aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/estimator/canned/linear.py
blob: 58a71603488198373bc4d1fd716538c2cee4d86f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Linear Estimators."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import six

from tensorflow.python.estimator import estimator
from tensorflow.python.estimator.canned import head as head_lib
from tensorflow.python.estimator.canned import optimizers
from tensorflow.python.feature_column import feature_column as feature_column_lib
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import partitioned_variables
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops.losses import losses
from tensorflow.python.summary import summary
from tensorflow.python.training import ftrl
from tensorflow.python.util.tf_export import estimator_export


# The default learning rate of 0.2 is a historical artifact of the initial
# implementation, but seems a reasonable choice.
_LEARNING_RATE = 0.2


def _get_default_optimizer(feature_columns):
  learning_rate = min(_LEARNING_RATE, 1.0 / math.sqrt(len(feature_columns)))
  return ftrl.FtrlOptimizer(learning_rate=learning_rate)


def _compute_fraction_of_zero(cols_to_vars):
  """Given a linear cols_to_vars dict, compute the fraction of zero weights.

  Args:
    cols_to_vars: A dictionary mapping FeatureColumns to lists of tf.Variables
      like one returned from feature_column_lib.linear_model.

  Returns:
    The fraction of zeros (sparsity) in the linear model.
  """
  all_weight_vars = []
  for var_or_var_list in cols_to_vars.values():
    # Skip empty-lists associated with columns that created no Variables.
    if var_or_var_list:
      all_weight_vars += [
          array_ops.reshape(var, [-1]) for var in var_or_var_list
      ]
  return nn.zero_fraction(array_ops.concat(all_weight_vars, axis=0))


def _linear_logit_fn_builder(units, feature_columns, sparse_combiner='sum'):
  """Function builder for a linear logit_fn.

  Args:
    units: An int indicating the dimension of the logit layer.
    feature_columns: An iterable containing all the feature columns used by
      the model.
    sparse_combiner: A string specifying how to reduce if a categorical column
      is multivalent.  One of "mean", "sqrtn", and "sum".

  Returns:
    A logit_fn (see below).

  """

  def linear_logit_fn(features):
    """Linear model logit_fn.

    Args:
      features: This is the first item returned from the `input_fn`
                passed to `train`, `evaluate`, and `predict`. This should be a
                single `Tensor` or `dict` of same.

    Returns:
      A `Tensor` representing the logits.
    """
    cols_to_vars = {}
    logits = feature_column_lib.linear_model(
        features=features,
        feature_columns=feature_columns,
        units=units,
        sparse_combiner=sparse_combiner,
        cols_to_vars=cols_to_vars)
    bias = cols_to_vars.pop('bias')
    if units > 1:
      summary.histogram('bias', bias)
    else:
      # If units == 1, the bias value is a length-1 list of a scalar Tensor,
      # so we should provide a scalar summary.
      summary.scalar('bias', bias[0][0])
    summary.scalar('fraction_of_zero_weights',
                   _compute_fraction_of_zero(cols_to_vars))
    return logits

  return linear_logit_fn


def _linear_model_fn(features, labels, mode, head, feature_columns, optimizer,
                     partitioner, config, sparse_combiner='sum'):
  """A model_fn for linear models that use a gradient-based optimizer.

  Args:
    features: dict of `Tensor`.
    labels: `Tensor` of shape `[batch_size, logits_dimension]`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    head: A `Head` instance.
    feature_columns: An iterable containing all the feature columns used by
      the model.
    optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training. If `None`, will use a FTRL optimizer.
    partitioner: Partitioner for variables.
    config: `RunConfig` object to configure the runtime settings.
    sparse_combiner: A string specifying how to reduce if a categorical column
      is multivalent.  One of "mean", "sqrtn", and "sum".

  Returns:
    An `EstimatorSpec` instance.

  Raises:
    ValueError: mode or params are invalid, or features has the wrong type.
  """
  if not isinstance(features, dict):
    raise ValueError('features should be a dictionary of `Tensor`s. '
                     'Given type: {}'.format(type(features)))

  optimizer = optimizers.get_optimizer_instance(
      optimizer or _get_default_optimizer(feature_columns),
      learning_rate=_LEARNING_RATE)
  num_ps_replicas = config.num_ps_replicas if config else 0

  partitioner = partitioner or (
      partitioned_variables.min_max_variable_partitioner(
          max_partitions=num_ps_replicas,
          min_slice_size=64 << 20))

  with variable_scope.variable_scope(
      'linear',
      values=tuple(six.itervalues(features)),
      partitioner=partitioner):

    logit_fn = _linear_logit_fn_builder(
        units=head.logits_dimension, feature_columns=feature_columns,
        sparse_combiner=sparse_combiner)
    logits = logit_fn(features=features)

    return head.create_estimator_spec(
        features=features,
        mode=mode,
        labels=labels,
        optimizer=optimizer,
        logits=logits)


@estimator_export('estimator.LinearClassifier')
class LinearClassifier(estimator.Estimator):
  """Linear classifier model.

  Train a linear model to classify instances into one of multiple possible
  classes. When number of possible classes is 2, this is binary classification.

  Example:

  ```python
  categorical_column_a = categorical_column_with_hash_bucket(...)
  categorical_column_b = categorical_column_with_hash_bucket(...)

  categorical_feature_a_x_categorical_feature_b = crossed_column(...)

  # Estimator using the default optimizer.
  estimator = LinearClassifier(
      feature_columns=[categorical_column_a,
                       categorical_feature_a_x_categorical_feature_b])

  # Or estimator using the FTRL optimizer with regularization.
  estimator = LinearClassifier(
      feature_columns=[categorical_column_a,
                       categorical_feature_a_x_categorical_feature_b],
      optimizer=tf.train.FtrlOptimizer(
        learning_rate=0.1,
        l1_regularization_strength=0.001
      ))

  # Or estimator using an optimizer with a learning rate decay.
  estimator = LinearClassifier(
      feature_columns=[categorical_column_a,
                       categorical_feature_a_x_categorical_feature_b],
      optimizer=lambda: tf.train.FtrlOptimizer(
          learning_rate=tf.exponential_decay(
              learning_rate=0.1,
              global_step=tf.get_global_step(),
              decay_steps=10000,
              decay_rate=0.96))

  # Or estimator with warm-starting from a previous checkpoint.
  estimator = LinearClassifier(
      feature_columns=[categorical_column_a,
                       categorical_feature_a_x_categorical_feature_b],
      warm_start_from="/path/to/checkpoint/dir")


  # Input builders
  def input_fn_train: # returns x, y (where y represents label's class index).
    ...
  def input_fn_eval: # returns x, y (where y represents label's class index).
    ...
  estimator.train(input_fn=input_fn_train)
  estimator.evaluate(input_fn=input_fn_eval)
  estimator.predict(input_fn=input_fn_predict)
  ```

  Input of `train` and `evaluate` should have following features,
    otherwise there will be a `KeyError`:

  * if `weight_column` is not `None`, a feature with
    `key=weight_column` whose value is a `Tensor`.
  * for each `column` in `feature_columns`:
    - if `column` is a `SparseColumn`, a feature with `key=column.name`
      whose `value` is a `SparseTensor`.
    - if `column` is a `WeightedSparseColumn`, two features: the first with
      `key` the id column name, the second with `key` the weight column name.
      Both features' `value` must be a `SparseTensor`.
    - if `column` is a `RealValuedColumn`, a feature with `key=column.name`
      whose `value` is a `Tensor`.

  Loss is calculated by using softmax cross entropy.

  @compatibility(eager)
  Estimators can be used while eager execution is enabled. Note that `input_fn`
  and all hooks are executed inside a graph context, so they have to be written
  to be compatible with graph mode. Note that `input_fn` code using `tf.data`
  generally works in both graph and eager modes.
  @end_compatibility
  """

  def __init__(self,
               feature_columns,
               model_dir=None,
               n_classes=2,
               weight_column=None,
               label_vocabulary=None,
               optimizer='Ftrl',
               config=None,
               partitioner=None,
               warm_start_from=None,
               loss_reduction=losses.Reduction.SUM,
               sparse_combiner='sum'):
    """Construct a `LinearClassifier` estimator object.

    Args:
      feature_columns: An iterable containing all the feature columns used by
        the model. All items in the set should be instances of classes derived
        from `FeatureColumn`.
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator
        to continue training a previously saved model.
      n_classes: number of label classes. Default is binary classification.
        Note that class labels are integers representing the class index (i.e.
        values from 0 to n_classes-1). For arbitrary label values (e.g. string
        labels), convert to class indices first.
      weight_column: A string or a `_NumericColumn` created by
        `tf.feature_column.numeric_column` defining feature column representing
        weights. It is used to down weight or boost examples during training. It
        will be multiplied by the loss of the example. If it is a string, it is
        used as a key to fetch weight tensor from the `features`. If it is a
        `_NumericColumn`, raw tensor is fetched by key `weight_column.key`,
        then weight_column.normalizer_fn is applied on it to get weight tensor.
      label_vocabulary: A list of strings represents possible label values. If
        given, labels must be string type and have any value in
        `label_vocabulary`. If it is not given, that means labels are
        already encoded as integer or float within [0, 1] for `n_classes=2` and
        encoded as integer values in {0, 1,..., n_classes-1} for `n_classes`>2 .
        Also there will be errors if vocabulary is not provided and labels are
        string.
      optimizer: An instance of `tf.Optimizer` used to train the model. Can also
        be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or
        callable. Defaults to FTRL optimizer.
      config: `RunConfig` object to configure the runtime settings.
      partitioner: Optional. Partitioner for input layer.
      warm_start_from: A string filepath to a checkpoint to warm-start from, or
        a `WarmStartSettings` object to fully configure warm-starting.  If the
        string filepath is provided instead of a `WarmStartSettings`, then all
        weights and biases are warm-started, and it is assumed that vocabularies
        and Tensor names are unchanged.
      loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how
        to reduce training loss over batch. Defaults to `SUM`.
      sparse_combiner: A string specifying how to reduce if a categorical column
        is multivalent.  One of "mean", "sqrtn", and "sum" -- these are
        effectively different ways to do example-level normalization, which can
        be useful for bag-of-words features. for more details, see
        @{tf.feature_column.linear_model$linear_model}.

    Returns:
      A `LinearClassifier` estimator.

    Raises:
      ValueError: if n_classes < 2.
    """
    if n_classes == 2:
      head = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss(  # pylint: disable=protected-access
          weight_column=weight_column,
          label_vocabulary=label_vocabulary,
          loss_reduction=loss_reduction)
    else:
      head = head_lib._multi_class_head_with_softmax_cross_entropy_loss(  # pylint: disable=protected-access
          n_classes, weight_column=weight_column,
          label_vocabulary=label_vocabulary,
          loss_reduction=loss_reduction)

    def _model_fn(features, labels, mode, config):
      """Call the defined shared _linear_model_fn."""
      return _linear_model_fn(
          features=features,
          labels=labels,
          mode=mode,
          head=head,
          feature_columns=tuple(feature_columns or []),
          optimizer=optimizer,
          partitioner=partitioner,
          config=config,
          sparse_combiner=sparse_combiner)

    super(LinearClassifier, self).__init__(
        model_fn=_model_fn,
        model_dir=model_dir,
        config=config,
        warm_start_from=warm_start_from)


@estimator_export('estimator.LinearRegressor')
class LinearRegressor(estimator.Estimator):
  """An estimator for TensorFlow Linear regression problems.

  Train a linear regression model to predict label value given observation of
  feature values.

  Example:

  ```python
  categorical_column_a = categorical_column_with_hash_bucket(...)
  categorical_column_b = categorical_column_with_hash_bucket(...)

  categorical_feature_a_x_categorical_feature_b = crossed_column(...)

  # Estimator using the default optimizer.
  estimator = LinearRegressor(
      feature_columns=[categorical_column_a,
                       categorical_feature_a_x_categorical_feature_b])

  # Or estimator using the FTRL optimizer with regularization.
  estimator = LinearRegressor(
      feature_columns=[categorical_column_a,
                       categorical_feature_a_x_categorical_feature_b],
      optimizer=tf.train.FtrlOptimizer(
        learning_rate=0.1,
        l1_regularization_strength=0.001
      ))

  # Or estimator using an optimizer with a learning rate decay.
  estimator = LinearRegressor(
      feature_columns=[categorical_column_a,
                       categorical_feature_a_x_categorical_feature_b],
      optimizer=lambda: tf.train.FtrlOptimizer(
          learning_rate=tf.exponential_decay(
              learning_rate=0.1,
              global_step=tf.get_global_step(),
              decay_steps=10000,
              decay_rate=0.96))

  # Or estimator with warm-starting from a previous checkpoint.
  estimator = LinearRegressor(
      feature_columns=[categorical_column_a,
                       categorical_feature_a_x_categorical_feature_b],
      warm_start_from="/path/to/checkpoint/dir")


  # Input builders
  def input_fn_train: # returns x, y
    ...
  def input_fn_eval: # returns x, y
    ...
  estimator.train(input_fn=input_fn_train)
  estimator.evaluate(input_fn=input_fn_eval)
  estimator.predict(input_fn=input_fn_predict)
  ```

  Input of `train` and `evaluate` should have following features,
    otherwise there will be a KeyError:

  * if `weight_column` is not `None`:
    key=weight_column, value=a `Tensor`
  * for column in `feature_columns`:
    - if isinstance(column, `SparseColumn`):
        key=column.name, value=a `SparseTensor`
    - if isinstance(column, `WeightedSparseColumn`):
        {key=id column name, value=a `SparseTensor`,
         key=weight column name, value=a `SparseTensor`}
    - if isinstance(column, `RealValuedColumn`):
        key=column.name, value=a `Tensor`

  Loss is calculated by using mean squared error.

  @compatibility(eager)
  Estimators can be used while eager execution is enabled. Note that `input_fn`
  and all hooks are executed inside a graph context, so they have to be written
  to be compatible with graph mode. Note that `input_fn` code using `tf.data`
  generally works in both graph and eager modes.
  @end_compatibility
  """

  def __init__(self,
               feature_columns,
               model_dir=None,
               label_dimension=1,
               weight_column=None,
               optimizer='Ftrl',
               config=None,
               partitioner=None,
               warm_start_from=None,
               loss_reduction=losses.Reduction.SUM,
               sparse_combiner='sum'):
    """Initializes a `LinearRegressor` instance.

    Args:
      feature_columns: An iterable containing all the feature columns used by
        the model. All items in the set should be instances of classes derived
        from `FeatureColumn`.
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator
        to continue training a previously saved model.
      label_dimension: Number of regression targets per example. This is the
        size of the last dimension of the labels and logits `Tensor` objects
        (typically, these have shape `[batch_size, label_dimension]`).
      weight_column: A string or a `_NumericColumn` created by
        `tf.feature_column.numeric_column` defining feature column representing
        weights. It is used to down weight or boost examples during training. It
        will be multiplied by the loss of the example. If it is a string, it is
        used as a key to fetch weight tensor from the `features`. If it is a
        `_NumericColumn`, raw tensor is fetched by key `weight_column.key`,
        then weight_column.normalizer_fn is applied on it to get weight tensor.
      optimizer: An instance of `tf.Optimizer` used to train the model. Can also
        be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or
        callable. Defaults to FTRL optimizer.
      config: `RunConfig` object to configure the runtime settings.
      partitioner: Optional. Partitioner for input layer.
      warm_start_from: A string filepath to a checkpoint to warm-start from, or
        a `WarmStartSettings` object to fully configure warm-starting.  If the
        string filepath is provided instead of a `WarmStartSettings`, then all
        weights and biases are warm-started, and it is assumed that vocabularies
        and Tensor names are unchanged.
      loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how
        to reduce training loss over batch. Defaults to `SUM`.
      sparse_combiner: A string specifying how to reduce if a categorical column
        is multivalent.  One of "mean", "sqrtn", and "sum" -- these are
        effectively different ways to do example-level normalization, which can
        be useful for bag-of-words features. for more details, see
        @{tf.feature_column.linear_model$linear_model}.
    """
    head = head_lib._regression_head(  # pylint: disable=protected-access
        label_dimension=label_dimension, weight_column=weight_column,
        loss_reduction=loss_reduction)

    def _model_fn(features, labels, mode, config):
      """Call the defined shared _linear_model_fn."""
      return _linear_model_fn(
          features=features,
          labels=labels,
          mode=mode,
          head=head,
          feature_columns=tuple(feature_columns or []),
          optimizer=optimizer,
          partitioner=partitioner,
          config=config,
          sparse_combiner=sparse_combiner)

    super(LinearRegressor, self).__init__(
        model_fn=_model_fn,
        model_dir=model_dir,
        config=config,
        warm_start_from=warm_start_from)