aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/estimator/canned/dnn.py
blob: 2c7c4285caadf70777d43a9c30b1d8e95b8158ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Deep Neural Network estimators."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six

from tensorflow.python.estimator import estimator
from tensorflow.python.estimator import model_fn
from tensorflow.python.estimator.canned import head as head_lib
from tensorflow.python.estimator.canned import optimizers
from tensorflow.python.feature_column import feature_column as feature_column_lib
from tensorflow.python.layers import core as core_layers
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import partitioned_variables
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops.losses import losses
from tensorflow.python.summary import summary
from tensorflow.python.util.tf_export import estimator_export

# The default learning rate of 0.05 is a historical artifact of the initial
# implementation, but seems a reasonable choice.
_LEARNING_RATE = 0.05


def _add_hidden_layer_summary(value, tag):
  summary.scalar('%s/fraction_of_zero_values' % tag, nn.zero_fraction(value))
  summary.histogram('%s/activation' % tag, value)


def _dnn_logit_fn_builder(units, hidden_units, feature_columns, activation_fn,
                          dropout, input_layer_partitioner):
  """Function builder for a dnn logit_fn.

  Args:
    units: An int indicating the dimension of the logit layer.  In the
      MultiHead case, this should be the sum of all component Heads' logit
      dimensions.
    hidden_units: Iterable of integer number of hidden units per layer.
    feature_columns: Iterable of `feature_column._FeatureColumn` model inputs.
    activation_fn: Activation function applied to each layer.
    dropout: When not `None`, the probability we will drop out a given
      coordinate.
    input_layer_partitioner: Partitioner for input layer.

  Returns:
    A logit_fn (see below).

  Raises:
    ValueError: If units is not an int.
  """
  if not isinstance(units, int):
    raise ValueError('units must be an int.  Given type: {}'.format(
        type(units)))

  def dnn_logit_fn(features, mode):
    """Deep Neural Network logit_fn.

    Args:
      features: This is the first item returned from the `input_fn`
                passed to `train`, `evaluate`, and `predict`. This should be a
                single `Tensor` or `dict` of same.
      mode: Optional. Specifies if this training, evaluation or prediction. See
            `ModeKeys`.

    Returns:
      A `Tensor` representing the logits, or a list of `Tensor`'s representing
      multiple logits in the MultiHead case.
    """
    with variable_scope.variable_scope(
        'input_from_feature_columns',
        values=tuple(six.itervalues(features)),
        partitioner=input_layer_partitioner):
      net = feature_column_lib.input_layer(
          features=features, feature_columns=feature_columns)
    for layer_id, num_hidden_units in enumerate(hidden_units):
      with variable_scope.variable_scope(
          'hiddenlayer_%d' % layer_id, values=(net,)) as hidden_layer_scope:
        net = core_layers.dense(
            net,
            units=num_hidden_units,
            activation=activation_fn,
            kernel_initializer=init_ops.glorot_uniform_initializer(),
            name=hidden_layer_scope)
        if dropout is not None and mode == model_fn.ModeKeys.TRAIN:
          net = core_layers.dropout(net, rate=dropout, training=True)
      _add_hidden_layer_summary(net, hidden_layer_scope.name)

    with variable_scope.variable_scope('logits', values=(net,)) as logits_scope:
      logits = core_layers.dense(
          net,
          units=units,
          activation=None,
          kernel_initializer=init_ops.glorot_uniform_initializer(),
          name=logits_scope)
    _add_hidden_layer_summary(logits, logits_scope.name)

    return logits

  return dnn_logit_fn


def _dnn_model_fn(features,
                  labels,
                  mode,
                  head,
                  hidden_units,
                  feature_columns,
                  optimizer='Adagrad',
                  activation_fn=nn.relu,
                  dropout=None,
                  input_layer_partitioner=None,
                  config=None,
                  tpu_estimator_spec=False):
  """Deep Neural Net model_fn.

  Args:
    features: dict of `Tensor`.
    labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of
      dtype `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction.
      See `ModeKeys`.
    head: A `head_lib._Head` instance.
    hidden_units: Iterable of integer number of hidden units per layer.
    feature_columns: Iterable of `feature_column._FeatureColumn` model inputs.
    optimizer: String, `tf.Optimizer` object, or callable that creates the
      optimizer to use for training. If not specified, will use the Adagrad
      optimizer with a default learning rate of 0.05.
    activation_fn: Activation function applied to each layer.
    dropout: When not `None`, the probability we will drop out a given
      coordinate.
    input_layer_partitioner: Partitioner for input layer. Defaults
      to `min_max_variable_partitioner` with `min_slice_size` 64 << 20.
    config: `RunConfig` object to configure the runtime settings.
    tpu_estimator_spec: Whether to return a `_TPUEstimatorSpec` or
      or `model_fn.EstimatorSpec` instance.

  Returns:
    An `EstimatorSpec` instance.

  Raises:
    ValueError: If features has the wrong type.
  """
  if not isinstance(features, dict):
    raise ValueError('features should be a dictionary of `Tensor`s. '
                     'Given type: {}'.format(type(features)))

  optimizer = optimizers.get_optimizer_instance(
      optimizer, learning_rate=_LEARNING_RATE)
  num_ps_replicas = config.num_ps_replicas if config else 0

  partitioner = partitioned_variables.min_max_variable_partitioner(
      max_partitions=num_ps_replicas)
  with variable_scope.variable_scope(
      'dnn',
      values=tuple(six.itervalues(features)),
      partitioner=partitioner):
    input_layer_partitioner = input_layer_partitioner or (
        partitioned_variables.min_max_variable_partitioner(
            max_partitions=num_ps_replicas,
            min_slice_size=64 << 20))

    logit_fn = _dnn_logit_fn_builder(
        units=head.logits_dimension,
        hidden_units=hidden_units,
        feature_columns=feature_columns,
        activation_fn=activation_fn,
        dropout=dropout,
        input_layer_partitioner=input_layer_partitioner)
    logits = logit_fn(features=features, mode=mode)

    if tpu_estimator_spec:
      return head._create_tpu_estimator_spec(  # pylint: disable=protected-access
          features=features,
          mode=mode,
          labels=labels,
          optimizer=optimizer,
          logits=logits)
    else:
      return head.create_estimator_spec(
          features=features,
          mode=mode,
          labels=labels,
          optimizer=optimizer,
          logits=logits)


@estimator_export('estimator.DNNClassifier')
class DNNClassifier(estimator.Estimator):
  """A classifier for TensorFlow DNN models.

  Example:

  ```python
  categorical_feature_a = categorical_column_with_hash_bucket(...)
  categorical_feature_b = categorical_column_with_hash_bucket(...)

  categorical_feature_a_emb = embedding_column(
      categorical_column=categorical_feature_a, ...)
  categorical_feature_b_emb = embedding_column(
      categorical_column=categorical_feature_b, ...)

  estimator = DNNClassifier(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256])

  # Or estimator using the ProximalAdagradOptimizer optimizer with
  # regularization.
  estimator = DNNClassifier(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256],
      optimizer=tf.train.ProximalAdagradOptimizer(
        learning_rate=0.1,
        l1_regularization_strength=0.001
      ))

  # Or estimator using an optimizer with a learning rate decay.
  estimator = DNNClassifier(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256],
      optimizer=lambda: tf.AdamOptimizer(
          learning_rate=tf.exponential_decay(
              learning_rate=0.1,
              global_step=tf.get_global_step(),
              decay_steps=10000,
              decay_rate=0.96))

  # Or estimator with warm-starting from a previous checkpoint.
  estimator = DNNClassifier(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256],
      warm_start_from="/path/to/checkpoint/dir")

  # Input builders
  def input_fn_train: # returns x, y
    pass
  estimator.train(input_fn=input_fn_train, steps=100)

  def input_fn_eval: # returns x, y
    pass
  metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
  def input_fn_predict: # returns x, None
    pass
  predictions = estimator.predict(input_fn=input_fn_predict)
  ```

  Input of `train` and `evaluate` should have following features,
  otherwise there will be a `KeyError`:

  * if `weight_column` is not `None`, a feature with
    `key=weight_column` whose value is a `Tensor`.
  * for each `column` in `feature_columns`:
    - if `column` is a `_CategoricalColumn`, a feature with `key=column.name`
      whose `value` is a `SparseTensor`.
    - if `column` is a `_WeightedCategoricalColumn`, two features: the first
      with `key` the id column name, the second with `key` the weight column
      name. Both features' `value` must be a `SparseTensor`.
    - if `column` is a `_DenseColumn`, a feature with `key=column.name`
      whose `value` is a `Tensor`.

  Loss is calculated by using softmax cross entropy.

  @compatibility(eager)
  Estimators can be used while eager execution is enabled. Note that `input_fn`
  and all hooks are executed inside a graph context, so they have to be written
  to be compatible with graph mode. Note that `input_fn` code using `tf.data`
  generally works in both graph and eager modes.
  @end_compatibility
  """

  def __init__(
      self,
      hidden_units,
      feature_columns,
      model_dir=None,
      n_classes=2,
      weight_column=None,
      label_vocabulary=None,
      optimizer='Adagrad',
      activation_fn=nn.relu,
      dropout=None,
      input_layer_partitioner=None,
      config=None,
      warm_start_from=None,
      loss_reduction=losses.Reduction.SUM,
  ):
    """Initializes a `DNNClassifier` instance.

    Args:
      hidden_units: Iterable of number hidden units per layer. All layers are
        fully connected. Ex. `[64, 32]` means first layer has 64 nodes and
        second one has 32.
      feature_columns: An iterable containing all the feature columns used by
        the model. All items in the set should be instances of classes derived
        from `_FeatureColumn`.
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator to
        continue training a previously saved model.
      n_classes: Number of label classes. Defaults to 2, namely binary
        classification. Must be > 1.
      weight_column: A string or a `_NumericColumn` created by
        `tf.feature_column.numeric_column` defining feature column representing
        weights. It is used to down weight or boost examples during training. It
        will be multiplied by the loss of the example. If it is a string, it is
        used as a key to fetch weight tensor from the `features`. If it is a
        `_NumericColumn`, raw tensor is fetched by key `weight_column.key`,
        then weight_column.normalizer_fn is applied on it to get weight tensor.
      label_vocabulary: A list of strings represents possible label values. If
        given, labels must be string type and have any value in
        `label_vocabulary`. If it is not given, that means labels are
        already encoded as integer or float within [0, 1] for `n_classes=2` and
        encoded as integer values in {0, 1,..., n_classes-1} for `n_classes`>2 .
        Also there will be errors if vocabulary is not provided and labels are
        string.
      optimizer: An instance of `tf.Optimizer` used to train the model. Can also
        be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or
        callable. Defaults to Adagrad optimizer.
      activation_fn: Activation function applied to each layer. If `None`, will
        use `tf.nn.relu`.
      dropout: When not `None`, the probability we will drop out a given
        coordinate.
      input_layer_partitioner: Optional. Partitioner for input layer. Defaults
        to `min_max_variable_partitioner` with `min_slice_size` 64 << 20.
      config: `RunConfig` object to configure the runtime settings.
      warm_start_from: A string filepath to a checkpoint to warm-start from, or
        a `WarmStartSettings` object to fully configure warm-starting.  If the
        string filepath is provided instead of a `WarmStartSettings`, then all
        weights are warm-started, and it is assumed that vocabularies and Tensor
        names are unchanged.
      loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how
        to reduce training loss over batch. Defaults to `SUM`.
    """
    head = head_lib._binary_logistic_or_multi_class_head(  # pylint: disable=protected-access
        n_classes, weight_column, label_vocabulary, loss_reduction)
    def _model_fn(features, labels, mode, config):
      """Call the defined shared _dnn_model_fn."""
      return _dnn_model_fn(
          features=features,
          labels=labels,
          mode=mode,
          head=head,
          hidden_units=hidden_units,
          feature_columns=tuple(feature_columns or []),
          optimizer=optimizer,
          activation_fn=activation_fn,
          dropout=dropout,
          input_layer_partitioner=input_layer_partitioner,
          config=config)

    super(DNNClassifier, self).__init__(
        model_fn=_model_fn, model_dir=model_dir, config=config,
        warm_start_from=warm_start_from)


@estimator_export('estimator.DNNRegressor')
class DNNRegressor(estimator.Estimator):
  """A regressor for TensorFlow DNN models.

  Example:

  ```python
  categorical_feature_a = categorical_column_with_hash_bucket(...)
  categorical_feature_b = categorical_column_with_hash_bucket(...)

  categorical_feature_a_emb = embedding_column(
      categorical_column=categorical_feature_a, ...)
  categorical_feature_b_emb = embedding_column(
      categorical_column=categorical_feature_b, ...)

  estimator = DNNRegressor(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256])

  # Or estimator using the ProximalAdagradOptimizer optimizer with
  # regularization.
  estimator = DNNRegressor(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256],
      optimizer=tf.train.ProximalAdagradOptimizer(
        learning_rate=0.1,
        l1_regularization_strength=0.001
      ))

  # Or estimator using an optimizer with a learning rate decay.
  estimator = DNNRegressor(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256],
      optimizer=lambda: tf.AdamOptimizer(
          learning_rate=tf.exponential_decay(
              learning_rate=0.1,
              global_step=tf.get_global_step(),
              decay_steps=10000,
              decay_rate=0.96))

  # Or estimator with warm-starting from a previous checkpoint.
  estimator = DNNRegressor(
      feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb],
      hidden_units=[1024, 512, 256],
      warm_start_from="/path/to/checkpoint/dir")

  # Input builders
  def input_fn_train: # returns x, y
    pass
  estimator.train(input_fn=input_fn_train, steps=100)

  def input_fn_eval: # returns x, y
    pass
  metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10)
  def input_fn_predict: # returns x, None
    pass
  predictions = estimator.predict(input_fn=input_fn_predict)
  ```

  Input of `train` and `evaluate` should have following features,
  otherwise there will be a `KeyError`:

  * if `weight_column` is not `None`, a feature with
    `key=weight_column` whose value is a `Tensor`.
  * for each `column` in `feature_columns`:
    - if `column` is a `_CategoricalColumn`, a feature with `key=column.name`
      whose `value` is a `SparseTensor`.
    - if `column` is a `_WeightedCategoricalColumn`, two features: the first
      with `key` the id column name, the second with `key` the weight column
      name. Both features' `value` must be a `SparseTensor`.
    - if `column` is a `_DenseColumn`, a feature with `key=column.name`
      whose `value` is a `Tensor`.

  Loss is calculated by using mean squared error.

  @compatibility(eager)
  Estimators can be used while eager execution is enabled. Note that `input_fn`
  and all hooks are executed inside a graph context, so they have to be written
  to be compatible with graph mode. Note that `input_fn` code using `tf.data`
  generally works in both graph and eager modes.
  @end_compatibility
  """

  def __init__(
      self,
      hidden_units,
      feature_columns,
      model_dir=None,
      label_dimension=1,
      weight_column=None,
      optimizer='Adagrad',
      activation_fn=nn.relu,
      dropout=None,
      input_layer_partitioner=None,
      config=None,
      warm_start_from=None,
      loss_reduction=losses.Reduction.SUM,
  ):
    """Initializes a `DNNRegressor` instance.

    Args:
      hidden_units: Iterable of number hidden units per layer. All layers are
        fully connected. Ex. `[64, 32]` means first layer has 64 nodes and
        second one has 32.
      feature_columns: An iterable containing all the feature columns used by
        the model. All items in the set should be instances of classes derived
        from `_FeatureColumn`.
      model_dir: Directory to save model parameters, graph and etc. This can
        also be used to load checkpoints from the directory into a estimator to
        continue training a previously saved model.
      label_dimension: Number of regression targets per example. This is the
        size of the last dimension of the labels and logits `Tensor` objects
        (typically, these have shape `[batch_size, label_dimension]`).
      weight_column: A string or a `_NumericColumn` created by
        `tf.feature_column.numeric_column` defining feature column representing
        weights. It is used to down weight or boost examples during training. It
        will be multiplied by the loss of the example. If it is a string, it is
        used as a key to fetch weight tensor from the `features`. If it is a
        `_NumericColumn`, raw tensor is fetched by key `weight_column.key`,
        then weight_column.normalizer_fn is applied on it to get weight tensor.
      optimizer: An instance of `tf.Optimizer` used to train the model. Can also
        be a string (one of 'Adagrad', 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or
        callable. Defaults to Adagrad optimizer.
      activation_fn: Activation function applied to each layer. If `None`, will
        use `tf.nn.relu`.
      dropout: When not `None`, the probability we will drop out a given
        coordinate.
      input_layer_partitioner: Optional. Partitioner for input layer. Defaults
        to `min_max_variable_partitioner` with `min_slice_size` 64 << 20.
      config: `RunConfig` object to configure the runtime settings.
      warm_start_from: A string filepath to a checkpoint to warm-start from, or
        a `WarmStartSettings` object to fully configure warm-starting.  If the
        string filepath is provided instead of a `WarmStartSettings`, then all
        weights are warm-started, and it is assumed that vocabularies and Tensor
        names are unchanged.
      loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how
        to reduce training loss over batch. Defaults to `SUM`.
    """

    def _model_fn(features, labels, mode, config):
      """Call the defined shared _dnn_model_fn."""
      return _dnn_model_fn(
          features=features,
          labels=labels,
          mode=mode,
          head=head_lib._regression_head(  # pylint: disable=protected-access
              label_dimension=label_dimension, weight_column=weight_column,
              loss_reduction=loss_reduction),
          hidden_units=hidden_units,
          feature_columns=tuple(feature_columns or []),
          optimizer=optimizer,
          activation_fn=activation_fn,
          dropout=dropout,
          input_layer_partitioner=input_layer_partitioner,
          config=config)

    super(DNNRegressor, self).__init__(
        model_fn=_model_fn, model_dir=model_dir, config=config,
        warm_start_from=warm_start_from)