aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/feature_column/feature_column.py
blob: 44ab1a622e8bd537c5eb6aacfb96c89dc8d10ddc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This API defines FeatureColumn abstraction.

FeatureColumns provide a high level abstraction for ingesting and representing
features. FeatureColumns are also the primary way of encoding features for
canned ${tf.estimator.Estimator}s.

When using FeatureColumns with `Estimators`, the type of feature column you
should choose depends on (1) the feature type and (2) the model type.

1. Feature type:

  * Continuous features can be represented by `numeric_column`.
  * Categorical features can be represented by any `categorical_column_with_*`
  column:
    - `categorical_column_with_vocabulary_list`
    - `categorical_column_with_vocabulary_file`
    - `categorical_column_with_hash_bucket`
    - `categorical_column_with_identity`
    - `weighted_categorical_column`

2. Model type:

  * Deep neural network models (`DNNClassifier`, `DNNRegressor`).

    Continuous features can be directly fed into deep neural network models.

      age_column = numeric_column("age")

    To feed sparse features into DNN models, wrap the column with
    `embedding_column` or `indicator_column`. `indicator_column` is recommended
    for features with only a few possible values. For features with many
    possible values, to reduce the size of your model, `embedding_column` is
    recommended.

      embedded_dept_column = embedding_column(
          categorical_column_with_vocabulary_list(
              "department", ["math", "philosphy", ...]), dimension=10)

  * Wide (aka linear) models (`LinearClassifier`, `LinearRegressor`).

    Sparse features can be fed directly into linear models. They behave like an
    indicator column but with an efficient implementation.

      dept_column = categorical_column_with_vocabulary_list("department",
          ["math", "philosophy", "english"])

    It is recommended that continuous features be bucketized before being
    fed into linear models.

      bucketized_age_column = bucketized_column(
          source_column=age_column,
          boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])

    Sparse features can be crossed (also known as conjuncted or combined) in
    order to form non-linearities, and then fed into linear models.

      cross_dept_age_column = crossed_column(
          columns=["department", bucketized_age_column],
          hash_bucket_size=1000)

Example of building canned `Estimator`s using FeatureColumns:

  ```python
  # Define features and transformations
  deep_feature_columns = [age_column, embedded_dept_column]
  wide_feature_columns = [dept_column, bucketized_age_column,
      cross_dept_age_column]

  # Build deep model
  estimator = DNNClassifier(
      feature_columns=deep_feature_columns,
      hidden_units=[500, 250, 50])
  estimator.train(...)

  # Or build a wide model
  estimator = LinearClassifier(
      feature_columns=wide_feature_columns)
  estimator.train(...)

  # Or build a wide and deep model!
  estimator = DNNLinearCombinedClassifier(
      linear_feature_columns=wide_feature_columns,
      dnn_feature_columns=deep_feature_columns,
      dnn_hidden_units=[500, 250, 50])
  estimator.train(...)
  ```


FeatureColumns can also be transformed into a generic input layer for
custom models using `input_layer`.

Example of building model using FeatureColumns, this can be used in a
`model_fn` which is given to the {tf.estimator.Estimator}:

  ```python
  # Building model via layers

  deep_feature_columns = [age_column, embedded_dept_column]
  columns_to_tensor = parse_feature_columns_from_examples(
      serialized=my_data,
      feature_columns=deep_feature_columns)
  first_layer = input_layer(
      features=columns_to_tensor,
      feature_columns=deep_feature_columns)
  second_layer = fully_connected(first_layer, ...)
  ```

NOTE: Functions prefixed with "_" indicate experimental or private parts of
the API subject to change, and should not be relied upon!
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import collections
import math

import numpy as np
import six

from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import lookup_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import parsing_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import string_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import checkpoint_utils
from tensorflow.python.util import nest


def input_layer(features,
                feature_columns,
                weight_collections=None,
                trainable=True):
  """Returns a dense `Tensor` as input layer based on given `feature_columns`.

  Generally a single example in training data is described with FeatureColumns.
  At the first layer of the model, this column oriented data should be converted
  to a single `Tensor`.

  Example:

  ```python
  price = numeric_column('price')
  keywords_embedded = embedding_column(
      categorical_column_with_hash_bucket("keywords", 10K), dimensions=16)
  columns = [price, keywords_embedded, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)
  for units in [128, 64, 32]:
    dense_tensor = tf.layers.dense(dense_tensor, units, tf.nn.relu)
  prediction = tf.layers.dense(dense_tensor, 1)
  ```

  Args:
    features: A mapping from key to tensors. `_FeatureColumn`s look up via these
      keys. For example `numeric_column('price')` will look at 'price' key in
      this dict. Values can be a `SparseTensor` or a `Tensor` depends on
      corresponding `_FeatureColumn`.
    feature_columns: An iterable containing the FeatureColumns to use as inputs
      to your model. All items should be instances of classes derived from
      `_DenseColumn` such as `numeric_column`, `embedding_column`,
      `bucketized_column`, `indicator_column`. If you have categorical features,
      you can wrap them with an `embedding_column` or `indicator_column`.
    weight_collections: A list of collection names to which the Variable will be
      added. Note that, variables will also be added to collections
      `tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`.
    trainable: If `True` also add the variable to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).

  Returns:
    A `Tensor` which represents input layer of a model. Its shape
    is (batch_size, first_layer_dimension) and its dtype is `float32`.
    first_layer_dimension is determined based on given `feature_columns`.

  Raises:
    ValueError: if an item in `feature_columns` is not a `_DenseColumn`.
  """
  _check_feature_columns(feature_columns)
  for column in feature_columns:
    if not isinstance(column, _DenseColumn):
      raise ValueError(
          'Items of feature_columns must be a _DenseColumn. '
          'You can wrap a categorical column with an '
          'embedding_column or indicator_column. Given: {}'.format(column))
  weight_collections = list(weight_collections or [])
  if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections:
    weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES)
  if ops.GraphKeys.MODEL_VARIABLES not in weight_collections:
    weight_collections.append(ops.GraphKeys.MODEL_VARIABLES)
  with variable_scope.variable_scope(
      None, default_name='input_layer', values=features.values()):
    builder = _LazyBuilder(features)
    output_tensors = []
    ordered_columns = []
    for column in sorted(feature_columns, key=lambda x: x.name):
      ordered_columns.append(column)
      with variable_scope.variable_scope(None, default_name=column.name):
        tensor = column._get_dense_tensor(  # pylint: disable=protected-access
            builder,
            weight_collections=weight_collections,
            trainable=trainable)
        num_elements = column._variable_shape.num_elements()  # pylint: disable=protected-access
        batch_size = array_ops.shape(tensor)[0]
        tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements))
        output_tensors.append(tensor)
    _verify_static_batch_size_equality(output_tensors, ordered_columns)
    return array_ops.concat(output_tensors, 1)


def linear_model(features,
                 feature_columns,
                 units=1,
                 sparse_combiner='sum',
                 weight_collections=None,
                 trainable=True):
  """Returns a linear prediction `Tensor` based on given `feature_columns`.

  This function generates a weighted sum based on output dimension `units`.
  Weighted sum refers to logits in classification problems. It refers to the
  prediction itself for linear regression problems.

  Note on supported columns: `linear_model` treats categorical columns as
  `indicator_column`s while `input_layer` explicitly requires wrapping each
  of them with an `embedding_column` or an `indicator_column`.

  Example:

  ```python
  price = numeric_column('price')
  price_buckets = bucketized_column(price, boundaries=[0., 10., 100., 1000.])
  keywords = categorical_column_with_hash_bucket("keywords", 10K)
  keywords_price = crossed_column('keywords', price_buckets, ...)
  columns = [price_buckets, keywords, keywords_price ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  prediction = linear_model(features, columns)
  ```

  Args:
    features: A mapping from key to tensors. `_FeatureColumn`s look up via these
      keys. For example `numeric_column('price')` will look at 'price' key in
      this dict. Values are `Tensor` or `SparseTensor` depending on
      corresponding `_FeatureColumn`.
    feature_columns: An iterable containing the FeatureColumns to use as inputs
      to your model. All items should be instances of classes derived from
      `_FeatureColumn`s.
    units: An integer, dimensionality of the output space. Default value is 1.
    sparse_combiner: A string specifying how to reduce if a sparse column is
      multivalent. Currently "mean", "sqrtn" and "sum" are supported, with "sum"
      the default. "sqrtn" often achieves good accuracy, in particular with
      bag-of-words columns. It combines each sparse columns independently.
        * "sum": do not normalize features in the column
        * "mean": do l1 normalization on features in the column
        * "sqrtn": do l2 normalization on features in the column
    weight_collections: A list of collection names to which the Variable will be
      added. Note that, variables will also be added to collections
      `tf.GraphKeys.GLOBAL_VARIABLES` and `ops.GraphKeys.MODEL_VARIABLES`.
    trainable: If `True` also add the variable to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`).

  Returns:
    A `Tensor` which represents predictions/logits of a linear model. Its shape
    is (batch_size, units) and its dtype is `float32`.

  Raises:
    ValueError: if an item in `feature_columns` is neither a `_DenseColumn`
      nor `_CategoricalColumn`.
  """
  _check_feature_columns(feature_columns)
  for column in feature_columns:
    if not isinstance(column, (_DenseColumn, _CategoricalColumn)):
      raise ValueError('Items of feature_columns must be either a _DenseColumn '
                       'or _CategoricalColumn. Given: {}'.format(column))
  weight_collections = list(weight_collections or [])
  if ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections:
    weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES)
  if ops.GraphKeys.MODEL_VARIABLES not in weight_collections:
    weight_collections.append(ops.GraphKeys.MODEL_VARIABLES)
  with variable_scope.variable_scope(
      None, default_name='linear_model', values=features.values()):
    weighted_sums = []
    ordered_columns = []
    builder = _LazyBuilder(features)
    for column in sorted(feature_columns, key=lambda x: x.name):
      with variable_scope.variable_scope(None, default_name=column.name):
        ordered_columns.append(column)
        if isinstance(column, _CategoricalColumn):
          weighted_sums.append(_create_categorical_column_weighted_sum(
              column, builder, units, sparse_combiner, weight_collections,
              trainable))
        else:
          weighted_sums.append(_create_dense_column_weighted_sum(
              column, builder, units, weight_collections, trainable))
    _verify_static_batch_size_equality(weighted_sums, ordered_columns)
    predictions_no_bias = math_ops.add_n(
        weighted_sums, name='weighted_sum_no_bias')
    bias = variable_scope.get_variable(
        'bias_weights',
        shape=[units],
        initializer=init_ops.zeros_initializer(),
        trainable=trainable,
        collections=weight_collections)
    predictions = nn_ops.bias_add(
        predictions_no_bias, bias, name='weighted_sum')

    return predictions


def _transform_features(features, feature_columns):
  """Returns transformed features based on features columns passed in.

  Please note that most probably you would not need to use this function. Please
  check `input_layer` and `linear_model` to see whether they will
  satisfy your use case or not.

  Example:

  ```python
  # Define features and transformations
  crosses_a_x_b = crossed_column(
      columns=["sparse_feature_a", "sparse_feature_b"], hash_bucket_size=10000)
  price_buckets = bucketized_column(
      source_column=numeric_column("price"), boundaries=[...])

  columns = [crosses_a_x_b, price_buckets]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  transformed = transform_features(features=features, feature_columns=columns)

  assertCountEqual(columns, transformed.keys())
  ```

  Args:
    features: A mapping from key to tensors. `_FeatureColumn`s look up via these
      keys. For example `numeric_column('price')` will look at 'price' key in
      this dict. Values can be a `SparseTensor` or a `Tensor` depends on
      corresponding `_FeatureColumn`.
    feature_columns: An iterable containing all the `_FeatureColumn`s.

  Returns:
    A `dict` mapping `_FeatureColumn` to `Tensor` and `SparseTensor` values.
  """
  _check_feature_columns(feature_columns)
  outputs = {}
  with ops.name_scope(
      None, default_name='transform_features', values=features.values()):
    builder = _LazyBuilder(features)
    for column in sorted(feature_columns, key=lambda x: x.name):
      with ops.name_scope(None, default_name=column.name):
        outputs[column] = builder.get(column)
  return outputs


def make_parse_example_spec(feature_columns):
  """Creates parsing spec dictionary from input feature_columns.

  The returned dictionary can be used as arg 'features' in `tf.parse_example`.

  Typical usage example:

  ```python
  # Define features and transformations
  feature_b = numeric_column(...)
  feature_c_bucketized = bucketized_column(numeric_column("feature_c"), ...)
  feature_a_x_feature_c = crossed_column(
      columns=["feature_a", feature_c_bucketized], ...)

  feature_columns = set(
      [feature_b, feature_c_bucketized, feature_a_x_feature_c])
  features = tf.parse_example(
      serialized=serialized_examples,
      features=make_parse_example_spec(feature_columns))
  ```

  For the above example, make_parse_example_spec would return the dict:

  ```python
  {
      "feature_a": parsing_ops.VarLenFeature(tf.string),
      "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32),
      "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32)
  }
  ```

  Args:
    feature_columns: An iterable containing all feature columns. All items
      should be instances of classes derived from `_FeatureColumn`.

  Returns:
    A dict mapping each feature key to a `FixedLenFeature` or `VarLenFeature`
    value.

  Raises:
    ValueError: If any of the given `feature_columns` is not a `_FeatureColumn`
      instance.
  """
  result = {}
  for column in feature_columns:
    if not isinstance(column, _FeatureColumn):
      raise ValueError(
          'All feature_columns must be _FeatureColumn instances. '
          'Given: {}'.format(column))
    config = column._parse_example_spec  # pylint: disable=protected-access
    for key, value in six.iteritems(config):
      if key in result and value != result[key]:
        raise ValueError(
            'feature_columns contain different parse_spec for key '
            '{}. Given {} and {}'.format(key, value, result[key]))
    result.update(config)
  return result


def embedding_column(
    categorical_column, dimension, combiner='mean', initializer=None,
    ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None,
    trainable=True):
  """`_DenseColumn` that converts from sparse, categorical input.

  Use this when your inputs are sparse, but you want to convert them to a dense
  representation (e.g., to feed to a DNN).

  Inputs must be a `_CategoricalColumn` created by any of the
  `categorical_column_*` function. Here is an example embedding of an identity
  column for a DNN model:

  ```python
  video_id = categorical_column_with_identity(
      key='video_id', num_buckets=1000000, default_value=0)
  columns = [embedding_column(video_id, 9),...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)
  ```

  Args:
    categorical_column: A `_CategoricalColumn` created by a
      `categorical_column_with_*` function. This column produces the sparse IDs
      that are inputs to the embedding lookup.
    dimension: An integer specifying dimension of the embedding, must be > 0.
    combiner: A string specifying how to reduce if there are multiple entries
      in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with
      'mean' the default. 'sqrtn' often achieves good accuracy, in particular
      with bag-of-words columns. Each of this can be thought as example level
      normalizations on the column. For more information, see
      `tf.embedding_lookup_sparse`.
    initializer: A variable initializer function to be used in embedding
      variable initialization. If not specified, defaults to
      `tf.truncated_normal_initializer` with mean `0.0` and standard deviation
      `1/sqrt(dimension)`.
    ckpt_to_load_from: String representing checkpoint name/pattern from which to
      restore column weights. Required if `tensor_name_in_ckpt` is not `None`.
    tensor_name_in_ckpt: Name of the `Tensor` in `ckpt_to_load_from` from
      which to restore the column weights. Required if `ckpt_to_load_from` is
      not `None`.
    max_norm: If not `None`, embedding values are l2-normalized to this value.
    trainable: Whether or not the embedding is trainable. Default is True.

  Returns:
    `_DenseColumn` that converts from sparse input.

  Raises:
    ValueError: if `dimension` not > 0.
    ValueError: if exactly one of `ckpt_to_load_from` and `tensor_name_in_ckpt`
      is specified.
    ValueError: if `initializer` is specified and is not callable.
  """
  if (dimension is None) or (dimension < 1):
    raise ValueError('Invalid dimension {}.'.format(dimension))
  if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None):
    raise ValueError('Must specify both `ckpt_to_load_from` and '
                     '`tensor_name_in_ckpt` or none of them.')

  if (initializer is not None) and (not callable(initializer)):
    raise ValueError('initializer must be callable if specified. '
                     'Embedding of column_name: {}'.format(
                         categorical_column.name))
  if initializer is None:
    initializer = init_ops.truncated_normal_initializer(
        mean=0.0, stddev=1 / math.sqrt(dimension))

  return _EmbeddingColumn(
      categorical_column=categorical_column,
      dimension=dimension,
      combiner=combiner,
      initializer=initializer,
      ckpt_to_load_from=ckpt_to_load_from,
      tensor_name_in_ckpt=tensor_name_in_ckpt,
      max_norm=max_norm,
      trainable=trainable)


def numeric_column(key,
                   shape=(1,),
                   default_value=None,
                   dtype=dtypes.float32,
                   normalizer_fn=None):
  """Represents real valued or numerical features.

  Example:

  ```python
  price = numeric_column('price')
  columns = [price, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)

  # or
  bucketized_price = bucketized_column(price, boundaries=[...])
  columns = [bucketized_price, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction = linear_model(features, columns)
  ```

  Args:
    key: A unique string identifying the input feature. It is used as the
      column name and the dictionary key for feature parsing configs, feature
      `Tensor` objects, and feature columns.
    shape: An iterable of integers specifies the shape of the `Tensor`. An
      integer can be given which means a single dimension `Tensor` with given
      width. The `Tensor` representing the column will have the shape of
      [batch_size] + `shape`.
    default_value: A single value compatible with `dtype` or an iterable of
      values compatible with `dtype` which the column takes on during
      `tf.Example` parsing if data is missing. A default value of `None` will
      cause `tf.parse_example` to fail if an example does not contain this
      column. If a single value is provided, the same value will be applied as
      the default value for every item. If an iterable of values is provided,
      the shape of the `default_value` should be equal to the given `shape`.
    dtype: defines the type of values. Default value is `tf.float32`. Must be a
      non-quantized, real integer or floating point type.
    normalizer_fn: If not `None`, a function that can be used to normalize the
      value of the tensor after `default_value` is applied for parsing.
      Normalizer function takes the input `Tensor` as its argument, and returns
      the output `Tensor`. (e.g. lambda x: (x - 3.0) / 4.2). Please note that
      even though the most common use case of this function is normalization, it
      can be used for any kind of Tensorflow transformations.

  Returns:
    A `_NumericColumn`.

  Raises:
    TypeError: if any dimension in shape is not an int
    ValueError: if any dimension in shape is not a positive integer
    TypeError: if `default_value` is an iterable but not compatible with `shape`
    TypeError: if `default_value` is not compatible with `dtype`.
    ValueError: if `dtype` is not convertible to `tf.float32`.
  """
  shape = _check_shape(shape, key)
  if not (dtype.is_integer or dtype.is_floating):
    raise ValueError('dtype must be convertible to float. '
                     'dtype: {}, key: {}'.format(dtype, key))
  default_value = _check_default_value(shape, default_value, dtype, key)

  if normalizer_fn is not None and not callable(normalizer_fn):
    raise TypeError(
        'normalizer_fn must be a callable. Given: {}'.format(normalizer_fn))

  return _NumericColumn(
      key,
      shape=shape,
      default_value=default_value,
      dtype=dtype,
      normalizer_fn=normalizer_fn)


def bucketized_column(source_column, boundaries):
  """Represents discretized dense input.

  Buckets include the left boundary, and exclude the right boundary. Namely,
  `boundaries=[0., 1., 2.]` generates buckets `(-inf, 0.)`, `[0., 1.)`,
  `[1., 2.)`, and `[2., +inf)`.

  For example, if the inputs are

  ```python
  boundaries = [0, 10, 100]
  input tensor = [[-5, 10000]
                  [150,   10]
                  [5,    100]]
  ```

  then the output will be

  ```python
  output = [[0, 3]
            [3, 2]
            [1, 3]]
  ```

  Example:

  ```python
  price = numeric_column('price')
  bucketized_price = bucketized_column(price, boundaries=[...])
  columns = [bucketized_price, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction = linear_model(features, columns)

  # or
  columns = [bucketized_price, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)
  ```

  `bucketized_column` can also be crossed with another categorical column using
  `crossed_column`:

  ```python
  price = numeric_column('price')
  # bucketized_column converts numerical feature to a categorical one.
  bucketized_price = bucketized_column(price, boundaries=[...])
  # 'keywords' is a string feature.
  price_x_keywords = crossed_column([bucketized_price, 'keywords'], 50K)
  columns = [price_x_keywords, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction = linear_model(features, columns)
  ```

  Args:
    source_column: A one-dimensional dense column which is generated with
      `numeric_column`.
    boundaries: A sorted list or tuple of floats specifying the boundaries.

  Returns:
    A `_BucketizedColumn`.

  Raises:
    ValueError: If `source_column` is not a numeric column, or if it is not
      one-dimensional.
    ValueError: If `boundaries` is not a sorted list or tuple.
  """
  if not isinstance(source_column, _NumericColumn):
    raise ValueError(
        'source_column must be a column generated with numeric_column(). '
        'Given: {}'.format(source_column))
  if len(source_column.shape) > 1:
    raise ValueError(
        'source_column must be one-dimensional column. '
        'Given: {}'.format(source_column))
  if (not boundaries or
      not (isinstance(boundaries, list) or isinstance(boundaries, tuple))):
    raise ValueError('boundaries must be a sorted list.')
  for i in range(len(boundaries) - 1):
    if boundaries[i] >= boundaries[i + 1]:
      raise ValueError('boundaries must be a sorted list.')
  return _BucketizedColumn(source_column, tuple(boundaries))


def _assert_string_or_int(dtype, prefix):
  if (dtype != dtypes.string) and (not dtype.is_integer):
    raise ValueError(
        '{} dtype must be string or integer. dtype: {}.'.format(prefix, dtype))


def categorical_column_with_hash_bucket(key,
                                        hash_bucket_size,
                                        dtype=dtypes.string):
  """Represents sparse feature where ids are set by hashing.

  Use this when your sparse features are in string or integer format, and you
  want to distribute your inputs into a finite number of buckets by hashing.
  output_id = Hash(input_feature_string) % bucket_size

  For input dictionary `features`, `features[key]` is either `Tensor` or
  `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int
  and `''` for string. Note that these values are independent of the
  `default_value` argument.

  Example:

  ```python
  keywords = categorical_column_with_hash_bucket("keywords", 10K)
  columns = [keywords, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction = linear_model(features, columns)

  # or
  keywords_embedded = embedding_column(keywords, 16)
  columns = [keywords_embedded, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)
  ```

  Args:
    key: A unique string identifying the input feature. It is used as the
      column name and the dictionary key for feature parsing configs, feature
      `Tensor` objects, and feature columns.
    hash_bucket_size: An int > 1. The number of buckets.
    dtype: The type of features. Only string and integer types are supported.

  Returns:
    A `_HashedCategoricalColumn`.

  Raises:
    ValueError: `hash_bucket_size` is not greater than 1.
    ValueError: `dtype` is neither string nor integer.
  """
  if hash_bucket_size is None:
    raise ValueError('hash_bucket_size must be set. ' 'key: {}'.format(key))

  if hash_bucket_size < 1:
    raise ValueError('hash_bucket_size must be at least 1. '
                     'hash_bucket_size: {}, key: {}'.format(
                         hash_bucket_size, key))

  _assert_string_or_int(dtype, prefix='column_name: {}'.format(key))

  return _HashedCategoricalColumn(key, hash_bucket_size, dtype)


def categorical_column_with_vocabulary_file(
    key, vocabulary_file, vocabulary_size, num_oov_buckets=0,
    default_value=None, dtype=dtypes.string):
  """A `_CategoricalColumn` with a vocabulary file.

  Use this when your inputs are in string or integer format, and you have a
  vocabulary file that maps each value to an integer ID. By default,
  out-of-vocabulary values are ignored. Use either (but not both) of
  `num_oov_buckets` and `default_value` to specify how to include
  out-of-vocabulary values.

  For input dictionary `features`, `features[key]` is either `Tensor` or
  `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int
  and `''` for string. Note that these values are independent of the
  `default_value` argument.

  Example with `num_oov_buckets`:
  File '/us/states.txt' contains 50 lines, each with a 2-character U.S. state
  abbreviation. All inputs with values in that file are assigned an ID 0-49,
  corresponding to its line number. All other values are hashed and assigned an
  ID 50-54.

  ```python
  states = categorical_column_with_vocabulary_file(
      key='states', vocabulary_file='/us/states.txt', vocabulary_size=50,
      num_oov_buckets=5)
  columns = [states, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction = linear_model(features, columns)
  ```

  Example with `default_value`:
  File '/us/states.txt' contains 51 lines - the first line is 'XX', and the
  other 50 each have a 2-character U.S. state abbreviation. Both a literal 'XX'
  in input, and other values missing from the file, will be assigned ID 0. All
  others are assigned the corresponding line number 1-50.

  ```python
  states = categorical_column_with_vocabulary_file(
      key='states', vocabulary_file='/us/states.txt', vocabulary_size=51,
      default_value=0)
  columns = [states, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction, _, _ = linear_model(features, columns)
  ```

  And to make an embedding with either:

  ```python
  columns = [embedding_column(states, 3),...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)
  ```

  Args:
    key: A unique string identifying the input feature. It is used as the
      column name and the dictionary key for feature parsing configs, feature
      `Tensor` objects, and feature columns.
    vocabulary_file: The vocabulary file name.
    vocabulary_size: Number of the elements in the vocabulary. This must be no
      greater than length of `vocabulary_file`, if less than length, later
      values are ignored.
    num_oov_buckets: Non-negative integer, the number of out-of-vocabulary
      buckets. All out-of-vocabulary inputs will be assigned IDs in the range
      `[vocabulary_size, vocabulary_size+num_oov_buckets)` based on a hash of
      the input value. A positive `num_oov_buckets` can not be specified with
      `default_value`.
    default_value: The integer ID value to return for out-of-vocabulary feature
      values, defaults to `-1`. This can not be specified with a positive
      `num_oov_buckets`.
    dtype: The type of features. Only string and integer types are supported.

  Returns:
    A `_CategoricalColumn` with a vocabulary file.

  Raises:
    ValueError: `vocabulary_file` is missing.
    ValueError: `vocabulary_size` is missing or < 1.
    ValueError: `num_oov_buckets` is a negative integer.
    ValueError: `num_oov_buckets` and `default_value` are both specified.
    ValueError: `dtype` is neither string nor integer.
  """
  if not vocabulary_file:
    raise ValueError('Missing vocabulary_file in {}.'.format(key))
  # `vocabulary_size` isn't required for lookup, but it is for `_num_buckets`.
  if (vocabulary_size is None) or (vocabulary_size < 1):
    raise ValueError('Invalid vocabulary_size in {}.'.format(key))
  if num_oov_buckets:
    if default_value is not None:
      raise ValueError(
          'Can\'t specify both num_oov_buckets and default_value in {}.'.format(
              key))
    if num_oov_buckets < 0:
      raise ValueError('Invalid num_oov_buckets {} in {}.'.format(
          num_oov_buckets, key))
  _assert_string_or_int(dtype, prefix='column_name: {}'.format(key))
  return _VocabularyFileCategoricalColumn(
      key=key,
      vocabulary_file=vocabulary_file,
      vocabulary_size=vocabulary_size,
      num_oov_buckets=0 if num_oov_buckets is None else num_oov_buckets,
      default_value=-1 if default_value is None else default_value,
      dtype=dtype)


def categorical_column_with_vocabulary_list(
    key, vocabulary_list, dtype=None, default_value=-1, num_oov_buckets=0):
  """A `_CategoricalColumn` with in-memory vocabulary.

  Use this when your inputs are in string or integer format, and you have an
  in-memory vocabulary mapping each value to an integer ID. By default,
  out-of-vocabulary values are ignored. Use either (but not both) of
  `num_oov_buckets` and `default_value` to specify how to include
  out-of-vocabulary values.

  For input dictionary `features`, `features[key]` is either `Tensor` or
  `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int
  and `''` for string. Note that these values are independent of the
  `default_value` argument.

  Example with `num_oov_buckets`:
  In the following example, each input in `vocabulary_list` is assigned an ID
  0-3 corresponding to its index (e.g., input 'B' produces output 2). All other
  inputs are hashed and assigned an ID 4-5.

  ```python
  colors = categorical_column_with_vocabulary_list(
      key='colors', vocabulary_list=('R', 'G', 'B', 'Y'),
      num_oov_buckets=2)
  columns = [colors, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction, _, _ = linear_model(features, columns)
  ```

  Example with `default_value`:
  In the following example, each input in `vocabulary_list` is assigned an ID
  0-4 corresponding to its index (e.g., input 'B' produces output 3). All other
  inputs are assigned `default_value` 0.


  ```python
  colors = categorical_column_with_vocabulary_list(
      key='colors', vocabulary_list=('X', 'R', 'G', 'B', 'Y'), default_value=0)
  columns = [colors, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction, _, _ = linear_model(features, columns)
  ```

  And to make an embedding with either:

  ```python
  columns = [embedding_column(colors, 3),...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)
  ```

  Args:
    key: A unique string identifying the input feature. It is used as the
      column name and the dictionary key for feature parsing configs, feature
      `Tensor` objects, and feature columns.
    vocabulary_list: An ordered iterable defining the vocabulary. Each feature
      is mapped to the index of its value (if present) in `vocabulary_list`.
      Must be castable to `dtype`.
    dtype: The type of features. Only string and integer types are supported.
      If `None`, it will be inferred from `vocabulary_list`.
    default_value: The integer ID value to return for out-of-vocabulary feature
      values, defaults to `-1`. This can not be specified with a positive
      `num_oov_buckets`.
    num_oov_buckets: Non-negative integer, the number of out-of-vocabulary
      buckets. All out-of-vocabulary inputs will be assigned IDs in the range
      `[len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)` based on a
      hash of the input value. A positive `num_oov_buckets` can not be specified
      with `default_value`.

  Returns:
    A `_CategoricalColumn` with in-memory vocabulary.

  Raises:
    ValueError: if `vocabulary_list` is empty, or contains duplicate keys.
    ValueError: `num_oov_buckets` is a negative integer.
    ValueError: `num_oov_buckets` and `default_value` are both specified.
    ValueError: if `dtype` is not integer or string.
  """
  if (vocabulary_list is None) or (len(vocabulary_list) < 1):
    raise ValueError(
        'vocabulary_list {} must be non-empty, column_name: {}'.format(
            vocabulary_list, key))
  if len(set(vocabulary_list)) != len(vocabulary_list):
    raise ValueError(
        'Duplicate keys in vocabulary_list {}, column_name: {}'.format(
            vocabulary_list, key))
  vocabulary_dtype = dtypes.as_dtype(np.array(vocabulary_list).dtype)
  if num_oov_buckets:
    if default_value != -1:
      raise ValueError(
          'Can\'t specify both num_oov_buckets and default_value in {}.'.format(
              key))
    if num_oov_buckets < 0:
      raise ValueError('Invalid num_oov_buckets {} in {}.'.format(
          num_oov_buckets, key))
  _assert_string_or_int(
      vocabulary_dtype, prefix='column_name: {} vocabulary'.format(key))
  if dtype is None:
    dtype = vocabulary_dtype
  elif dtype.is_integer != vocabulary_dtype.is_integer:
    raise ValueError(
        'dtype {} and vocabulary dtype {} do not match, column_name: {}'.format(
            dtype, vocabulary_dtype, key))
  _assert_string_or_int(dtype, prefix='column_name: {}'.format(key))

  return _VocabularyListCategoricalColumn(
      key=key, vocabulary_list=tuple(vocabulary_list), dtype=dtype,
      default_value=default_value, num_oov_buckets=num_oov_buckets)


def categorical_column_with_identity(key, num_buckets, default_value=None):
  """A `_CategoricalColumn` that returns identity values.

  Use this when your inputs are integers in the range `[0, num_buckets)`, and
  you want to use the input value itself as the categorical ID. Values outside
  this range will result in `default_value` if specified, otherwise it will
  fail.

  Typically, this is used for contiguous ranges of integer indexes, but
  it doesn't have to be. This might be inefficient, however, if many of IDs
  are unused. Consider `categorical_column_with_hash_bucket` in that case.

  For input dictionary `features`, `features[key]` is either `Tensor` or
  `SparseTensor`. If `Tensor`, missing values can be represented by `-1` for int
  and `''` for string. Note that these values are independent of the
  `default_value` argument.

  In the following examples, each input in the range `[0, 1000000)` is assigned
  the same value. All other inputs are assigned `default_value` 0. Note that a
  literal 0 in inputs will result in the same default ID.

  Linear model:

  ```python
  video_id = categorical_column_with_identity(
      key='video_id', num_buckets=1000000, default_value=0)
  columns = [video_id, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction, _, _ = linear_model(features, columns)
  ```

  Embedding for a DNN model:

  ```python
  columns = [embedding_column(video_id, 9),...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)
  ```

  Args:
    key: A unique string identifying the input feature. It is used as the
      column name and the dictionary key for feature parsing configs, feature
      `Tensor` objects, and feature columns.
    num_buckets: Range of inputs and outputs is `[0, num_buckets)`.
    default_value: If `None`, this column's graph operations will fail for
      out-of-range inputs. Otherwise, this value must be in the range
      `[0, num_buckets)`, and will replace inputs in that range.

  Returns:
    A `_CategoricalColumn` that returns identity values.

  Raises:
    ValueError: if `num_buckets` is less than one.
    ValueError: if `default_value` is not in range `[0, num_buckets)`.
  """
  if num_buckets < 1:
    raise ValueError(
        'num_buckets {} < 1, column_name {}'.format(num_buckets, key))
  if (default_value is not None) and (
      (default_value < 0) or (default_value >= num_buckets)):
    raise ValueError(
        'default_value {} not in range [0, {}), column_name {}'.format(
            default_value, num_buckets, key))
  return _IdentityCategoricalColumn(
      key=key, num_buckets=num_buckets, default_value=default_value)


def indicator_column(categorical_column):
  """Represents multi-hot representation of given categorical column.

  Used to wrap any `categorical_column_*` (e.g., to feed to DNN). Use
  `embedding_column` if the inputs are sparse.

  ```python
  name = indicator_column(categorical_column_with_vocabulary_list(
      'name', ['bob', 'george', 'wanda'])
  columns = [name, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  dense_tensor = input_layer(features, columns)

  dense_tensor == [[1, 0, 0]]  # If "name" bytes_list is ["bob"]
  dense_tensor == [[1, 0, 1]]  # If "name" bytes_list is ["bob", "wanda"]
  dense_tensor == [[2, 0, 0]]  # If "name" bytes_list is ["bob", "bob"]
  ```

  Args:
    categorical_column: A `_CategoricalColumn` which is created by
      `categorical_column_with_*` or `crossed_column` functions.

  Returns:
    An `_IndicatorColumn`.
  """
  return _IndicatorColumn(categorical_column)


def weighted_categorical_column(
    categorical_column, weight_feature_key, dtype=dtypes.float32):
  """Applies weight values to a `_CategoricalColumn`.

  Use this when each of your sparse inputs has both an ID and a value. For
  example, if you're representing text documents as a collection of word
  frequencies, you can provide 2 parallel sparse input features ('terms' and
  'frequencies' below).

  Example:

  Input `tf.Example` objects:

  ```proto
  [
    features {
      feature {
        key: "terms"
        value {bytes_list {value: "very" value: "model"}}
      }
      feature {
        key: "frequencies"
        value {float_list {value: 0.3 value: 0.1}}
      }
    },
    features {
      feature {
        key: "terms"
        value {bytes_list {value: "when" value: "course" value: "human"}}
      }
      feature {
        key: "frequencies"
        value {float_list {value: 0.4 value: 0.1 value: 0.2}}
      }
    }
  ]
  ```

  ```python
  categorical_column = categorical_column_with_hash_bucket(
      column_name='terms', hash_bucket_size=1000)
  weighted_column = weighted_categorical_column(
      categorical_column=categorical_column, weight_feature_key='frequencies')
  columns = [weighted_column, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction, _, _ = linear_model(features, columns)
  ```

  This assumes the input dictionary contains a `SparseTensor` for key
  'terms', and a `SparseTensor` for key 'frequencies'. These 2 tensors must have
  the same indices and dense shape.

  Args:
    categorical_column: A `_CategoricalColumn` created by
      `categorical_column_with_*` functions.
    weight_feature_key: String key for weight values.
    dtype: Type of weights, such as `tf.float32`. Only float and integer weights
      are supported.

  Returns:
    A `_CategoricalColumn` composed of two sparse features: one represents id,
    the other represents weight (value) of the id feature in that example.

  Raises:
    ValueError: if `dtype` is not convertible to float.
  """
  if (dtype is None) or not (dtype.is_integer or dtype.is_floating):
    raise ValueError('dtype {} is not convertible to float.'.format(dtype))
  return _WeightedCategoricalColumn(
      categorical_column=categorical_column,
      weight_feature_key=weight_feature_key,
      dtype=dtype)


def crossed_column(keys, hash_bucket_size, hash_key=None):
  """Returns a column for performing crosses of categorical features.

  Crossed features will be hashed according to `hash_bucket_size`. Conceptually,
  the transformation can be thought of as:
    Hash(cartesian product of features) % `hash_bucket_size`

  For example, if the input features are:

  * SparseTensor referred by first key:

    ```python
    shape = [2, 2]
    {
        [0, 0]: "a"
        [1, 0]: "b"
        [1, 1]: "c"
    }
    ```

  * SparseTensor referred by second key:

    ```python
    shape = [2, 1]
    {
        [0, 0]: "d"
        [1, 0]: "e"
    }
    ```

  then crossed feature will look like:

  ```python
   shape = [2, 2]
  {
      [0, 0]: Hash64("d", Hash64("a")) % hash_bucket_size
      [1, 0]: Hash64("e", Hash64("b")) % hash_bucket_size
      [1, 1]: Hash64("e", Hash64("c")) % hash_bucket_size
  }
  ```

  Here is an example to create a linear model with crosses of string features:

  ```python
  keywords_x_doc_terms = crossed_column(['keywords', 'doc_terms'], 50K)
  columns = [keywords_x_doc_terms, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction = linear_model(features, columns)
  ```

  You could also use vocabulary lookup before crossing:

  ```python
  keywords = categorical_column_with_vocabulary_file(
      'keywords', '/path/to/vocabulary/file', vocabulary_size=1K)
  keywords_x_doc_terms = crossed_column([keywords, 'doc_terms'], 50K)
  columns = [keywords_x_doc_terms, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction = linear_model(features, columns)
  ```

  If an input feature is of numeric type, you can use
  `categorical_column_with_identity`, or `bucketized_column`, as in the example:

  ```python
  # vertical_id is an integer categorical feature.
  vertical_id = categorical_column_with_identity('vertical_id', 10K)
  price = numeric_column('price')
  # bucketized_column converts numerical feature to a categorical one.
  bucketized_price = bucketized_column(price, boundaries=[...])
  vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K)
  columns = [vertical_id_x_price, ...]
  features = tf.parse_example(..., features=make_parse_example_spec(columns))
  linear_prediction = linear_model(features, columns)
  ```

  To use crossed column in DNN model, you need to add it in an embedding column
  as in this example:

  ```python
  vertical_id_x_price = crossed_column([vertical_id, bucketized_price], 50K)
  vertical_id_x_price_embedded = embedding_column(vertical_id_x_price, 10)
  dense_tensor = input_layer(features, [vertical_id_x_price_embedded, ...])
  ```

  Args:
    keys: An iterable identifying the features to be crossed. Each element can
      be either:
      * string: Will use the corresponding feature which must be of string type.
      * `_CategoricalColumn`: Will use the transformed tensor produced by this
        column. Does not support hashed categorical column.
    hash_bucket_size: An int > 1. The number of buckets.
    hash_key: Specify the hash_key that will be used by the `FingerprintCat64`
      function to combine the crosses fingerprints on SparseCrossOp (optional).

  Returns:
    A `_CrossedColumn`.

  Raises:
    ValueError: If `len(keys) < 2`.
    ValueError: If any of the keys is neither a string nor `_CategoricalColumn`.
    ValueError: If any of the keys is `_HashedCategoricalColumn`.
    ValueError: If `hash_bucket_size < 1`.
  """
  if not hash_bucket_size or hash_bucket_size < 1:
    raise ValueError('hash_bucket_size must be > 1. '
                     'hash_bucket_size: {}'.format(hash_bucket_size))
  if not keys or len(keys) < 2:
    raise ValueError(
        'keys must be a list with length > 1. Given: {}'.format(keys))
  for key in keys:
    if (not isinstance(key, six.string_types) and
        not isinstance(key, _CategoricalColumn)):
      raise ValueError(
          'Unsupported key type. All keys must be either string, or '
          'categorical column except _HashedCategoricalColumn. '
          'Given: {}'.format(key))
    if isinstance(key, _HashedCategoricalColumn):
      raise ValueError(
          'categorical_column_with_hash_bucket is not supported for crossing. '
          'Hashing before crossing will increase probability of collision. '
          'Instead, use the feature name as a string. Given: {}'.format(key))
  return _CrossedColumn(
      keys=tuple(keys), hash_bucket_size=hash_bucket_size,
      hash_key=hash_key)


class _FeatureColumn(object):
  """Represents a feature column abstraction.

  WARNING: Do not subclass this layer unless you know what you are doing:
  the API is subject to future changes.

  To distinguish the concept of a feature family and a specific binary feature
  within a family, we refer to a feature family like "country" as a feature
  column. Following is an example feature in a `tf.Example` format:
    {key: "country",  value: [ "US" ]}
  In this example the value of feature is "US" and "country" refers to the
  column of the feature.

  This class is an abstract class. User should not create instances of this.
  """
  __metaclass__ = abc.ABCMeta

  @abc.abstractproperty
  def name(self):
    """Returns string. used for variable_scope and naming."""
    pass

  @abc.abstractmethod
  def _transform_feature(self, inputs):
    """Returns intermediate representation (usually a `Tensor`).

    Uses `inputs` to create an intermediate representation (usually a `Tensor`)
    that other feature columns can use.

    Example usage of `inputs`:
    Let's say a Feature column depends on raw feature ('raw') and another
    `_FeatureColumn` (input_fc). To access corresponding `Tensor`s, inputs will
    be used as follows:

    ```python
    raw_tensor = inputs.get('raw')
    fc_tensor = inputs.get(input_fc)
    ```

    Args:
      inputs: A `_LazyBuilder` object to access inputs.

    Returns:
      Transformed feature `Tensor`.
    """
    pass

  @abc.abstractproperty
  def _parse_example_spec(self):
    """Returns a `tf.Example` parsing spec as dict.

    It is used for get_parsing_spec for `tf.parse_example`. Returned spec is a
    dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other
    supported objects. Please check documentation of ${tf.parse_example} for all
    supported spec objects.

    Let's say a Feature column depends on raw feature ('raw') and another
    `_FeatureColumn` (input_fc). One possible implementation of
    _parse_example_spec is as follows:

    ```python
    spec = {'raw': tf.FixedLenFeature(...)}
    spec.update(input_fc._parse_example_spec)
    return spec
    ```
    """
    pass


class _DenseColumn(_FeatureColumn):
  """Represents a column which can be represented as `Tensor`.

  WARNING: Do not subclass this layer unless you know what you are doing:
  the API is subject to future changes.

  Some examples of this type are: numeric_column, embedding_column,
  indicator_column.
  """

  __metaclass__ = abc.ABCMeta

  @abc.abstractproperty
  def _variable_shape(self):
    """`TensorShape` of `_get_dense_tensor`, without batch dimension."""
    pass

  @abc.abstractmethod
  def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    """Returns a `Tensor`.

    The output of this function will be used by model-builder-functions. For
    example the pseudo code of `input_layer` will be like:

    ```python
    def input_layer(features, feature_columns, ...):
      outputs = [fc._get_dense_tensor(...) for fc in feature_columns]
      return tf.concat(outputs)
    ```

    Args:
      inputs: A `_LazyBuilder` object to access inputs.
      weight_collections: List of graph collections to which Variables (if any
        will be created) are added.
      trainable: If `True` also add variables to the graph collection
        `GraphKeys.TRAINABLE_VARIABLES` (see ${tf.Variable}).

    Returns:
      `Tensor` of shape [batch_size] + `_variable_shape`.
    """
    pass


def _create_dense_column_weighted_sum(
    column, builder, units, weight_collections, trainable):
  """Create a weighted sum of a dense column for linear_model."""
  tensor = column._get_dense_tensor(  # pylint: disable=protected-access
      builder,
      weight_collections=weight_collections,
      trainable=trainable)
  num_elements = column._variable_shape.num_elements()  # pylint: disable=protected-access
  batch_size = array_ops.shape(tensor)[0]
  tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements))
  weight = variable_scope.get_variable(
      name='weights',
      shape=[num_elements, units],
      initializer=init_ops.zeros_initializer(),
      trainable=trainable,
      collections=weight_collections)
  return math_ops.matmul(tensor, weight, name='weighted_sum')


class _CategoricalColumn(_FeatureColumn):
  """Represents a categorical feature.

  WARNING: Do not subclass this layer unless you know what you are doing:
  the API is subject to future changes.

  A categorical feature typically handled with a ${tf.SparseTensor} of IDs.
  """
  __metaclass__ = abc.ABCMeta

  IdWeightPair = collections.namedtuple(  # pylint: disable=invalid-name
      'IdWeightPair', ['id_tensor', 'weight_tensor'])

  @abc.abstractproperty
  def _num_buckets(self):
    """Returns number of buckets in this sparse feature."""
    pass

  @abc.abstractmethod
  def _get_sparse_tensors(self,
                          inputs,
                          weight_collections=None,
                          trainable=None):
    """Returns an IdWeightPair.

    `IdWeightPair` is a pair of `SparseTensor`s which represents ids and
    weights.

    `IdWeightPair.id_tensor` is typically a `batch_size` x `num_buckets`
    `SparseTensor` of `int64`. `IdWeightPair.weight_tensor` is either a
    `SparseTensor` of `float` or `None` to indicate all weights should be
    taken to be 1. If specified, `weight_tensor` must have exactly the same
    shape and indices as `sp_ids`. Expected `SparseTensor` is same as parsing
    output of a `VarLenFeature` which is a ragged matrix.

    Args:
      inputs: A `LazyBuilder` as a cache to get input tensors required to
        create `IdWeightPair`.
      weight_collections: List of graph collections to which variables (if any
        will be created) are added.
      trainable: If `True` also add variables to the graph collection
        `GraphKeys.TRAINABLE_VARIABLES` (see ${tf.get_variable}).
    """
    pass


def _create_categorical_column_weighted_sum(
    column, builder, units, sparse_combiner, weight_collections, trainable):
  """Create a weighted sum of a categorical column for linear_model."""
  sparse_tensors = column._get_sparse_tensors(  # pylint: disable=protected-access
      builder,
      weight_collections=weight_collections,
      trainable=trainable)
  id_tensor = sparse_ops.sparse_reshape(sparse_tensors.id_tensor, [
      array_ops.shape(sparse_tensors.id_tensor)[0], -1
  ])
  weight_tensor = sparse_tensors.weight_tensor
  if weight_tensor is not None:
    weight_tensor = sparse_ops.sparse_reshape(
        weight_tensor, [array_ops.shape(weight_tensor)[0], -1])

  weight = variable_scope.get_variable(
      name='weights',
      shape=(column._num_buckets, units),  # pylint: disable=protected-access
      initializer=init_ops.zeros_initializer(),
      trainable=trainable,
      collections=weight_collections)
  return _safe_embedding_lookup_sparse(
      weight,
      id_tensor,
      sparse_weights=weight_tensor,
      combiner=sparse_combiner,
      name='weighted_sum')


class _LazyBuilder(object):
  """Handles caching of transformations while building the model.

  `_FeatureColumn` specifies how to digest an input column to the network. Some
  feature columns require data transformations. This class caches those
  transformations.

  Some features may be used in more than one place. For example, one can use a
  bucketized feature by itself and a cross with it. In that case we
  should create only one bucketization op instead of creating ops for each
  feature column separately. To handle re-use of transformed columns,
  `_LazyBuilder` caches all previously transformed columns.

  Example:
  We're trying to use the following `_FeatureColumn`s:

  ```python
  bucketized_age = fc.bucketized_column(fc.numeric_column("age"), ...)
  keywords = fc.categorical_column_with_hash_buckets("keywords", ...)
  age_X_keywords = fc.crossed_column([bucketized_age, "keywords"])
  ... = linear_model(features,
                          [bucketized_age, keywords, age_X_keywords]
  ```

  If we transform each column independently, then we'll get duplication of
  bucketization (one for cross, one for bucketization itself).
  The `_LazyBuilder` eliminates this duplication.
  """

  def __init__(self, features):
    """Creates a `_LazyBuilder`.

    Args:
      features: A mapping from feature column to objects that are `Tensor` or
        `SparseTensor`, or can be converted to same via
        `sparse_tensor.convert_to_tensor_or_sparse_tensor`. A `string` key
        signifies a base feature (not-transformed). A `_FeatureColumn` key
        means that this `Tensor` is the output of an existing `_FeatureColumn`
        which can be reused.
    """
    self._features = features.copy()
    self._feature_tensors = {}

  def get(self, key):
    """Returns a `Tensor` for the given key.

    A `str` key is used to access a base feature (not-transformed). When a
    `_FeatureColumn` is passed, the transformed feature is returned if it
    already exists, otherwise the given `_FeatureColumn` is asked to provide its
    transformed output, which is then cached.

    Args:
      key: a `str` or a `_FeatureColumn`.

    Returns:
      The transformed `Tensor` corresponding to the `key`.

    Raises:
      ValueError: if key is not found or a transformed `Tensor` cannot be
        computed.
    """
    if key in self._feature_tensors:
      # FeatureColumn is already transformed or converted.
      return self._feature_tensors[key]

    if key in self._features:
      feature_tensor = self._get_raw_feature_as_tensor(key)
      self._feature_tensors[key] = feature_tensor
      return feature_tensor

    if not isinstance(key, (str, _FeatureColumn)):
      raise TypeError('"key" must be either a "str" or "_FeatureColumn". '
                      'Provided: {}'.format(key))

    if not isinstance(key, _FeatureColumn):
      raise ValueError('Feature {} is not in features dictionary.'.format(key))

    column = key
    logging.debug('Transforming feature_column %s.', column)
    transformed = column._transform_feature(self)  # pylint: disable=protected-access
    if transformed is None:
      raise ValueError('Column {} is not supported.'.format(column.name))
    self._feature_tensors[column] = transformed
    return transformed

  def _get_raw_feature_as_tensor(self, key):
    """Gets the raw_feature (keyed by `key`) as `tensor`.

    The raw feature is converted to (sparse) tensor and maybe expand dim.

    For both `Tensor` and `SparseTensor`, the rank will be expanded (to 2) if
    the rank is 1. This supports dynamic rank also. For rank 0 raw feature, will
    error out as it is not supported.

    Args:
      key: A `str` key to access the raw feature.

    Returns:
      A `Tensor` or `SparseTensor`.

    Raises:
      ValueError: if the raw feature has rank 0.
    """
    raw_feature = self._features[key]
    feature_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
        raw_feature)

    def expand_dims(input_tensor):
      # Input_tensor must have rank 1.
      if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
        return sparse_ops.sparse_reshape(
            input_tensor, [array_ops.shape(input_tensor)[0], -1])
      else:
        return array_ops.expand_dims(input_tensor, -1)

    rank = feature_tensor.get_shape().ndims
    if rank is not None:
      if rank == 0:
        raise ValueError(
            'Feature (key: {}) cannot have rank 0. Give: {}'.format(
                key, feature_tensor))
      return feature_tensor if rank != 1 else expand_dims(feature_tensor)

    # Handle dynamic rank.
    with ops.control_dependencies([
        check_ops.assert_positive(
            array_ops.rank(feature_tensor),
            message='Feature (key: {}) cannot have rank 0. Given: {}'.format(
                key, feature_tensor))]):
      return control_flow_ops.cond(
          math_ops.equal(1, array_ops.rank(feature_tensor)),
          lambda: expand_dims(feature_tensor),
          lambda: feature_tensor)


# TODO(ptucker): Move to third_party/tensorflow/python/ops/sparse_ops.py
def _shape_offsets(shape):
  """Returns moving offset for each dimension given shape."""
  offsets = []
  for dim in reversed(shape):
    if offsets:
      offsets.append(dim * offsets[-1])
    else:
      offsets.append(dim)
  offsets.reverse()
  return offsets


# TODO(ptucker): Move to third_party/tensorflow/python/ops/sparse_ops.py
def _to_sparse_input(input_tensor, ignore_value=None):
  """Converts a `Tensor` to a `SparseTensor`, dropping ignore_value cells.

  If `input_tensor` is already a `SparseTensor`, just return it.

  Args:
    input_tensor: A string or integer `Tensor`.
    ignore_value: Entries in `dense_tensor` equal to this value will be
      absent from the resulting `SparseTensor`. If `None`, default value of
      `dense_tensor`'s dtype will be used ('' for `str`, -1 for `int`).

  Returns:
    A `SparseTensor` with the same shape as `input_tensor`.

  Raises:
    ValueError: when `input_tensor`'s rank is `None`.
  """
  input_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
      input_tensor)
  if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
    return input_tensor
  with ops.name_scope(None, 'to_sparse_input', (input_tensor, ignore_value,)):
    input_rank = input_tensor.get_shape().ndims
    if input_rank is None:
      # TODO(b/32318825): Implement dense_to_sparse_tensor for undefined rank.
      raise ValueError('Undefined input_tensor shape.')
    if ignore_value is None:
      ignore_value = '' if input_tensor.dtype == dtypes.string else -1
    dense_shape = math_ops.cast(array_ops.shape(input_tensor), dtypes.int64)
    indices = array_ops.where(math_ops.not_equal(
        input_tensor, math_ops.cast(ignore_value, input_tensor.dtype)))
    # Flattens the tensor and indices for use with gather.
    flat_tensor = array_ops.reshape(input_tensor, [-1])
    flat_indices = indices[:, input_rank - 1]
    # Computes the correct flattened indices for 2d (or higher) tensors.
    if input_rank > 1:
      higher_dims = indices[:, :input_rank - 1]
      shape_offsets = array_ops.stack(
          _shape_offsets(array_ops.unstack(dense_shape)[1:]))
      offsets = math_ops.reduce_sum(
          math_ops.multiply(higher_dims, shape_offsets),
          reduction_indices=[1])
      flat_indices = math_ops.add(flat_indices, offsets)
    values = array_ops.gather(flat_tensor, flat_indices)
    return sparse_tensor_lib.SparseTensor(indices, values, dense_shape)


def _check_feature_columns(feature_columns):
  """Verifies feature_columns input."""
  if isinstance(feature_columns, dict):
    raise ValueError('Expected feature_columns to be iterable, found dict.')
  for column in feature_columns:
    if not isinstance(column, _FeatureColumn):
      raise ValueError('Items of feature_columns must be a _FeatureColumn. '
                       'Given (type {}): {}.'.format(type(column), column))
  if not feature_columns:
    raise ValueError('feature_columns must not be empty.')
  name_to_column = dict()
  for column in feature_columns:
    if column.name in name_to_column:
      raise ValueError('Duplicate feature column name found for columns: {} '
                       'and {}. This usually means that these columns refer to '
                       'same base feature. Either one must be discarded or a '
                       'duplicated but renamed item must be inserted in '
                       'features dict.'.format(column,
                                               name_to_column[column.name]))
    name_to_column[column.name] = column


class _NumericColumn(_DenseColumn,
                     collections.namedtuple('_NumericColumn', [
                         'key', 'shape', 'default_value', 'dtype',
                         'normalizer_fn'
                     ])):
  """see `numeric_column`."""

  @property
  def name(self):
    return self.key

  @property
  def _parse_example_spec(self):
    return {
        self.key:
            parsing_ops.FixedLenFeature(self.shape, self.dtype,
                                        self.default_value)
    }

  def _transform_feature(self, inputs):
    input_tensor = inputs.get(self.key)
    if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
      raise ValueError(
          'The corresponding Tensor of numerical column must be a Tensor. '
          'SparseTensor is not supported. key: {}'.format(self.key))
    if self.normalizer_fn is not None:
      input_tensor = self.normalizer_fn(input_tensor)
    return math_ops.to_float(input_tensor)

  @property
  def _variable_shape(self):
    return tensor_shape.TensorShape(self.shape)

  def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    """Returns dense `Tensor` representing numeric feature.

    Args:
      inputs: A `_LazyBuilder` object to access inputs.
      weight_collections: Unused `weight_collections` since no variables are
        created in this function.
      trainable: Unused `trainable` bool since no variables are created in
        this function.

    Returns:
      Dense `Tensor` created within `_transform_feature`.
    """
    # Do nothing with weight_collections and trainable since no variables are
    # created in this function.
    del weight_collections
    del trainable
    # Feature has been already transformed. Return the intermediate
    # representation created by _transform_feature.
    return inputs.get(self)


class _BucketizedColumn(_DenseColumn, _CategoricalColumn,
                        collections.namedtuple('_BucketizedColumn', [
                            'source_column', 'boundaries'])):
  """See `bucketized_column`."""

  @property
  def name(self):
    return '{}_bucketized'.format(self.source_column.name)

  @property
  def _parse_example_spec(self):
    return self.source_column._parse_example_spec  # pylint: disable=protected-access

  def _transform_feature(self, inputs):
    source_tensor = inputs.get(self.source_column)
    return math_ops._bucketize(  # pylint: disable=protected-access
        source_tensor,
        boundaries=self.boundaries)

  @property
  def _variable_shape(self):
    return tensor_shape.TensorShape(
        tuple(self.source_column.shape) + (len(self.boundaries) + 1,))

  def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    del weight_collections
    del trainable
    input_tensor = inputs.get(self)
    return array_ops.one_hot(
        indices=math_ops.to_int64(input_tensor),
        depth=len(self.boundaries) + 1,
        on_value=1.,
        off_value=0.)

  @property
  def _num_buckets(self):
    # By construction, source_column is always one-dimensional.
    return (len(self.boundaries) + 1) * self.source_column.shape[0]

  def _get_sparse_tensors(self, inputs, weight_collections=None,
                          trainable=None):
    input_tensor = inputs.get(self)
    batch_size = array_ops.shape(input_tensor)[0]
    # By construction, source_column is always one-dimensional.
    source_dimension = self.source_column.shape[0]

    i1 = array_ops.reshape(
        array_ops.tile(
            array_ops.expand_dims(math_ops.range(0, batch_size), 1),
            [1, source_dimension]),
        (-1,))
    i2 = array_ops.tile(math_ops.range(0, source_dimension), [batch_size])
    # Flatten the bucket indices and unique them across dimensions
    # E.g. 2nd dimension indices will range from k to 2*k-1 with k buckets
    bucket_indices = (
        array_ops.reshape(input_tensor, (-1,)) +
        (len(self.boundaries) + 1) * i2)

    indices = math_ops.to_int64(array_ops.transpose(array_ops.stack((i1, i2))))
    dense_shape = math_ops.to_int64(array_ops.stack(
        [batch_size, source_dimension]))
    sparse_tensor = sparse_tensor_lib.SparseTensor(
        indices=indices,
        values=bucket_indices,
        dense_shape=dense_shape)
    return _CategoricalColumn.IdWeightPair(sparse_tensor, None)


class _EmbeddingColumn(
    _DenseColumn,
    collections.namedtuple('_EmbeddingColumn', (
        'categorical_column', 'dimension', 'combiner', 'initializer',
        'ckpt_to_load_from', 'tensor_name_in_ckpt', 'max_norm', 'trainable'
    ))):
  """See `_embedding_column`."""

  @property
  def name(self):
    if not hasattr(self, '_name'):
      self._name = '{}_embedding'.format(self.categorical_column.name)
    return self._name

  @property
  def _parse_example_spec(self):
    return self.categorical_column._parse_example_spec  # pylint: disable=protected-access

  def _transform_feature(self, inputs):
    return inputs.get(self.categorical_column)

  @property
  def _variable_shape(self):
    if not hasattr(self, '_shape'):
      self._shape = tensor_shape.vector(self.dimension)
    return self._shape

  def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    # Get sparse IDs and weights.
    sparse_tensors = self.categorical_column._get_sparse_tensors(  # pylint: disable=protected-access
        inputs, weight_collections=weight_collections, trainable=trainable)
    sparse_ids = sparse_tensors.id_tensor
    sparse_weights = sparse_tensors.weight_tensor

    # Create embedding weight, and restore from checkpoint if necessary.
    embedding_weights = variable_scope.get_variable(
        name='embedding_weights',
        shape=(self.categorical_column._num_buckets, self.dimension),  # pylint: disable=protected-access
        dtype=dtypes.float32,
        initializer=self.initializer,
        trainable=self.trainable and trainable,
        collections=weight_collections)
    if self.ckpt_to_load_from is not None:
      to_restore = embedding_weights
      if isinstance(to_restore, variables.PartitionedVariable):
        to_restore = to_restore._get_variable_list()  # pylint: disable=protected-access
      checkpoint_utils.init_from_checkpoint(self.ckpt_to_load_from, {
          self.tensor_name_in_ckpt: to_restore
      })

    # Return embedding lookup result.
    return _safe_embedding_lookup_sparse(
        embedding_weights=embedding_weights,
        sparse_ids=sparse_ids,
        sparse_weights=sparse_weights,
        combiner=self.combiner,
        name='%s_weights' % self.name,
        max_norm=self.max_norm)


def _create_tuple(shape, value):
  """Returns a tuple with given shape and filled with value."""
  if shape:
    return tuple([_create_tuple(shape[1:], value) for _ in range(shape[0])])
  return value


def _as_tuple(value):
  if not nest.is_sequence(value):
    return value
  return tuple([_as_tuple(v) for v in value])


def _check_shape(shape, key):
  """Returns shape if it's valid, raises error otherwise."""
  assert shape is not None
  if not nest.is_sequence(shape):
    shape = [shape]
  shape = tuple(shape)
  for dimension in shape:
    if not isinstance(dimension, int):
      raise TypeError('shape dimensions must be integer. '
                      'shape: {}, key: {}'.format(shape, key))
    if dimension < 1:
      raise ValueError('shape dimensions must be greater than 0. '
                       'shape: {}, key: {}'.format(shape, key))
  return shape


def _is_shape_and_default_value_compatible(default_value, shape):
  """Verifies compatibility of shape and default_value."""
  # Invalid condition:
  #  * if default_value is not a scalar and shape is empty
  #  * or if default_value is an iterable and shape is not empty
  if nest.is_sequence(default_value) != bool(shape):
    return False
  if not shape:
    return True
  if len(default_value) != shape[0]:
    return False
  for i in range(shape[0]):
    if not _is_shape_and_default_value_compatible(default_value[i], shape[1:]):
      return False
  return True


def _check_default_value(shape, default_value, dtype, key):
  """Returns default value as tuple if it's valid, otherwise raises errors.

  This function verifies that `default_value` is compatible with both `shape`
  and `dtype`. If it is not compatible, it raises an error. If it is compatible,
  it casts default_value to a tuple and returns it. `key` is used only
  for error message.

  Args:
    shape: An iterable of integers specifies the shape of the `Tensor`.
    default_value: If a single value is provided, the same value will be applied
      as the default value for every item. If an iterable of values is
      provided, the shape of the `default_value` should be equal to the given
      `shape`.
    dtype: defines the type of values. Default value is `tf.float32`. Must be a
      non-quantized, real integer or floating point type.
    key: Column name, used only for error messages.

  Returns:
    A tuple which will be used as default value.

  Raises:
    TypeError: if `default_value` is an iterable but not compatible with `shape`
    TypeError: if `default_value` is not compatible with `dtype`.
    ValueError: if `dtype` is not convertible to `tf.float32`.
  """
  if default_value is None:
    return None

  if isinstance(default_value, int):
    return _create_tuple(shape, default_value)

  if isinstance(default_value, float) and dtype.is_floating:
    return _create_tuple(shape, default_value)

  if callable(getattr(default_value, 'tolist', None)):  # Handles numpy arrays
    default_value = default_value.tolist()

  if nest.is_sequence(default_value):
    if not _is_shape_and_default_value_compatible(default_value, shape):
      raise ValueError(
          'The shape of default_value must be equal to given shape. '
          'default_value: {}, shape: {}, key: {}'.format(
              default_value, shape, key))
    # Check if the values in the list are all integers or are convertible to
    # floats.
    is_list_all_int = all(
        isinstance(v, int) for v in nest.flatten(default_value))
    is_list_has_float = any(
        isinstance(v, float) for v in nest.flatten(default_value))
    if is_list_all_int:
      return _as_tuple(default_value)
    if is_list_has_float and dtype.is_floating:
      return _as_tuple(default_value)
  raise TypeError('default_value must be compatible with dtype. '
                  'default_value: {}, dtype: {}, key: {}'.format(
                      default_value, dtype, key))


class _HashedCategoricalColumn(
    _CategoricalColumn,
    collections.namedtuple('_HashedCategoricalColumn',
                           ['key', 'hash_bucket_size', 'dtype'])):
  """see `categorical_column_with_hash_bucket`."""

  @property
  def name(self):
    return self.key

  @property
  def _parse_example_spec(self):
    return {self.key: parsing_ops.VarLenFeature(self.dtype)}

  def _transform_feature(self, inputs):
    input_tensor = _to_sparse_input(inputs.get(self.key))
    if not isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
      raise ValueError('SparseColumn input must be a SparseTensor.')

    _assert_string_or_int(
        input_tensor.dtype,
        prefix='column_name: {} input_tensor'.format(self.key))

    if self.dtype.is_integer != input_tensor.dtype.is_integer:
      raise ValueError(
          'Column dtype and SparseTensors dtype must be compatible. '
          'key: {}, column dtype: {}, tensor dtype: {}'.format(
              self.key, self.dtype, input_tensor.dtype))

    if self.dtype == dtypes.string:
      sparse_values = input_tensor.values
    else:
      sparse_values = string_ops.as_string(input_tensor.values)

    sparse_id_values = string_ops.string_to_hash_bucket_fast(
        sparse_values, self.hash_bucket_size, name='lookup')
    return sparse_tensor_lib.SparseTensor(
        input_tensor.indices, sparse_id_values, input_tensor.dense_shape)

  @property
  def _num_buckets(self):
    """Returns number of buckets in this sparse feature."""
    return self.hash_bucket_size

  def _get_sparse_tensors(self, inputs, weight_collections=None,
                          trainable=None):
    return _CategoricalColumn.IdWeightPair(inputs.get(self), None)


class _VocabularyFileCategoricalColumn(
    _CategoricalColumn,
    collections.namedtuple('_VocabularyFileCategoricalColumn', (
        'key', 'vocabulary_file', 'vocabulary_size', 'num_oov_buckets', 'dtype',
        'default_value'
    ))):
  """See `categorical_column_with_vocabulary_file`."""

  @property
  def name(self):
    return self.key

  @property
  def _parse_example_spec(self):
    return {self.key: parsing_ops.VarLenFeature(self.dtype)}

  def _transform_feature(self, inputs):
    input_tensor = _to_sparse_input(inputs.get(self.key))

    if self.dtype.is_integer != input_tensor.dtype.is_integer:
      raise ValueError(
          'Column dtype and SparseTensors dtype must be compatible. '
          'key: {}, column dtype: {}, tensor dtype: {}'.format(
              self.key, self.dtype, input_tensor.dtype))

    _assert_string_or_int(
        input_tensor.dtype,
        prefix='column_name: {} input_tensor'.format(self.key))

    key_dtype = self.dtype
    if input_tensor.dtype.is_integer:
      # `index_table_from_file` requires 64-bit integer keys.
      key_dtype = dtypes.int64
      input_tensor = math_ops.to_int64(input_tensor)

    return lookup_ops.index_table_from_file(
        vocabulary_file=self.vocabulary_file,
        num_oov_buckets=self.num_oov_buckets,
        vocab_size=self.vocabulary_size,
        default_value=self.default_value,
        key_dtype=key_dtype,
        name='{}_lookup'.format(self.key)).lookup(input_tensor)

  @property
  def _num_buckets(self):
    """Returns number of buckets in this sparse feature."""
    return self.vocabulary_size + self.num_oov_buckets

  def _get_sparse_tensors(
      self, inputs, weight_collections=None, trainable=None):
    return _CategoricalColumn.IdWeightPair(inputs.get(self), None)


class _VocabularyListCategoricalColumn(
    _CategoricalColumn,
    collections.namedtuple('_VocabularyListCategoricalColumn', (
        'key', 'vocabulary_list', 'dtype', 'default_value', 'num_oov_buckets'
    ))):
  """See `categorical_column_with_vocabulary_list`."""

  @property
  def name(self):
    return self.key

  @property
  def _parse_example_spec(self):
    return {self.key: parsing_ops.VarLenFeature(self.dtype)}

  def _transform_feature(self, inputs):
    input_tensor = _to_sparse_input(inputs.get(self.key))

    if self.dtype.is_integer != input_tensor.dtype.is_integer:
      raise ValueError(
          'Column dtype and SparseTensors dtype must be compatible. '
          'key: {}, column dtype: {}, tensor dtype: {}'.format(
              self.key, self.dtype, input_tensor.dtype))

    _assert_string_or_int(
        input_tensor.dtype,
        prefix='column_name: {} input_tensor'.format(self.key))

    key_dtype = self.dtype
    if input_tensor.dtype.is_integer:
      # `index_table_from_tensor` requires 64-bit integer keys.
      key_dtype = dtypes.int64
      input_tensor = math_ops.to_int64(input_tensor)

    return lookup_ops.index_table_from_tensor(
        vocabulary_list=tuple(self.vocabulary_list),
        default_value=self.default_value,
        num_oov_buckets=self.num_oov_buckets,
        dtype=key_dtype,
        name='{}_lookup'.format(self.key)).lookup(input_tensor)

  @property
  def _num_buckets(self):
    """Returns number of buckets in this sparse feature."""
    return len(self.vocabulary_list) + self.num_oov_buckets

  def _get_sparse_tensors(
      self, inputs, weight_collections=None, trainable=None):
    return _CategoricalColumn.IdWeightPair(inputs.get(self), None)


class _IdentityCategoricalColumn(
    _CategoricalColumn,
    collections.namedtuple('_IdentityCategoricalColumn', (
        'key', 'num_buckets', 'default_value'
    ))):

  """See `categorical_column_with_identity`."""

  @property
  def name(self):
    return self.key

  @property
  def _parse_example_spec(self):
    return {self.key: parsing_ops.VarLenFeature(dtypes.int64)}

  def _transform_feature(self, inputs):
    input_tensor = _to_sparse_input(inputs.get(self.key))

    if not input_tensor.dtype.is_integer:
      raise ValueError(
          'Invalid input, not integer. key: {} dtype: {}'.format(
              self.key, input_tensor.dtype))

    values = math_ops.to_int64(input_tensor.values, name='values')
    num_buckets = math_ops.to_int64(self.num_buckets, name='num_buckets')
    zero = math_ops.to_int64(0, name='zero')
    if self.default_value is None:
      # Fail if values are out-of-range.
      assert_less = check_ops.assert_less(
          values, num_buckets, data=(values, num_buckets),
          name='assert_less_than_num_buckets')
      assert_greater = check_ops.assert_greater_equal(
          values, zero, data=(values,),
          name='assert_greater_or_equal_0')
      with ops.control_dependencies((assert_less, assert_greater)):
        values = array_ops.identity(values)
    else:
      # Assign default for out-of-range values.
      values = array_ops.where(
          math_ops.logical_or(
              values < zero, values >= num_buckets, name='out_of_range'),
          array_ops.fill(
              dims=array_ops.shape(values),
              value=math_ops.to_int64(self.default_value),
              name='default_values'),
          values)

    return sparse_tensor_lib.SparseTensor(
        indices=input_tensor.indices,
        values=values,
        dense_shape=input_tensor.dense_shape)

  @property
  def _num_buckets(self):
    """Returns number of buckets in this sparse feature."""
    return self.num_buckets

  def _get_sparse_tensors(
      self, inputs, weight_collections=None, trainable=None):
    return _CategoricalColumn.IdWeightPair(inputs.get(self), None)


class _WeightedCategoricalColumn(
    _CategoricalColumn,
    collections.namedtuple('_WeightedCategoricalColumn', (
        'categorical_column', 'weight_feature_key', 'dtype'
    ))):
  """See `weighted_categorical_column`."""

  @property
  def name(self):
    return '{}_weighted_by_{}'.format(
        self.categorical_column.name, self.weight_feature_key)

  @property
  def _parse_example_spec(self):
    config = self.categorical_column._parse_example_spec  # pylint: disable=protected-access
    if self.weight_feature_key in config:
      raise ValueError('Parse config {} already exists for {}.'.format(
          config[self.weight_feature_key], self.weight_feature_key))
    config[self.weight_feature_key] = parsing_ops.VarLenFeature(self.dtype)
    return config

  @property
  def _num_buckets(self):
    return self.categorical_column._num_buckets  # pylint: disable=protected-access

  def _transform_feature(self, inputs):
    weight_tensor = inputs.get(self.weight_feature_key)
    if weight_tensor is None:
      raise ValueError('Missing weights {}.'.format(self.weight_feature_key))
    weight_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
        weight_tensor)
    if self.dtype != weight_tensor.dtype.base_dtype:
      raise ValueError('Bad dtype, expected {}, but got {}.'.format(
          self.dtype, weight_tensor.dtype))
    if not isinstance(weight_tensor, sparse_tensor_lib.SparseTensor):
      # The weight tensor can be a regular Tensor. In this case, sparsify it.
      weight_tensor = _to_sparse_input(weight_tensor, ignore_value=0.0)
    if not weight_tensor.dtype.is_floating:
      weight_tensor = math_ops.to_float(weight_tensor)
    return (inputs.get(self.categorical_column), weight_tensor)

  def _get_sparse_tensors(
      self, inputs, weight_collections=None, trainable=None):
    del weight_collections
    del trainable
    tensors = inputs.get(self)
    return _CategoricalColumn.IdWeightPair(tensors[0], tensors[1])


class _CrossedColumn(
    _CategoricalColumn,
    collections.namedtuple('_CrossedColumn',
                           ['keys', 'hash_bucket_size', 'hash_key'])):
  """See `crossed_column`."""

  @property
  def name(self):
    feature_names = []
    for key in _collect_leaf_level_keys(self):
      if isinstance(key, _FeatureColumn):
        feature_names.append(key.name)
      else:  # key must be a string
        feature_names.append(key)
    return '_X_'.join(sorted(feature_names))

  @property
  def _parse_example_spec(self):
    config = {}
    for key in self.keys:
      if isinstance(key, _FeatureColumn):
        config.update(key._parse_example_spec)  # pylint: disable=protected-access
      else:  # key must be a string
        config.update({key: parsing_ops.VarLenFeature(dtypes.string)})
    return config

  def _transform_feature(self, inputs):
    feature_tensors = []
    for key in _collect_leaf_level_keys(self):
      if isinstance(key, six.string_types):
        feature_tensors.append(inputs.get(key))
      elif isinstance(key, _CategoricalColumn):
        ids_and_weights = key._get_sparse_tensors(inputs)  # pylint: disable=protected-access
        if ids_and_weights.weight_tensor is not None:
          raise ValueError(
              'crossed_column does not support weight_tensor, but the given '
              'column populates weight_tensor. '
              'Given column: {}'.format(key.name))
        feature_tensors.append(ids_and_weights.id_tensor)
      else:
        raise ValueError('Unsupported column type. Given: {}'.format(key))
    return sparse_ops._sparse_cross_hashed(  # pylint: disable=protected-access
        inputs=feature_tensors,
        num_buckets=self.hash_bucket_size,
        hash_key=self.hash_key)

  @property
  def _num_buckets(self):
    """Returns number of buckets in this sparse feature."""
    return self.hash_bucket_size

  def _get_sparse_tensors(self, inputs, weight_collections=None,
                          trainable=None):
    return _CategoricalColumn.IdWeightPair(inputs.get(self), None)


def _collect_leaf_level_keys(cross):
  """Collects base keys by expanding all nested crosses.

  Args:
    cross: A `_CrossedColumn`.

  Returns:
    A list of strings or `_CategoricalColumn` instances.
  """
  leaf_level_keys = []
  for k in cross.keys:
    if isinstance(k, _CrossedColumn):
      leaf_level_keys.extend(_collect_leaf_level_keys(k))
    else:
      leaf_level_keys.append(k)
  return leaf_level_keys


# TODO(zakaria): Move this to embedding_ops and make it public.
def _safe_embedding_lookup_sparse(embedding_weights,
                                  sparse_ids,
                                  sparse_weights=None,
                                  combiner='mean',
                                  default_id=None,
                                  name=None,
                                  partition_strategy='div',
                                  max_norm=None):
  """Lookup embedding results, accounting for invalid IDs and empty features.

  The partitioned embedding in `embedding_weights` must all be the same shape
  except for the first dimension. The first dimension is allowed to vary as the
  vocabulary size is not necessarily a multiple of `P`.  `embedding_weights`
  may be a `PartitionedVariable` as returned by using `tf.get_variable()` with a
  partitioner.

  Invalid IDs (< 0) are pruned from input IDs and weights, as well as any IDs
  with non-positive weight. For an entry with no features, the embedding vector
  for `default_id` is returned, or the 0-vector if `default_id` is not supplied.

  The ids and weights may be multi-dimensional. Embeddings are always aggregated
  along the last dimension.

  Args:
    embedding_weights:  A list of `P` float `Tensor`s or values representing
        partitioned embedding `Tensor`s.  Alternatively, a `PartitionedVariable`
        created by partitioning along dimension 0.  The total unpartitioned
        shape should be `[e_0, e_1, ..., e_m]`, where `e_0` represents the
        vocab size and `e_1, ..., e_m` are the embedding dimensions.
    sparse_ids: `SparseTensor` of shape `[d_0, d_1, ..., d_n]` containing the
        ids. `d_0` is typically batch size.
    sparse_weights: `SparseTensor` of same shape as `sparse_ids`, containing
        float weights corresponding to `sparse_ids`, or `None` if all weights
        are be assumed to be 1.0.
    combiner: A string specifying how to combine embedding results for each
        entry. Currently "mean", "sqrtn" and "sum" are supported, with "mean"
        the default.
    default_id: The id to use for an entry with no features.
    name: A name for this operation (optional).
    partition_strategy: A string specifying the partitioning strategy.
        Currently `"div"` and `"mod"` are supported. Default is `"div"`.
    max_norm: If not `None`, all embeddings are l2-normalized to max_norm before
        combining.


  Returns:
    Dense `Tensor` of shape `[d_0, d_1, ..., d_{n-1}, e_1, ..., e_m]`.

  Raises:
    ValueError: if `embedding_weights` is empty.
  """
  if embedding_weights is None:
    raise ValueError('Missing embedding_weights %s.' % embedding_weights)
  if isinstance(embedding_weights, variables.PartitionedVariable):
    embedding_weights = list(embedding_weights)  # get underlying Variables.
  if not isinstance(embedding_weights, list):
    embedding_weights = [embedding_weights]
  if len(embedding_weights) < 1:
    raise ValueError('Missing embedding_weights %s.' % embedding_weights)

  dtype = sparse_weights.dtype if sparse_weights is not None else None
  embedding_weights = [
      ops.convert_to_tensor(w, dtype=dtype) for w in embedding_weights
  ]

  with ops.name_scope(name, 'embedding_lookup',
                      embedding_weights + [sparse_ids,
                                           sparse_weights]) as scope:
    # Reshape higher-rank sparse ids and weights to linear segment ids.
    original_shape = sparse_ids.dense_shape
    original_rank_dim = sparse_ids.dense_shape.get_shape()[0]
    original_rank = (
        array_ops.size(original_shape)
        if original_rank_dim.value is None
        else original_rank_dim.value)
    sparse_ids = sparse_ops.sparse_reshape(sparse_ids, [
        math_ops.reduce_prod(
            array_ops.slice(original_shape, [0], [original_rank - 1])),
        array_ops.gather(original_shape, original_rank - 1)])
    if sparse_weights is not None:
      sparse_weights = sparse_tensor_lib.SparseTensor(
          sparse_ids.indices,
          sparse_weights.values, sparse_ids.dense_shape)

    # Prune invalid ids and weights.
    sparse_ids, sparse_weights = _prune_invalid_ids(sparse_ids, sparse_weights)

    # Fill in dummy values for empty features, if necessary.
    sparse_ids, is_row_empty = sparse_ops.sparse_fill_empty_rows(sparse_ids,
                                                                 default_id or
                                                                 0)
    if sparse_weights is not None:
      sparse_weights, _ = sparse_ops.sparse_fill_empty_rows(sparse_weights, 1.0)

    result = embedding_ops.embedding_lookup_sparse(
        embedding_weights,
        sparse_ids,
        sparse_weights,
        combiner=combiner,
        partition_strategy=partition_strategy,
        name=None if default_id is None else scope,
        max_norm=max_norm)

    if default_id is None:
      # Broadcast is_row_empty to the same shape as embedding_lookup_result,
      # for use in Select.
      is_row_empty = array_ops.tile(
          array_ops.reshape(is_row_empty, [-1, 1]),
          array_ops.stack([1, array_ops.shape(result)[1]]))

      result = array_ops.where(is_row_empty,
                               array_ops.zeros_like(result),
                               result,
                               name=scope)

    # Reshape back from linear ids back into higher-dimensional dense result.
    final_result = array_ops.reshape(
        result,
        array_ops.concat([
            array_ops.slice(
                math_ops.cast(original_shape, dtypes.int32), [0],
                [original_rank - 1]),
            array_ops.slice(array_ops.shape(result), [1], [-1])
        ], 0))
    final_result.set_shape(tensor_shape.unknown_shape(
        (original_rank_dim - 1).value).concatenate(result.get_shape()[1:]))
    return final_result


def _prune_invalid_ids(sparse_ids, sparse_weights):
  """Prune invalid IDs (< 0) from the input ids and weights."""
  is_id_valid = math_ops.greater_equal(sparse_ids.values, 0)
  if sparse_weights is not None:
    is_id_valid = math_ops.logical_and(
        is_id_valid, math_ops.greater(sparse_weights.values, 0))
  sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_id_valid)
  if sparse_weights is not None:
    sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_id_valid)
  return sparse_ids, sparse_weights


class _IndicatorColumn(_DenseColumn,
                       collections.namedtuple('_IndicatorColumn',
                                              ['categorical_column'])):
  """Represents a one-hot column for use in deep networks.

  Args:
    categorical_column: A `_CategoricalColumn` which is created by
      `categorical_column_with_*` function.
  """

  @property
  def name(self):
    return '{}_indicator'.format(self.categorical_column.name)

  def _transform_feature(self, inputs):
    """Returns dense `Tensor` representing feature.

    Args:
      inputs: A `_LazyBuilder` object to access inputs.

    Returns:
      Transformed feature `Tensor`.

    Raises:
      ValueError: if input rank is not known at graph building time.
    """
    id_weight_pair = self.categorical_column._get_sparse_tensors(inputs)  # pylint: disable=protected-access
    id_tensor = id_weight_pair.id_tensor
    weight_tensor = id_weight_pair.weight_tensor

    # If the underlying column is weighted, return the input as a dense tensor.
    if weight_tensor is not None:
      weighted_column = sparse_ops.sparse_merge(
          sp_ids=id_tensor,
          sp_values=weight_tensor,
          vocab_size=self._variable_shape[-1])
      return sparse_ops.sparse_tensor_to_dense(weighted_column)

    dense_id_tensor = sparse_ops.sparse_tensor_to_dense(
        id_tensor, default_value=-1)

    # One hot must be float for tf.concat reasons since all other inputs to
    # input_layer are float32.
    one_hot_id_tensor = array_ops.one_hot(
        dense_id_tensor,
        depth=self._variable_shape[-1],
        on_value=1.0,
        off_value=0.0)

    # Reduce to get a multi-hot per example.
    return math_ops.reduce_sum(one_hot_id_tensor, axis=[-2])

  @property
  def _parse_example_spec(self):
    return self.categorical_column._parse_example_spec  # pylint: disable=protected-access

  @property
  def _variable_shape(self):
    """Returns a `TensorShape` representing the shape of the dense `Tensor`."""
    return tensor_shape.TensorShape([1, self.categorical_column._num_buckets])  # pylint: disable=protected-access

  def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    """Returns dense `Tensor` representing feature.

    Args:
      inputs: A `_LazyBuilder` object to access inputs.
      weight_collections: Unused `weight_collections` since no variables are
        created in this function.
      trainable: Unused `trainable` bool since no variables are created in
        this function.

    Returns:
      Dense `Tensor` created within `_transform_feature`.
    """
    # Do nothing with weight_collections and trainable since no variables are
    # created in this function.
    del weight_collections
    del trainable
    # Feature has been already transformed. Return the intermediate
    # representation created by _transform_feature.
    return inputs.get(self)


def _verify_static_batch_size_equality(tensors, columns):
  # bath_size is a tf.Dimension object.
  expected_batch_size = None
  for i in range(0, len(tensors)):
    if tensors[i].shape[0].value is not None:
      if expected_batch_size is None:
        bath_size_column_index = i
        expected_batch_size = tensors[i].shape[0]
      elif not expected_batch_size.is_compatible_with(tensors[i].shape[0]):
        raise ValueError(
            'Batch size (first dimension) of each feature must be same. '
            'Batch size of columns ({}, {}): ({}, {})'.format(
                columns[bath_size_column_index].name, columns[i].name,
                expected_batch_size, tensors[i].shape[0]))