor.double_val[0], dtype=dtype),
                       num_elements).reshape(shape)
    else:
      return np.fromiter(tensor.double_val, dtype=dtype).reshape(shape)
  elif tensor_dtype in [dtypes.int32, dtypes.uint8, dtypes.uint16, dtypes.int16,
                        dtypes.int8, dtypes.qint32, dtypes.quint8, dtypes.qint8,
                        dtypes.bfloat16]:
    if len(tensor.int_val) == 1:
      return np.repeat(np.array(tensor.int_val[0], dtype=dtype),
                       num_elements).reshape(shape)
    else:
      return np.fromiter(tensor.int_val, dtype=dtype).reshape(shape)
  elif tensor_dtype == dtypes.int64:
    if len(tensor.int64_val) == 1:
      return np.repeat(np.array(tensor.int64_val[0], dtype=dtype),
                       num_elements).reshape(shape)
    else:
      return np.fromiter(tensor.int64_val, dtype=dtype).reshape(shape)
  elif tensor_dtype == dtypes.string:
    if len(tensor.string_val) == 1:
      return np.repeat(np.array(tensor.string_val[0], dtype=dtype),
                       num_elements).reshape(shape)
    else:
      return np.array([x for x in tensor.string_val],
                      dtype=dtype).reshape(shape)
  elif tensor_dtype == dtypes.complex64:
    it = iter(tensor.scomplex_val)
    if len(tensor.scomplex_val) == 2:
      return np.repeat(np.array(complex(tensor.scomplex_val[0],
                                        tensor.scomplex_val[1]), dtype=dtype),
                       num_elements).reshape(shape)
    else:
      return np.array([complex(x[0], x[1]) for x in zip(it, it)],
                      dtype=dtype).reshape(shape)
  elif tensor_dtype == dtypes.bool:
    if len(tensor.bool_val) == 1:
      return np.repeat(np.array(tensor.bool_val[0], dtype=dtype),
                       num_elements).reshape(shape)
    else:
      return np.fromiter(tensor.bool_val, dtype=dtype).reshape(shape)
  else:
    raise TypeError("Unsupported tensor type: %s" % tensor.dtype)


def ShapeEquals(tensor_proto, shape):
  """Returns True if "tensor_proto" has the given "shape".

  Args:
    tensor_proto: A TensorProto.
    shape: A tensor shape, expressed as a TensorShape, list, or tuple.

  Returns:
    True if "tensor_proto" has the given "shape", otherwise False.

  Raises:
    TypeError: If "tensor_proto" is not a TensorProto, or shape is not a
      TensorShape, list, or tuple.
  """
  if not isinstance(tensor_proto, tensor_pb2.TensorProto):
    raise TypeError("tensor_proto is not a tensor_pb2.TensorProto object")
  if isinstance(shape, tensor_shape_pb2.TensorShapeProto):
    shape = [d.size for d in shape.dim]
  elif not isinstance(shape, (list, tuple)):
    raise TypeError("shape is not a list or tuple")
  tensor_shape_list = [d.size for d in tensor_proto.tensor_shape.dim]
  return all(x == y for x, y in zip(tensor_shape_list, shape))


def constant_value(tensor):
  """Returns the constant value of the given tensor, if efficiently calculable.

  This function attempts to partially evaluate the given tensor, and
  returns its value as a numpy ndarray if this succeeds.

  TODO(mrry): Consider whether this function should use a registration
  mechanism like gradients and ShapeFunctions, so that it is easily
  extensible.

  Args:
    tensor: The Tensor to be evaluated.

  Returns:
    A numpy ndarray containing the constant value of the given `tensor`,
    or None if it cannot be calculated.

  Raises:
    TypeError: if tensor is not an ops.Tensor.
  """
  # TODO(touts): Support Variables?
  if not isinstance(tensor, ops.Tensor):
    raise TypeError("tensor is not a Tensor")
  if tensor.op.type == "Const":
    return MakeNdarray(tensor.op.get_attr("value"))
  elif tensor.op.type == "Shape":
    input_shape = tensor.op.inputs[0].get_shape()
    if input_shape.is_fully_defined():
      return np.array([dim.value for dim in input_shape.dims],
                      dtype=tensor.dtype.as_numpy_dtype)
    else:
      return None
  elif tensor.op.type == "Size":
    input_shape = tensor.op.inputs[0].get_shape()
    if input_shape.is_fully_defined():
      return np.prod([dim.value for dim in input_shape.dims], dtype=np.int32)
    else:
      return None
  elif tensor.op.type == "Rank":
    input_shape = tensor.op.inputs[0].get_shape()
    if input_shape.ndims is not None:
      return input_shape.ndims
    else:
      return None
  elif tensor.op.type == "Range":
    start = constant_value(tensor.op.inputs[0])
    if start is None:
      return None
    limit = constant_value(tensor.op.inputs[1])
    if limit is None:
      return None
    delta = constant_value(tensor.op.inputs[2])
    if delta is None:
      return None
    return np.arange(start, limit, delta, dtype=tensor.dtype.as_numpy_dtype)
  elif tensor.op.type == "Cast":
    pre_cast = constant_value(tensor.op.inputs[0])
    if pre_cast is None:
      return None
    cast_dtype = dtypes.as_dtype(tensor.op.get_attr("DstT"))
    return pre_cast.astype(cast_dtype.as_numpy_dtype)
  elif tensor.op.type == "Concat":
    dim = constant_value(tensor.op.inputs[0])
    if dim is None:
      return None
    values = []
    for x in tensor.op.inputs[1:]:
      value = constant_value(x)
      if value is None:
        return None
      values.append(value)
    return np.concatenate(values, axis=dim)
  else:
    return None