aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/framework/sparse_tensor.py
blob: 440e3a0968cefb8d3bda200545b442de6ce66c60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes and functions used to construct graphs."""
# pylint: disable=g-bad-name
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

from tensorflow.python import pywrap_tensorflow
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_util
from tensorflow.python.util.tf_export import tf_export

# pylint: disable=protected-access
_TensorLike = ops._TensorLike
_eval_using_default_session = ops._eval_using_default_session
_override_helper = ops._override_helper
# pylint: enable=protected-access


@tf_export("sparse.SparseTensor", "SparseTensor")
class SparseTensor(_TensorLike):
  """Represents a sparse tensor.

  TensorFlow represents a sparse tensor as three separate dense tensors:
  `indices`, `values`, and `dense_shape`.  In Python, the three tensors are
  collected into a `SparseTensor` class for ease of use.  If you have separate
  `indices`, `values`, and `dense_shape` tensors, wrap them in a `SparseTensor`
  object before passing to the ops below.

  Concretely, the sparse tensor `SparseTensor(indices, values, dense_shape)`
  comprises the following components, where `N` and `ndims` are the number
  of values and number of dimensions in the `SparseTensor`, respectively:

  * `indices`: A 2-D int64 tensor of dense_shape `[N, ndims]`, which specifies
    the indices of the elements in the sparse tensor that contain nonzero
    values (elements are zero-indexed). For example, `indices=[[1,3], [2,4]]`
    specifies that the elements with indexes of [1,3] and [2,4] have
    nonzero values.

  * `values`: A 1-D tensor of any type and dense_shape `[N]`, which supplies the
    values for each element in `indices`. For example, given
    `indices=[[1,3], [2,4]]`, the parameter `values=[18, 3.6]` specifies
    that element [1,3] of the sparse tensor has a value of 18, and element
    [2,4] of the tensor has a value of 3.6.

  * `dense_shape`: A 1-D int64 tensor of dense_shape `[ndims]`, which specifies
    the dense_shape of the sparse tensor. Takes a list indicating the number of
    elements in each dimension. For example, `dense_shape=[3,6]` specifies a
    two-dimensional 3x6 tensor, `dense_shape=[2,3,4]` specifies a
    three-dimensional 2x3x4 tensor, and `dense_shape=[9]` specifies a
    one-dimensional tensor with 9 elements.

  The corresponding dense tensor satisfies:

  ```python
  dense.shape = dense_shape
  dense[tuple(indices[i])] = values[i]
  ```

  By convention, `indices` should be sorted in row-major order (or equivalently
  lexicographic order on the tuples `indices[i]`). This is not enforced when
  `SparseTensor` objects are constructed, but most ops assume correct ordering.
  If the ordering of sparse tensor `st` is wrong, a fixed version can be
  obtained by calling `tf.sparse_reorder(st)`.

  Example: The sparse tensor

  ```python
  SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4])
  ```

  represents the dense tensor

  ```python
  [[1, 0, 0, 0]
   [0, 0, 2, 0]
   [0, 0, 0, 0]]
  ```
  """

  @classmethod
  def from_value(cls, sparse_tensor_value):
    if not is_sparse(sparse_tensor_value):
      raise TypeError("Neither a SparseTensor nor SparseTensorValue: %s." %
                      sparse_tensor_value)
    return SparseTensor(
        indices=sparse_tensor_value.indices,
        values=sparse_tensor_value.values,
        dense_shape=sparse_tensor_value.dense_shape)

  def __init__(self, indices, values, dense_shape):
    """Creates a `SparseTensor`.

    Args:
      indices: A 2-D int64 tensor of shape `[N, ndims]`.
      values: A 1-D tensor of any type and shape `[N]`.
      dense_shape: A 1-D int64 tensor of shape `[ndims]`.

    """
    with ops.name_scope(None, "SparseTensor",
                        [indices, values, dense_shape]):
      indices = ops.convert_to_tensor(
          indices, name="indices", dtype=dtypes.int64)
      # Always pass as_ref=True because we want to be able to update
      # values later if it is a VariableOp.
      # TODO(touts): Consider adding mutable_values() when 'values'
      # is a VariableOp and updating users of SparseTensor.
      values = ops.internal_convert_to_tensor(
          values, name="values", as_ref=True)
      dense_shape = ops.convert_to_tensor(
          dense_shape, name="dense_shape", dtype=dtypes.int64)
    self._indices = indices
    self._values = values
    self._dense_shape = dense_shape

    indices_shape = indices.get_shape().with_rank(2)
    values_shape = values.get_shape().with_rank(1)
    dense_shape_shape = dense_shape.get_shape().with_rank(1)

    # Assert number of rows in indices match the number of elements in values.
    indices_shape[0].merge_with(values_shape[0])
    # Assert number of columns in indices matches the number of elements in
    # dense_shape.
    indices_shape[1].merge_with(dense_shape_shape[0])

  def get_shape(self):
    """Get the `TensorShape` representing the shape of the dense tensor.

    Returns:
      A `TensorShape` object.
    """
    return tensor_util.constant_value_as_shape(self._dense_shape)

  @property
  def indices(self):
    """The indices of non-zero values in the represented dense tensor.

    Returns:
      A 2-D Tensor of int64 with dense_shape `[N, ndims]`, where `N` is the
        number of non-zero values in the tensor, and `ndims` is the rank.
    """
    return self._indices

  @property
  def values(self):
    """The non-zero values in the represented dense tensor.

    Returns:
      A 1-D Tensor of any data type.
    """
    return self._values

  @property
  def op(self):
    """The `Operation` that produces `values` as an output."""
    return self.values.op

  @property
  def dtype(self):
    """The `DType` of elements in this tensor."""
    return self._values.dtype

  @property
  def dense_shape(self):
    """A 1-D Tensor of int64 representing the shape of the dense tensor."""
    return self._dense_shape

  @property
  def shape(self):
    """Get the `TensorShape` representing the shape of the dense tensor.

    Returns:
      A `TensorShape` object.
    """
    return tensor_util.constant_value_as_shape(self._dense_shape)

  @property
  def graph(self):
    """The `Graph` that contains the index, value, and dense_shape tensors."""
    return self._indices.graph

  def consumers(self):
    """Returns a list of `Operation`s that consume this `SparseTensor`.

    Returns:
      A list of `Operation`s.
    """
    values_consumers = set(self._values.consumers())
    indices_consumers = set(self._indices.consumers())
    dense_shape_consumers = set(self._dense_shape.consumers())
    return list(values_consumers \
                .union(indices_consumers, dense_shape_consumers))

  def __str__(self):
    return "SparseTensor(indices=%s, values=%s, dense_shape=%s)" % (
        self._indices, self._values, self._dense_shape)

  def eval(self, feed_dict=None, session=None):
    """Evaluates this sparse tensor in a `Session`.

    Calling this method will execute all preceding operations that
    produce the inputs needed for the operation that produces this
    tensor.

    *N.B.* Before invoking `SparseTensor.eval()`, its graph must have been
    launched in a session, and either a default session must be
    available, or `session` must be specified explicitly.

    Args:
      feed_dict: A dictionary that maps `Tensor` objects to feed values.
        See `tf.Session.run` for a
        description of the valid feed values.
      session: (Optional.) The `Session` to be used to evaluate this sparse
        tensor. If none, the default session will be used.

    Returns:
      A `SparseTensorValue` object.
    """
    indices, values, dense_shape = _eval_using_default_session(
        [self.indices, self.values, self.dense_shape], feed_dict, self.graph,
        session)
    return SparseTensorValue(indices, values, dense_shape)

  @staticmethod
  def _override_operator(operator, func):
    _override_helper(SparseTensor, operator, func)


SparseTensorValue = collections.namedtuple(
    "SparseTensorValue", ["indices", "values", "dense_shape"])
tf_export("SparseTensorValue")(SparseTensorValue)
pywrap_tensorflow.RegisterType("SparseTensorValue", SparseTensorValue)


@tf_export("convert_to_tensor_or_sparse_tensor")
def convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None):
  """Converts value to a `SparseTensor` or `Tensor`.

  Args:
    value: A `SparseTensor`, `SparseTensorValue`, or an object whose type has a
      registered `Tensor` conversion function.
    dtype: Optional element type for the returned tensor. If missing, the
      type is inferred from the type of `value`.
    name: Optional name to use if a new `Tensor` is created.

  Returns:
    A `SparseTensor` or `Tensor` based on `value`.

  Raises:
    RuntimeError: If result type is incompatible with `dtype`.
  """
  if dtype is not None:
    dtype = dtypes.as_dtype(dtype)
  if isinstance(value, SparseTensorValue):
    value = SparseTensor.from_value(value)
  if isinstance(value, SparseTensor):
    if dtype and not dtype.is_compatible_with(value.dtype):
      raise RuntimeError(
          "Sparse dtype: requested = %s, actual = %s" % (
              dtype.name, value.dtype.name))
    return value
  return ops.internal_convert_to_tensor(
      value, dtype=dtype, name=name)


def is_sparse(x):
  """Check whether `x` is sparse.

  Check whether an object is a `tf.SparseTensor` or `tf.SparseTensorValue`.

  Args:
    x: A python object to check.

  Returns:
    `True` iff `x` is a `tf.SparseTensor` or `tf.SparseTensorValue`.
  """
  return isinstance(x, (SparseTensor, SparseTensorValue))