aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/eager/pywrap_tfe_src.cc
blob: 7456eb10f867e797e32e314159b70b3e06b3d01d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/python/eager/pywrap_tfe.h"

#include "tensorflow/c/c_api.h"
#include "tensorflow/c/eager/tape.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/types.h"

using tensorflow::string;

namespace {

#define PARSE_VALUE(fn_name, type, check_fn, parse_fn)                       \
  bool fn_name(const string& key, PyObject* py_value, TF_Status* status,     \
               type* value) {                                                \
    if (check_fn(py_value)) {                                                \
      *value = static_cast<type>(parse_fn(py_value));                        \
      return true;                                                           \
    } else {                                                                 \
      TF_SetStatus(status, TF_INVALID_ARGUMENT,                              \
                   tensorflow::strings::StrCat(                              \
                       "Expecting " #type " value for attr ", key, ", got ", \
                       py_value->ob_type->tp_name)                           \
                       .c_str());                                            \
      return false;                                                          \
    }                                                                        \
  }

#if PY_MAJOR_VERSION >= 3
PARSE_VALUE(ParseIntValue, int, PyLong_Check, PyLong_AsLong)
PARSE_VALUE(ParseInt64Value, int64_t, PyLong_Check, PyLong_AsLong)
#else
PARSE_VALUE(ParseIntValue, int, PyInt_Check, PyInt_AsLong)
PARSE_VALUE(ParseInt64Value, int64_t, PyInt_Check, PyInt_AsLong)
#endif
PARSE_VALUE(ParseFloatValue, float, PyFloat_Check, PyFloat_AsDouble)
#undef PARSE_VALUE

bool ParseStringValue(const string& key, PyObject* py_value, TF_Status* status,
                      const char** value) {
  if (PyBytes_Check(py_value)) {
    *value = PyBytes_AsString(py_value);
    return true;
  }
#if PY_MAJOR_VERSION >= 3
  if (PyUnicode_Check(py_value)) {
    *value = PyUnicode_AsUTF8(py_value);
    return true;
  }
#endif
  TF_SetStatus(
      status, TF_INVALID_ARGUMENT,
      tensorflow::strings::StrCat("Expecting a string value for attr ", key,
                                  ", got ", py_value->ob_type->tp_name)
          .c_str());
  return false;
}

bool ParseBoolValue(const string& key, PyObject* py_value, TF_Status* status,
                    unsigned char* value) {
  *value = PyObject_IsTrue(py_value);
  return true;
}

const char* ParseProtoValue(const string& key, const char* proto_name,
                            PyObject* py_value, size_t* size,
                            TF_Status* status) {
  char* output = nullptr;
  Py_ssize_t py_size;
  if (PyBytes_Check(py_value) &&
      PyBytes_AsStringAndSize(py_value, &output, &py_size) >= 0) {
    *size = static_cast<size_t>(py_size);
    return output;
  }
#if PY_MAJOR_VERSION >= 3
  if (PyUnicode_Check(py_value) &&
      (output = PyUnicode_AsUTF8AndSize(py_value, &py_size)) != nullptr) {
    *size = static_cast<size_t>(py_size);
    return output;
  }
#endif
  TF_SetStatus(status, TF_INVALID_ARGUMENT,
               tensorflow::strings::StrCat("Expecting a string (serialized ",
                                           proto_name, ") value for attr ", key)
                   .c_str());
  return nullptr;
}

bool SetOpAttrList(TFE_Op* op, const char* key, PyObject* py_list,
                   TF_AttrType type, TF_Status* status) {
  if (!PySequence_Check(py_list)) {
    TF_SetStatus(
        status, TF_INVALID_ARGUMENT,
        tensorflow::strings::StrCat("Expecting sequence value for attr ", key,
                                    ", got ", py_list->ob_type->tp_name)
            .c_str());
    return false;
  }
  const int num_values = PySequence_Size(py_list);

#define PARSE_LIST(c_type, parse_fn)                                \
  std::unique_ptr<c_type[]> values(new c_type[num_values]);         \
  for (int i = 0; i < num_values; ++i) {                            \
    auto py_value = PySequence_ITEM(py_list, i);                    \
    if (!parse_fn(key, py_value, status, &values[i])) return false; \
  }

  if (type == TF_ATTR_STRING) {
    PARSE_LIST(const char*, ParseStringValue);
    TFE_OpSetAttrStringList(op, key, values.get(), num_values);
  } else if (type == TF_ATTR_INT) {
    PARSE_LIST(int64_t, ParseInt64Value);
    TFE_OpSetAttrIntList(op, key, values.get(), num_values);
  } else if (type == TF_ATTR_FLOAT) {
    PARSE_LIST(float, ParseFloatValue);
    TFE_OpSetAttrFloatList(op, key, values.get(), num_values);
  } else if (type == TF_ATTR_BOOL) {
    PARSE_LIST(unsigned char, ParseBoolValue);
    TFE_OpSetAttrBoolList(op, key, values.get(), num_values);
  } else if (type == TF_ATTR_TYPE) {
    PARSE_LIST(int, ParseIntValue);
    TFE_OpSetAttrTypeList(op, key,
                          reinterpret_cast<const TF_DataType*>(values.get()),
                          num_values);
  } else if (type == TF_ATTR_SHAPE) {
    // Make one pass through the input counting the total number of
    // dims across all the input lists.
    int total_dims = 0;
    for (int i = 0; i < num_values; ++i) {
      auto py_value = PySequence_ITEM(py_list, i);
      if (py_value != Py_None) {
        if (!PySequence_Check(py_value)) {
          TF_SetStatus(
              status, TF_INVALID_ARGUMENT,
              tensorflow::strings::StrCat(
                  "Expecting None or sequence value for element", i,
                  " of attr ", key, ", got ", py_value->ob_type->tp_name)
                  .c_str());
          return false;
        }
        const auto size = PySequence_Size(py_value);
        total_dims += size;
      }
    }
    // Allocate a buffer that can fit all of the dims together.
    std::unique_ptr<int64_t[]> buffer(new int64_t[total_dims]);
    // Copy the input dims into the buffer and set dims to point to
    // the start of each list's dims.
    std::unique_ptr<const int64_t* []> dims(new const int64_t*[num_values]);
    std::unique_ptr<int[]> num_dims(new int[num_values]);
    int64_t* offset = buffer.get();
    for (int i = 0; i < num_values; ++i) {
      auto py_value = PySequence_ITEM(py_list, i);
      if (py_value == Py_None) {
        dims[i] = nullptr;
        num_dims[i] = -1;
      } else {
        const auto size = PySequence_Size(py_value);
        dims[i] = offset;
        num_dims[i] = size;
        for (int j = 0; j < size; ++j) {
          auto inner_py_value = PySequence_ITEM(py_value, j);
          if (inner_py_value == Py_None) {
            *offset = -1;
          } else if (!ParseInt64Value(key, inner_py_value, status, offset)) {
            return false;
          }
          ++offset;
        }
      }
    }
    TFE_OpSetAttrShapeList(op, key, dims.get(), num_dims.get(), num_values,
                           status);
    if (TF_GetCode(status) != TF_OK) return false;
  } else {
    TF_SetStatus(status, TF_UNIMPLEMENTED,
                 tensorflow::strings::StrCat("Attr ", key,
                                             " has unhandled list type ", type)
                     .c_str());
    return false;
  }
#undef PARSE_LIST
  return true;
}

bool SetOpAttrScalar(TFE_Context* ctx, TFE_Op* op, const char* key,
                     PyObject* py_value, TF_AttrType type, TF_Status* status) {
  if (type == TF_ATTR_STRING) {
    const char* value;
    if (!ParseStringValue(key, py_value, status, &value)) return false;
    TFE_OpSetAttrString(op, key, value);
  } else if (type == TF_ATTR_INT) {
    int64_t value;
    if (!ParseInt64Value(key, py_value, status, &value)) return false;
    TFE_OpSetAttrInt(op, key, value);
  } else if (type == TF_ATTR_FLOAT) {
    float value;
    if (!ParseFloatValue(key, py_value, status, &value)) return false;
    TFE_OpSetAttrFloat(op, key, value);
  } else if (type == TF_ATTR_BOOL) {
    unsigned char value;
    if (!ParseBoolValue(key, py_value, status, &value)) return false;
    TFE_OpSetAttrBool(op, key, value);
  } else if (type == TF_ATTR_TYPE) {
    int value;
    if (!ParseIntValue(key, py_value, status, &value)) return false;
    TFE_OpSetAttrType(op, key, static_cast<TF_DataType>(value));
  } else if (type == TF_ATTR_SHAPE) {
    if (py_value == Py_None) {
      TFE_OpSetAttrShape(op, key, nullptr, -1, status);
    } else {
      if (!PySequence_Check(py_value)) {
        TF_SetStatus(status, TF_INVALID_ARGUMENT,
                     tensorflow::strings::StrCat(
                         "Expecting None or sequence value for attr", key,
                         ", got ", py_value->ob_type->tp_name)
                         .c_str());
        return false;
      }
      const auto num_dims = PySequence_Size(py_value);
      std::unique_ptr<int64_t[]> dims(new int64_t[num_dims]);
      for (int i = 0; i < num_dims; ++i) {
        auto inner_py_value = PySequence_ITEM(py_value, i);
        if (inner_py_value == Py_None) {
          dims[i] = -1;
        } else if (!ParseInt64Value(key, inner_py_value, status, &dims[i])) {
          return false;
        }
      }
      TFE_OpSetAttrShape(op, key, dims.get(), num_dims, status);
    }
    if (TF_GetCode(status) != TF_OK) return false;
  } else if (type == TF_ATTR_FUNC) {
    // Allow:
    // (1) String function name, OR
    // (2) A Python object with a .name attribute
    //     (A crude test for being a
    //     tensorflow.python.framework.function._DefinedFunction)
    //     (which is what the various "defun" or "Defun" decorators do).
    // And in the future also allow an object that can encapsulate
    // the function name and its attribute values.
    const char* func_name = nullptr;
    if (!ParseStringValue(key, py_value, status, &func_name)) {
      PyObject* name_attr = PyObject_GetAttrString(py_value, "name");
      if (name_attr == nullptr ||
          !ParseStringValue(key, name_attr, status, &func_name)) {
        TF_SetStatus(
            status, TF_INVALID_ARGUMENT,
            tensorflow::strings::StrCat(
                "unable to set function value attribute from a ",
                py_value->ob_type->tp_name,
                " object. If you think this is an error, please file an issue "
                "at https://github.com/tensorflow/tensorflow/issues/new")
                .c_str());
        return false;
      }
    }
    TFE_Op* func = TFE_NewOp(ctx, func_name, status);
    if (TF_GetCode(status) != TF_OK) return false;
    TFE_OpSetAttrFunction(op, key, func);
    TFE_DeleteOp(func);
  } else {
    TF_SetStatus(
        status, TF_UNIMPLEMENTED,
        tensorflow::strings::StrCat("Attr ", key, " has unhandled type ", type)
            .c_str());
    return false;
  }
  return true;
}

void SetOpAttrs(TFE_Context* ctx, TFE_Op* op, PyObject* attrs,
                TF_Status* out_status) {
  if (attrs == Py_None) return;
  if (!PyTuple_Check(attrs)) {
    TF_SetStatus(out_status, TF_INVALID_ARGUMENT, "Expecting an attrs tuple.");
    return;
  }
  Py_ssize_t len = PyTuple_GET_SIZE(attrs);
  if ((len & 1) != 0) {
    TF_SetStatus(out_status, TF_INVALID_ARGUMENT,
                 "Expecting attrs tuple to have even length.");
    return;
  }
  // Parse attrs
  for (Py_ssize_t i = 0; i < len; i += 2) {
    PyObject* py_key = PyTuple_GET_ITEM(attrs, i);
    PyObject* py_value = PyTuple_GET_ITEM(attrs, i + 1);
#if PY_MAJOR_VERSION >= 3
    const char* key = PyBytes_Check(py_key) ? PyBytes_AsString(py_key)
                                            : PyUnicode_AsUTF8(py_key);
#else
    const char* key = PyBytes_AsString(py_key);
#endif
    unsigned char is_list = 0;
    const TF_AttrType type = TFE_OpGetAttrType(op, key, &is_list, out_status);
    if (TF_GetCode(out_status) != TF_OK) return;
    if (is_list != 0) {
      if (!SetOpAttrList(op, key, py_value, type, out_status)) return;
    } else {
      if (!SetOpAttrScalar(ctx, op, key, py_value, type, out_status)) return;
    }
  }
}

// Python subclass of Exception that is created on not ok Status.
tensorflow::mutex exception_class_mutex(tensorflow::LINKER_INITIALIZED);
PyObject* exception_class GUARDED_BY(exception_class_mutex) = nullptr;

static tensorflow::mutex _uid_mutex(tensorflow::LINKER_INITIALIZED);
static tensorflow::int64 _uid GUARDED_BY(_uid_mutex) = 0;

}  // namespace

void TFE_Py_Execute(TFE_Context* ctx, const char* device_name,
                    const char* op_name, TFE_InputTensorHandles* inputs,
                    PyObject* attrs, TFE_OutputTensorHandles* outputs,
                    TF_Status* out_status) {
  TFE_Op* op = TFE_NewOp(ctx, op_name, out_status);
  if (TF_GetCode(out_status) != TF_OK) return;
  TFE_OpSetDevice(op, device_name, out_status);
  if (TF_GetCode(out_status) == TF_OK) {
    for (int i = 0; i < inputs->size() && TF_GetCode(out_status) == TF_OK;
         ++i) {
      TFE_OpAddInput(op, inputs->at(i), out_status);
    }
  }
  if (TF_GetCode(out_status) == TF_OK) {
    SetOpAttrs(ctx, op, attrs, out_status);
  }
  Py_BEGIN_ALLOW_THREADS;
  if (TF_GetCode(out_status) == TF_OK) {
    int num_outputs = outputs->size();
    TFE_Execute(op, outputs->data(), &num_outputs, out_status);
    outputs->resize(num_outputs);
  }
  if (TF_GetCode(out_status) != TF_OK) {
    TF_SetStatus(out_status, TF_GetCode(out_status),
                 tensorflow::strings::StrCat(TF_Message(out_status),
                                             " [Op:", op_name, "]")
                     .c_str());
  }
  TFE_DeleteOp(op);
  Py_END_ALLOW_THREADS;
}

PyObject* TFE_Py_RegisterExceptionClass(PyObject* e) {
  tensorflow::mutex_lock l(exception_class_mutex);
  if (exception_class != nullptr) {
    Py_DECREF(exception_class);
  }
  if (PyObject_IsSubclass(e, PyExc_Exception) <= 0) {
    exception_class = nullptr;
    PyErr_SetString(PyExc_TypeError,
                    "TFE_Py_RegisterExceptionClass: "
                    "Registered class should be subclass of Exception.");
    return nullptr;
  } else {
    Py_INCREF(e);
    exception_class = e;
    Py_RETURN_NONE;
  }
}

int MaybeRaiseExceptionFromTFStatus(TF_Status* status, PyObject* exception) {
  if (TF_GetCode(status) == TF_OK) return 0;
  const char* msg = TF_Message(status);
  if (exception == nullptr) {
    tensorflow::mutex_lock l(exception_class_mutex);
    if (exception_class != nullptr) {
      PyErr_SetObject(exception_class,
                      Py_BuildValue("si", msg, TF_GetCode(status)));
      return -1;
    } else {
      exception = PyExc_RuntimeError;
    }
  }
  // May be update already set exception.
  PyErr_SetString(exception, msg);
  return -1;
}

int MaybeRaiseExceptionFromStatus(const tensorflow::Status& status,
                                  PyObject* exception) {
  if (status.ok()) return 0;
  const char* msg = status.error_message().c_str();
  if (exception == nullptr) {
    tensorflow::mutex_lock l(exception_class_mutex);
    if (exception_class != nullptr) {
      PyErr_SetObject(exception_class, Py_BuildValue("si", msg, status.code()));
      return -1;
    } else {
      exception = PyExc_RuntimeError;
    }
  }
  // May be update already set exception.
  PyErr_SetString(exception, msg);
  return -1;
}

char* TFE_GetPythonString(PyObject* o) {
  if (PyBytes_Check(o)) {
    return PyBytes_AsString(o);
  }
#if PY_MAJOR_VERSION >= 3
  if (PyUnicode_Check(o)) {
    return PyUnicode_AsUTF8(o);
  }
#endif
  return nullptr;
}

int64_t get_uid() {
  tensorflow::mutex_lock l(_uid_mutex);
  return _uid++;
}

PyObject* TFE_Py_UID() { return PyLong_FromLongLong(get_uid()); }

void TFE_DeleteContextCapsule(PyObject* context) {
  TF_Status* status = TF_NewStatus();
  TFE_Context* ctx =
      reinterpret_cast<TFE_Context*>(PyCapsule_GetPointer(context, nullptr));
  TFE_DeleteContext(ctx, status);
  TF_DeleteStatus(status);
}

typedef struct {
  PyObject_HEAD
      /* Type-specific fields go here. */
      tensorflow::eager::GradientTape* tape;
} TFE_Py_Tape;

static void TFE_Py_Tape_Delete(PyObject* tape) {
  delete reinterpret_cast<TFE_Py_Tape*>(tape)->tape;
  Py_TYPE(tape)->tp_free(tape);
}

static PyTypeObject TFE_Py_Tape_Type = {
    PyVarObject_HEAD_INIT(nullptr, 0) "tfe.Tape", /* tp_name */
    sizeof(TFE_Py_Tape),                          /* tp_basicsize */
    0,                                            /* tp_itemsize */
    &TFE_Py_Tape_Delete,                          /* tp_dealloc */
    nullptr,                                      /* tp_print */
    nullptr,                                      /* tp_getattr */
    nullptr,                                      /* tp_setattr */
    nullptr,                                      /* tp_reserved */
    nullptr,                                      /* tp_repr */
    nullptr,                                      /* tp_as_number */
    nullptr,                                      /* tp_as_sequence */
    nullptr,                                      /* tp_as_mapping */
    nullptr,                                      /* tp_hash  */
    nullptr,                                      /* tp_call */
    nullptr,                                      /* tp_str */
    nullptr,                                      /* tp_getattro */
    nullptr,                                      /* tp_setattro */
    nullptr,                                      /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT,                           /* tp_flags */
    "TFE_Py_Tape objects",                        /* tp_doc */
};

PyObject* TFE_Py_NewTape() {
  TFE_Py_Tape_Type.tp_new = PyType_GenericNew;
  if (PyType_Ready(&TFE_Py_Tape_Type) < 0) return nullptr;
  TFE_Py_Tape* tape = PyObject_NEW(TFE_Py_Tape, &TFE_Py_Tape_Type);
  tape->tape = new tensorflow::eager::GradientTape();
  return reinterpret_cast<PyObject*>(tape);
}

static tensorflow::int64 MakeInt(PyObject* integer) {
#if PY_MAJOR_VERSION >= 3
  return PyLong_AsLong(integer);
#else
  return PyInt_AsLong(integer);
#endif
}

static std::vector<tensorflow::int64> MakeIntList(PyObject* list) {
  if (list == Py_None) {
    return {};
  }
  PyObject* seq = PySequence_Fast(list, "expected a sequence");
  if (seq == nullptr) {
    return {};
  }
  int len = PySequence_Size(list);
  std::vector<tensorflow::int64> tensor_ids;
  tensor_ids.reserve(len);
  for (int i = 0; i < len; ++i) {
    PyObject* item = PySequence_Fast_GET_ITEM(seq, i);
    if (PyLong_Check(item)) {
      tensorflow::int64 id = MakeInt(item);
      tensor_ids.push_back(id);
    } else {
      tensor_ids.push_back(-1);
    }
  }
  Py_DECREF(seq);
  return tensor_ids;
}

PyObject* TFE_Py_TapeShouldRecord(PyObject* py_tape, PyObject* tensors) {
  TFE_Py_Tape* tape = reinterpret_cast<TFE_Py_Tape*>(py_tape);
  return PyBool_FromLong(tape->tape->ShouldRecord(MakeIntList(tensors)));
}

void TFE_Py_TapeWatch(PyObject* tape, tensorflow::int64 tensor_id) {
  reinterpret_cast<TFE_Py_Tape*>(tape)->tape->Watch(tensor_id);
}

// TODO(apassos) have a fast path for eager tensors here which gets information
// from the handle instead of from the python object, and use this only for the
// case of graph tensors.
static tensorflow::eager::TapeTensor TapeTensorFromTensor(PyObject* tensor) {
  PyObject* id_field = PyObject_GetAttrString(tensor, "_id");
  tensorflow::int64 id = MakeInt(id_field);
  Py_DECREF(id_field);
  if (PyErr_Occurred() != nullptr) {
    return tensorflow::eager::TapeTensor{
        id, static_cast<tensorflow::DataType>(0), tensorflow::TensorShape({})};
  }
  PyObject* dtype_object = PyObject_GetAttrString(tensor, "dtype");
  PyObject* dtype_enum = PyObject_GetAttrString(dtype_object, "_type_enum");
  Py_DECREF(dtype_object);
  tensorflow::DataType dtype =
      static_cast<tensorflow::DataType>(MakeInt(dtype_enum));
  Py_DECREF(dtype_enum);
  if (PyErr_Occurred() != nullptr) {
    return tensorflow::eager::TapeTensor{id, dtype,
                                         tensorflow::TensorShape({})};
  }
  static char _shape_tuple[] = "_shape_tuple";
  PyObject* shape_tuple = PyObject_CallMethod(tensor, _shape_tuple, nullptr);
  if (PyErr_Occurred() != nullptr) {
    return tensorflow::eager::TapeTensor{id, dtype,
                                         tensorflow::TensorShape({})};
  }
  auto l = MakeIntList(shape_tuple);
  Py_DECREF(shape_tuple);
  // Replace -1, which represents accidental Nones which can occur in graph mode
  // and can cause errors in shape cosntruction with 0s.
  for (auto& c : l) {
    if (c < 0) {
      c = 0;
    }
  }
  tensorflow::TensorShape shape(l);
  return tensorflow::eager::TapeTensor{id, dtype, shape};
}

void TFE_Py_TapeRecordOperation(PyObject* tape, PyObject* op_type,
                                PyObject* output_tensors,
                                PyObject* input_tensor_ids,
                                PyObject* backward_function) {
  std::vector<tensorflow::int64> input_ids = MakeIntList(input_tensor_ids);
  std::vector<tensorflow::eager::TapeTensor> output_info;
  PyObject* seq = PySequence_Fast(output_tensors,
                                  "expected a sequence of integer tensor ids");
  int len = PySequence_Size(output_tensors);
  output_info.reserve(len);
  for (int i = 0; i < len; ++i) {
    output_info.push_back(
        TapeTensorFromTensor(PySequence_Fast_GET_ITEM(seq, i)));
    if (PyErr_Occurred() != nullptr) {
      Py_DECREF(seq);
      return;
    }
  }
  Py_DECREF(seq);
  Py_INCREF(backward_function);
  reinterpret_cast<TFE_Py_Tape*>(tape)->tape->RecordOperation(
      PyBytes_AsString(op_type), output_info, input_ids, backward_function,
      [backward_function]() { Py_DECREF(backward_function); });
}

void TFE_Py_TapeDeleteTrace(PyObject* tape, tensorflow::int64 tensor_id) {
  reinterpret_cast<TFE_Py_Tape*>(tape)->tape->DeleteTrace(tensor_id);
}

// TODO(apassos) when backprop.py moves to C most of this exporting logic can
// disappear.
PyObject* TFE_Py_TapeExport(PyObject* tape) {
  std::pair<tensorflow::eager::TensorTape, tensorflow::eager::OpTape> exported =
      reinterpret_cast<TFE_Py_Tape*>(tape)->tape->Export();
  PyObject* tensor_tape = PyDict_New();
  for (const auto& pair : exported.first) {
    PyObject* tid = PyLong_FromLong(pair.first);
    PyObject* opid = PyLong_FromLong(pair.second);
    PyDict_SetItem(tensor_tape, tid, opid);
    Py_DECREF(tid);
    Py_DECREF(opid);
  }

  PyObject* op_tape = PyDict_New();
  for (const auto& pair : exported.second) {
    PyObject* opid = PyLong_FromLong(pair.first);
    const auto& entry = pair.second;
    PyObject* op_type = PyBytes_FromString(entry.op_type.c_str());
    PyObject* output_ids = PyList_New(entry.output_tensor_info.size());
    for (int i = 0; i < entry.output_tensor_info.size(); ++i) {
      PyObject* tid = PyLong_FromLong(entry.output_tensor_info[i].id);
      PyList_SET_ITEM(output_ids, i, tid);
    }
    PyObject* input_ids = PyList_New(entry.input_tensor_id.size());
    for (int i = 0; i < entry.input_tensor_id.size(); ++i) {
      PyObject* tid = PyLong_FromLong(entry.input_tensor_id[i]);
      PyList_SET_ITEM(input_ids, i, tid);
    }
    PyObject* backward_function =
        reinterpret_cast<PyObject*>(entry.backward_function);
    PyObject* output_shape_and_dtype =
        PyList_New(entry.output_tensor_info.size());
    for (int i = 0; i < entry.output_tensor_info.size(); ++i) {
      const tensorflow::TensorShape& shape = entry.output_tensor_info[i].shape;
      PyObject* shape_list = PyList_New(shape.dims());
      for (int j = 0; j < shape.dims(); ++j) {
        PyList_SET_ITEM(shape_list, j, PyLong_FromLong(shape.dim_size(j)));
      }
      PyObject* type_enum = PyLong_FromLong(entry.output_tensor_info[i].dtype);
      PyObject* tuple = PyTuple_Pack(2, shape_list, type_enum);
      Py_DECREF(shape_list);
      Py_DECREF(type_enum);
      PyList_SET_ITEM(output_shape_and_dtype, i, tuple);
    }
    PyObject* opinfo = PyTuple_Pack(5, op_type, output_ids, input_ids,
                                    backward_function, output_shape_and_dtype);
    Py_DECREF(op_type);
    Py_DECREF(output_ids);
    Py_DECREF(input_ids);
    Py_DECREF(backward_function);
    Py_DECREF(output_shape_and_dtype);
    PyDict_SetItem(op_tape, opid, opinfo);
    Py_DECREF(opid);
    Py_DECREF(opinfo);
  }
  PyObject* retval = PyTuple_Pack(2, tensor_tape, op_tape);
  Py_DECREF(tensor_tape);
  Py_DECREF(op_tape);
  return retval;
}