aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/framework/importer.py
blob: 6ad2a1b009b6d74487fbec11b8684457ce04d811 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""A utility function for importing TensorFlow graphs."""
import contextlib

import tensorflow.python.platform

from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.python.framework import op_def_registry
from tensorflow.python.framework import ops
from tensorflow.python.framework import types as types_lib


# TODO(josh11b): SWIG the code from node_def_util instead of duplicating
# the logic here.
def _GetNodeAttr(node_def, attr_name):
  if attr_name not in node_def.attr:
    raise ValueError('Expected one attr with name %r in %s.'
                     % (attr_name, str(node_def)))
  return node_def.attr[attr_name]


def _ArgToTypesNoRef(node_def, arg_def):
  if arg_def.number_attr:
    repeats = _GetNodeAttr(node_def, arg_def.number_attr).i
    if arg_def.type_attr:
      dtype = _GetNodeAttr(node_def, arg_def.type_attr).type
    else:
      assert arg_def.type != types_pb2.DT_INVALID
      dtype = arg_def.type
    return [dtype] * repeats
  elif arg_def.type_attr:
    return [_GetNodeAttr(node_def, arg_def.type_attr).type]
  elif arg_def.type_list_attr:
    return _GetNodeAttr(node_def, arg_def.type_list_attr).list.type
  else:
    assert arg_def.type != types_pb2.DT_INVALID
    return [arg_def.type]


def _SingleArgToTypes(node_def, arg_def):
  types = _ArgToTypesNoRef(node_def, arg_def)
  if arg_def.is_ref:
    return [types_lib.as_dtype(dt).as_ref.as_datatype_enum for dt in types]
  return types


def _ArgsToTypes(node_def, arg_list):
  types = []
  for arg_def in arg_list:
    types.extend(_SingleArgToTypes(node_def, arg_def))
  return types


def _InputTypes(node_def, op_dict):
  op_def = op_dict[node_def.op]
  return _ArgsToTypes(node_def, op_def.input_arg)


def _OutputTypes(node_def, op_dict):
  op_def = op_dict[node_def.op]
  return _ArgsToTypes(node_def, op_def.output_arg)


def _IsControlInput(input_name):
  # Expected format: '^operation_name' (control input).
  return input_name.startswith('^')


def _ParseTensorName(tensor_name):
  """Parses a tensor name into an operation name and output index.

  This function will canonicalize tensor names as follows:

  * "foo:0"       -> ("foo", 0)
  * "foo:7"       -> ("foo", 7)
  * "foo"         -> ("foo", 0)
  * "foo:bar:baz" -> ValueError

  Args:
    tensor_name: The name of a tensor.

  Returns:
    A tuple containing the operation name, and the output index.

  Raises:
    ValueError: If `tensor_name' cannot be interpreted as the name of a tensor.
  """
  components = tensor_name.split(':')
  if len(components) == 2:
    # Expected format: 'operation_name:output_index'.
    try:
      output_index = int(components[1])
    except ValueError:
      raise ValueError('Cannot convert %r to a tensor name.' % (tensor_name,))
    return components[0], output_index
  elif len(components) == 1:
    # Expected format: 'operation_name' (implicit 0th output).
    return components[0], 0
  else:
    raise ValueError('Cannot convert %r to a tensor name.' % (tensor_name,))


def _CanonicalInputName(input_name):
  if _IsControlInput(input_name):
    return input_name
  input_op_name, output_index = _ParseTensorName(input_name)
  return '%s:%d' % (input_op_name, output_index)


def _InvalidNodeMessage(node, message):
  return 'graph_def is invalid at node %r: %s.' % (node.name, message)


@contextlib.contextmanager
def _MaybeDevice(device):
  """Applies the given device only if device is not None or empty."""
  if device:
    with ops.device(device):
      yield
  else:
    yield


def import_graph_def(graph_def, input_map=None, return_elements=None,
                     name=None, op_dict=None):
  """Imports the TensorFlow graph in `graph_def` into the Python `Graph`.

  This function provides a way to import a serialized TensorFlow
  [`GraphDef`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/graph.proto)
  protocol buffer, and extract individual objects in the `GraphDef` as
  [`Tensor`](#Tensor) and [`Operation`](#Operation) objects. See
  [`Graph.as_graph_def()`](#Graph.as_graph_def) for a way to create a
  `GraphDef` proto.

  Args:
    graph_def: A `GraphDef` proto containing operations to be imported into
      the default graph.
    input_map: A dictionary mapping input names (as strings) in `graph_def`
      to `Tensor` objects. The values of the named input tensors in the
      imported graph will be re-mapped to the respective `Tensor` values.
    return_elements: A list of strings containing operation names in
      `graph_def` that will be returned as `Operation` objects; and/or
      tensor names in `graph_def` that will be returned as `Tensor` objects.
    name: (Optional.) A prefix that will be prepended to the names in
      `graph_def`. Defaults to `"import"`.
    op_dict: (Optional.) A dictionary mapping op type names to `OpDef` protos.
      Must contain an `OpDef` proto for each op type named in `graph_def`.
      If omitted, uses the `OpDef` protos registered in the global registry.

  Returns:
    A list of `Operation` and/or `Tensor` objects from the imported graph,
    corresponding to the names in `return_elements'.

  Raises:
    TypeError: If `graph_def` is not a `GraphDef` proto,
      `input_map' is not a dictionary mapping strings to `Tensor` objects,
      or `return_elements` is not a list of strings.
    ValueError: If `input_map`, or `return_elements` contains names that
      do not appear in `graph_def`, or `graph_def` is not well-formed (e.g.
      it refers to an unknown tensor).
  """
  # Type checks for inputs.
  if not isinstance(graph_def, graph_pb2.GraphDef):
    raise TypeError('graph_def must be a GraphDef proto.')
  if input_map is None:
    input_map = {}
  else:
    if not (isinstance(input_map, dict)
            and all(isinstance(k, basestring) for k in input_map.keys())):
      raise TypeError('input_map must be a dictionary mapping strings to '
                      'Tensor objects.')
  if (return_elements is not None
      and not (isinstance(return_elements, (list, tuple))
               and all(isinstance(x, basestring) for x in return_elements))):
    raise TypeError('return_elements must be a list of strings.')

  # Use a canonical representation for all tensor names.
  input_map = {_CanonicalInputName(k): v for k, v in input_map.items()}
  used_input_keys = set()

  name_to_op = {}

  if op_dict is None:
    op_dict = op_def_registry.get_registered_ops()

  with ops.op_scope(input_map.values(), name, 'import'):
    g = ops.get_default_graph()

    with ops.name_scope('_inputs'):
      input_map = {k: ops.convert_to_tensor(v) for k, v in input_map.items()}

    # NOTE(mrry): We do this in two passes, because there may be a cycle in
    # `graph_def'.

    # 1. Add operations without their inputs.
    for node in graph_def.node:
      output_types = _OutputTypes(node, op_dict)
      with _MaybeDevice(node.device):
        name_to_op[node.name] = g.create_op(
            node.op, [], output_types, name=node.name, attrs=node.attr,
            compute_shapes=False)

    # 2. Add inputs to the operations.
    for node in graph_def.node:
      op = name_to_op[node.name]
      input_types = _InputTypes(node, op_dict)

      # NOTE(mrry): We cannot use zip here because control inputs do not appear
      # in the list of input_types.
      for i, input_name in enumerate(
          [_CanonicalInputName(x) for x in node.input]):

        if _IsControlInput(input_name):
          # (a) Input is a control input that should be taken from an op
          #     in "graph_def".
          try:
            source_op = name_to_op[input_name[1:]]
          except KeyError:
            raise ValueError(
                _InvalidNodeMessage(
                    node,
                    'Control input %r not found in graph_def.' % (input_name,)))
          # pylint: disable=protected-access
          op._add_control_input(source_op)
          # pylint: enable=protected-access

        else:
          try:
            input_type = input_types[i]
          except IndexError:
            raise ValueError(_InvalidNodeMessage(
                node, 'More inputs specified (%r) than the op expects.'
                % (input_name,)))

          if input_name in input_map:
            # (b) Input should be replaced by a tensor from the caller.
            source_tensor = input_map[input_name]
            used_input_keys.add(input_name)

          else:
            # (c) Input should be taken from an op in `graph_def'.
            operation_name, output_index = _ParseTensorName(input_name)
            try:
              source_op = name_to_op[operation_name]
              source_tensor = source_op.values()[output_index]
            except (KeyError, IndexError):
              raise ValueError(
                  _InvalidNodeMessage(
                      node,
                      'Input tensor %r not found in graph_def.'
                      % (input_name,)))

          try:
            # pylint: disable=protected-access
            op._add_input(source_tensor, dtype=input_type)
            # pylint: enable=protected-access
          except TypeError as te:
            raise ValueError(
                _InvalidNodeMessage(node, 'Input tensor %r %s'
                                    % (input_name, te.message)))

      # pylint: disable=protected_access
      if op._input_dtypes != input_types:
        raise ValueError(
            _InvalidNodeMessage(
                node,
                'Input types mismatch (expected %r but got %r)'
                % (", ".join(types_lib.as_dtype(x).name for x in input_types),
                   ", ".join(x.name for x in op._input_dtypes))))
      # pylint: enable=protected_access

      # Execute shape inference for this op.
      # NOTE(mrry): If the graph contains a cycle, the full shape information
      # may not be available for this op's inputs.
      ops.set_shapes_for_outputs(op)

    # Treat unused input mappings as an error, because they are likely to be
    # due to a typo.
    unused_input_keys = frozenset(input_map.keys()).difference(used_input_keys)
    if unused_input_keys:
      raise ValueError(
          'Attempted to map inputs that were not found in graph_def: [%s]'
          % ', '.join(unused_input_keys))

    if return_elements is None:
      return None
    else:
      ret = []
      for name in return_elements:
        if ':' in name:
          try:
            operation_name, output_index = _ParseTensorName(name)
            ret.append(name_to_op[operation_name].outputs[output_index])
          except (ValueError, KeyError, IndexError):
            raise ValueError(
                'Requested return_element %r not found in graph_def.' % name)
        else:
          try:
            ret.append(name_to_op[name])
          except KeyError:
            raise ValueError(
                'Requested return_element %r not found in graph_def.' % name)
      return ret