aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/eager/pywrap_tensor.cc
blob: ea604647faede0e5b86a17938d0a7c8a7621dec1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <stdlib.h>

#include "tensorflow/python/lib/core/ndarray_tensor_bridge.h"
#include "tensorflow/python/lib/core/numpy.h"
#include "tensorflow/python/lib/core/py_seq_tensor.h"
#include "tensorflow/python/lib/core/safe_ptr.h"

#include "tensorflow/python/eager/pywrap_tensor.h"
#include "tensorflow/python/eager/pywrap_tfe.h"

#include "tensorflow/c/c_api.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/python/lib/core/ndarray_tensor.h"

// forward declare
struct EagerTensor;

namespace {

// An instance of _EagerTensorProfiler that will receive callbacks about
// events on eager tensors. This is set by TFE_Py_InitEagerTensor, if at all.
PyObject* eager_tensor_profiler = nullptr;

TFE_Context* GetContext(PyObject* ctx) {
  TFE_Context* context =
      reinterpret_cast<TFE_Context*>(PyCapsule_GetPointer(ctx, nullptr));
  if (context == nullptr) {
    PyErr_SetString(PyExc_TypeError,
                    tensorflow::strings::StrCat(
                        "Expecting a PyCapsule encoded context handle. Got ",
                        Py_TYPE(ctx)->tp_name)
                        .c_str());
  }
  return context;
}

// Convert a Python numpy.ndarray object to a TFE_TensorHandle.
// The two may share underlying storage so changes to one may reflect in the
// other.
TFE_TensorHandle* NumpyToTensorHandle(PyObject* obj) {
  tensorflow::Tensor t;
  auto cppstatus = tensorflow::NdarrayToTensor(obj, &t);
  if (cppstatus.ok()) {
    return TFE_NewTensorHandle(t);
  } else {
    PyErr_SetString(PyExc_ValueError,
                    tensorflow::strings::StrCat(
                        "Failed to convert numpy ndarray to a Tensor (",
                        cppstatus.error_message(), ").")
                        .c_str());
    return nullptr;
  }
}

TFE_TensorHandle* CopyToDevice(TFE_TensorHandle* handle, PyObject* ctx,
                               PyObject* dev) {
  const char* device = "";
  if (dev != nullptr && dev != Py_None) {
    device = PyBytes_AsString(dev);
#if PY_MAJOR_VERSION >= 3
    if (device == nullptr) {
      PyErr_Clear();
      device = PyUnicode_AsUTF8(dev);
    }
#endif
    if (device == nullptr) {
      PyErr_SetString(PyExc_TypeError,
                      "Error parsing device argument to CopyToDevice");
      return nullptr;
    }
  }
  TFE_Context* context = GetContext(ctx);
  if (context == nullptr) {  // PyErr already set by GetContext
    return nullptr;
  }
  auto status = tensorflow::make_safe(TF_NewStatus());
  TFE_TensorHandle* new_handle =
      TFE_TensorHandleCopyToDevice(handle, context, device, status.get());
  if (TF_GetCode(status.get()) != TF_OK) {
    PyErr_SetString(
        PyExc_RuntimeError,
        tensorflow::strings::StrCat("Error copying tensor to device: ", device,
                                    ". ", TF_Message(status.get()))
            .c_str());
    return nullptr;
  }
  return new_handle;
}

// Helper function to convert `v` to an int and store it in `*out`. Returns true
// on success, false otherwise.
// Note that we assume that v is a python int (not long) representing a
// TF_DataType value.
bool PyIntToDataType(PyObject* v, int* out) {
#if PY_MAJOR_VERSION < 3
  if (PyInt_Check(v)) {
    *out = PyInt_AS_LONG(v);
    return true;
  }
#else
  if (PyLong_Check(v)) {
    *out = PyLong_AsLong(v);
    return true;
  }
#endif
  return false;
}

// Helper function to create a python integer from TF_DataType.
PyObject* PyIntFromDataType(TF_DataType l) {
#if PY_MAJOR_VERSION < 3
  return PyInt_FromLong(l);
#else
  return PyLong_FromLong(l);
#endif
}

}  // namespace

namespace tensorflow {
// Casts data referred to by `handle` from type `src_type_enum` to type
// `dst_type_enum`.
TFE_TensorHandle* EagerCast(TFE_Context* ctx, TFE_TensorHandle* handle,
                            TF_DataType src_type_enum,
                            TF_DataType dst_type_enum, TF_Status* out_status) {
  if (ctx == nullptr) return nullptr;
  const char* op_name = "Cast";
  const char* device_name = "/job:localhost/replica:0/task:0/device:CPU:0";
  TFE_Op* op = TFE_NewOp(ctx, op_name, out_status);
#define RETURN_ERROR  \
  {                   \
    TFE_DeleteOp(op); \
    return nullptr;   \
  }
  if (TF_GetCode(out_status) != TF_OK) RETURN_ERROR
  TFE_OpSetDevice(op, device_name, out_status);
  if (TF_GetCode(out_status) != TF_OK) RETURN_ERROR
  TFE_OpAddInput(op, handle, out_status);
  if (TF_GetCode(out_status) != TF_OK) RETURN_ERROR
  TFE_OpSetAttrType(op, "SrcT", src_type_enum);
  TFE_OpSetAttrType(op, "DstT", dst_type_enum);
  TFE_TensorHandle* output = nullptr;
  int num_outputs = 1;
  TFE_Execute(op, &output, &num_outputs, out_status);
  if (TF_GetCode(out_status) != TF_OK || num_outputs != 1 ||
      output == nullptr) {
    if (output != nullptr) {
      TFE_DeleteTensorHandle(output);
    }
    RETURN_ERROR
  }
  TFE_DeleteOp(op);
  return output;
#undef RETURN_ERROR
}

TFE_TensorHandle* ConvertToEagerTensor(PyObject* value, PyObject* dtype) {
  int desired_dtype = -1;
  if (dtype != Py_None) {
    if (!PyIntToDataType(dtype, &desired_dtype)) {
      PyErr_SetString(PyExc_TypeError,
                      tensorflow::strings::StrCat(
                          "Expecting a DataType value for dtype. Got ",
                          Py_TYPE(dtype)->tp_name)
                          .c_str());
      return nullptr;
    }
  }
  if (PyArray_Check(value)) {
    int desired_np_dtype = -1;
    if (desired_dtype >= 0) {
      if (!tensorflow::TF_DataType_to_PyArray_TYPE(
               static_cast<TF_DataType>(desired_dtype), &desired_np_dtype)
               .ok()) {
        PyErr_SetString(PyExc_TypeError,
                        tensorflow::strings::StrCat(
                            "Invalid dtype argument value ", desired_dtype)
                            .c_str());
        return nullptr;
      }
    }
    PyArrayObject* array = reinterpret_cast<PyArrayObject*>(value);
    int current_np_dtype = PyArray_TYPE(array);
    auto safe_value = tensorflow::make_safe(static_cast<PyObject*>(nullptr));
    if ((desired_np_dtype >= 0 && desired_np_dtype != current_np_dtype) ||
        !PyArray_ISCARRAY(array)) {
      int new_dtype =
          desired_np_dtype >= 0 ? desired_np_dtype : current_np_dtype;
      safe_value = tensorflow::make_safe(
          PyArray_FromAny(value, PyArray_DescrFromType(new_dtype), 0, 0,
                          NPY_ARRAY_CARRAY | NPY_ARRAY_FORCECAST, nullptr));
      if (PyErr_Occurred()) return nullptr;
      if (safe_value == nullptr) {
        PyErr_SetString(PyExc_ValueError, "Error while casting a numpy value");
        return nullptr;
      }
      value = safe_value.get();
    }
    return NumpyToTensorHandle(value);
  } else {
    tensorflow::Tensor t;
    // TODO(josh11b): Have PySeqToTensor set python errors instead of
    // returning Status.
    auto cppstatus = tensorflow::PySeqToTensor(value, dtype, &t);
    if (!cppstatus.ok()) {
      PyErr_SetString(PyExc_ValueError, cppstatus.error_message().c_str());
      return nullptr;
    }
    return TFE_NewTensorHandle(t);
  }
}
}  // namespace tensorflow

extern "C" {

static const int kMaxEagerTensorParentSize = 64;

// TODO(agarwal): store context handle in EagerTensor.
typedef struct EagerTensor {
  PyObject_HEAD;
  // Note that we leave kMaxEagerTensorParentSize bytes here for use by the
  // parent class. The parent class is set at runtime, so we don't know the
  // exact size at compile time.
  char unused[kMaxEagerTensorParentSize];
  TFE_TensorHandle* handle;
  int64_t id;
  // This mirrors tensorflow.core.framework.ops.Tensor._handle_data Which will
  // be None for tensors of type other than DT_REOSURCE. For DT_RESOURCE
  // tensors, this will contain a serialized HandleData proto with shape
  // inference metadata about shapes and dtypes of resources accessible from
  // this handle.
  // Note that we assume that handle_data cannot participate in reference
  // cycles, and hence don't provide GC support for it.
  PyObject* handle_data;

  // This stores `_keras_mask` object and is set by Tensorflow layers.
  PyObject* keras_mask;

  // This stores `_tensor_shape`, a cached `TensorShape` object, and is set the
  // first time that `_EagerTensorBase`'s `shape` property is called.
  PyObject* tensor_shape;

  // We store a status object here as an optimization to avoid allocating a new
  // Status objects on different functions that operate on EagerTensor and need
  // to use a TF_Status object. However note that accesses to `status` are not
  // thread-safe.
  TF_Status* status;

  PyObject* weakreflist; /* List of weak references */
} EagerTensor;

namespace {

// Returns true on success - successfully invoked or no profiler registered.
// Returns false if some error occurred.
bool MaybeInvokeCreatedOnEagerTensorProfiler(EagerTensor* created_tensor) {
  if (eager_tensor_profiler != nullptr) {
#if PY_MAJOR_VERSION < 3
    PyObject* created_method_name = PyString_InternFromString("created");
#else
    PyObject* created_method_name = PyUnicode_InternFromString("created");
#endif
    if (created_method_name == nullptr) {
      return false;
    }
    PyObject* result = PyObject_CallMethodObjArgs(
        eager_tensor_profiler, created_method_name, created_tensor, NULL);
    if (result == nullptr) {
      LOG(ERROR) << "Invoking created() on EagerTensor profiler failed";
      // While we can potentially continue because the error is related to
      // profiling, we choose to return an error because:
      //  - If profiling is used, the user likely wants to stop execution on
      //    profiling errors.
      //  - Error in profiling code might have left some state in an invalid
      //    form that can lead to an error later on. Better to fail fast.
      Py_DECREF(created_method_name);
      return false;
    }
    Py_DECREF(created_method_name);
    Py_DECREF(result);
  }
  return true;
}

}  // namespace

// tp_init for EagerTensor.
int EagerTensor_init(EagerTensor* self, PyObject* args, PyObject* kwds) {
  self->id = get_uid();
  self->handle = nullptr;
  Py_INCREF(Py_None);
  self->handle_data = Py_None;
  Py_INCREF(Py_None);
  self->keras_mask = Py_None;
  Py_INCREF(Py_None);
  self->tensor_shape = Py_None;
  self->status = TF_NewStatus();
  self->weakreflist = nullptr;
  PyObject* value;
  PyObject* context = nullptr;
  PyObject* device = nullptr;
  PyObject* dtype = Py_None;
  const char* kwlist[] = {"value", "context", "device", "dtype", nullptr};
  if (!PyArg_ParseTupleAndKeywords(args, kwds, "OOO|O",
                                   const_cast<char**>(kwlist), &value, &context,
                                   &device, &dtype)) {
    return -1;
  }
  // Extract dtype
  int desired_dtype = -1;
  if (dtype != Py_None) {
    if (!PyIntToDataType(dtype, &desired_dtype)) {
      PyErr_SetString(PyExc_TypeError,
                      tensorflow::strings::StrCat(
                          "Expecting a DataType value for dtype. Got ",
                          Py_TYPE(dtype)->tp_name)
                          .c_str());
      return -1;
    }
  }
  PyErr_Clear();
  tensorflow::Safe_TFE_TensorHandlePtr handle =
      tensorflow::make_safe(static_cast<TFE_TensorHandle*>(
          tensorflow::ConvertToEagerTensor(value, dtype)));
  if (handle == nullptr) return -1;
  TF_DataType handle_dtype = TFE_TensorHandleDataType(handle.get());
  if (desired_dtype >= 0 && desired_dtype != handle_dtype) {
    handle = tensorflow::make_safe(tensorflow::EagerCast(
        GetContext(context), handle.get(), handle_dtype,
        static_cast<TF_DataType>(desired_dtype), self->status));
    if (TF_GetCode(self->status) != TF_OK) {
      PyErr_SetString(PyExc_TypeError,
                      tensorflow::strings::StrCat(
                          "Error while casting from DataType ", handle_dtype,
                          " to ", desired_dtype, ". ", TF_Message(self->status))
                          .c_str());
      // Cleanup self->status before returning.
      TF_SetStatus(self->status, TF_OK, "");
      return -1;
    }
    handle_dtype = TFE_TensorHandleDataType(handle.get());
  }

  // Almost all TensorFlow kernels for GPU devices keep int32 tensors in host
  // memory. We approximate the same behavior for eager execution - keeping
  // int32 tensors in host memory.
  //
  // We do so to preclude the need for callers into such kernels from having to
  // explicitly place the int32 tensors in host memory. For example, without
  // this, one needed:
  //
  // with tf.device('/gpu:0'):
  //   ...// code here
  //   with tf.device('/cpu:0'):
  //     shape = tf.constant(...)
  //   y = tf.random_uniform(shape)
  //
  // Without the CPU device block, tfe.ops.random_uniform would fail since the
  // kernel expects the shape in host memory.
  //
  // With this support, we simplify the code:
  //
  // with tf.device('/gpu:0'):
  //   y = tf.random_uniform(...)
  //
  // The approximation is not exact there are GPU kernels which do not require
  // host memory for int32 tensors. This will lead to a discrepancy between
  // eager and graph execution.
  // TODO(ashankar): Fix this.
  if (handle_dtype != TF_INT32) {
    // Note that this is a shallow copy and will share the underlying buffer
    // if copying to the same device.
    handle = tensorflow::make_safe(CopyToDevice(handle.get(), context, device));
    if (handle == nullptr) return -1;
  }
  self->handle = handle.release();

  if (!MaybeInvokeCreatedOnEagerTensorProfiler(self)) {
    return -1;
  }

  return 0;
}

// tp_dealloc for EagerTensor.
void EagerTensor_dealloc(EagerTensor* self) {
  // Clear weak references to self.
  // Needs to happen before any actual destruction.
  if (self->weakreflist != nullptr) {
    PyObject_ClearWeakRefs((PyObject*)self);
  }

  TF_DeleteStatus(self->status);
  Py_DECREF(self->handle_data);
  Py_DECREF(self->keras_mask);
  Py_DECREF(self->tensor_shape);
  if (self->handle != nullptr) {
    TFE_DeleteTensorHandle(self->handle);
    self->handle = nullptr;
  }
  // We have the global interpreter lock, so use this chance to perform delayed
  // refcount decrements.
  tensorflow::ClearDecrefCache();
  auto id = self->id;
  Py_TYPE(self)->tp_free(self);
  TFE_Py_TapeSetDeleteTrace(id);
}

// Getter for `_id`.
static PyObject* EagerTensor_getid(EagerTensor* self, void* closure) {
  return PyLong_FromLongLong(self->id);
}

// Getter for `_datatype_enum`.
static PyObject* EagerTensor_datatype_enum(EagerTensor* self) {
  return PyIntFromDataType(TFE_TensorHandleDataType(self->handle));
}

// Getter for `_shape_tuple`.
static PyObject* EagerTensor_shape_tuple(EagerTensor* self) {
  auto handle = self->handle;
  int n = TFE_TensorHandleNumDims(handle, self->status);
  if (MaybeRaiseExceptionFromTFStatus(self->status, PyExc_ValueError)) {
    // Cleanup self->status before returning.
    TF_SetStatus(self->status, TF_OK, "");
    return nullptr;
  }
  PyObject* shape = PyTuple_New(n);
  if (PyErr_Occurred()) return nullptr;
  for (int i = 0; i < n; ++i) {
    PyObject* dim =
        PyLong_FromLongLong(TFE_TensorHandleDim(handle, i, self->status));
    if (MaybeRaiseExceptionFromTFStatus(self->status, PyExc_ValueError) ||
        dim == nullptr || PyTuple_SetItem(shape, i, dim) != 0) {
      // Cleanup self->status before returning.
      TF_SetStatus(self->status, TF_OK, "");
      Py_DECREF(shape);
      if (dim != nullptr) Py_DECREF(dim);
      PyErr_SetString(PyExc_RuntimeError, "Error while creating shape");
      return nullptr;
    }
  }
  return shape;
}

// Getter for `_rank`.
static PyObject* EagerTensor_rank(EagerTensor* self) {
  int num_dims = TFE_TensorHandleNumDims(self->handle, self->status);
  if (MaybeRaiseExceptionFromTFStatus(self->status, PyExc_ValueError)) {
    // Cleanup self->status before returning.
    TF_SetStatus(self->status, TF_OK, "");
    return nullptr;
  }
#if PY_MAJOR_VERSION < 3
  return PyInt_FromLong(num_dims);
#else
  return PyLong_FromLong(num_dims);
#endif
}

static PyObject* EagerTensor_tensor_handle(EagerTensor* self, void* unused) {
  Py_INCREF(self->handle_data);
  return self->handle_data;
}

static int EagerTensor_settensor_handle(EagerTensor* self, PyObject* value,
                                        void* unused) {
  Py_DECREF(self->handle_data);
  Py_INCREF(value);
  self->handle_data = value;
  return 0;
}

static PyObject* EagerTensor_keras_mask(EagerTensor* self, void* unused) {
  Py_INCREF(self->keras_mask);
  return self->keras_mask;
}

static int EagerTensor_setkeras_mask(EagerTensor* self, PyObject* value,
                                     void* unused) {
  Py_DECREF(self->keras_mask);
  Py_INCREF(value);
  self->keras_mask = value;
  return 0;
}

static PyObject* EagerTensor_tensor_shape(EagerTensor* self, void* unused) {
  Py_INCREF(self->tensor_shape);
  return self->tensor_shape;
}

static int EagerTensor_settensor_shape(EagerTensor* self, PyObject* value,
                                       void* unused) {
  Py_DECREF(self->tensor_shape);
  Py_INCREF(value);
  self->tensor_shape = value;
  return 0;
}
// Function `_copy_to_device`.
static PyObject* EagerTensor_copy_to_device(EagerTensor* self, PyObject* args,
                                            PyObject* kwds) {
  const char* kwlist[] = {"context", "device", nullptr};
  PyObject* ctx = nullptr;
  PyObject* dev = nullptr;
  if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO", const_cast<char**>(kwlist),
                                   &ctx, &dev) ||
      !ctx || !dev) {
    return nullptr;
  }
  auto handle = CopyToDevice(self->handle, ctx, dev);
  return EagerTensorFromHandle(handle);
}

// Function `_numpy`.
// Convert an EagerTensor to a Python numpy.ndarray object.
// The two may share underlying storage so changes to one may reflect in the
// other.
// Note that if `self` is not on CPU, we raise an Exception.
static PyObject* EagerTensor_numpy(EagerTensor* self) {
  auto status = tensorflow::make_safe(TF_NewStatus());
  const tensorflow::Tensor* t =
      TFE_TensorHandleUnderlyingTensorInHostMemory(self->handle, status.get());
  if (TF_GetCode(status.get()) != TF_OK) {
    PyErr_SetString(PyExc_RuntimeError, TF_Message(status.get()));
    return nullptr;
  }
  PyObject* ret = nullptr;
  auto cppstatus = tensorflow::TensorToNdarray(*t, &ret);
  if (MaybeRaiseExceptionFromStatus(cppstatus, PyExc_RuntimeError)) {
    Py_XDECREF(ret);
    return nullptr;
  } else {
    return ret;
  }
}

// Getter `device`.
static PyObject* EagerTensor_device(EagerTensor* self) {
  const char* device = TFE_TensorHandleDeviceName(self->handle, self->status);
  if (MaybeRaiseExceptionFromTFStatus(self->status, PyExc_ValueError)) {
    // Cleanup self->status before returning.
    TF_SetStatus(self->status, TF_OK, "");
    return nullptr;
  }
#if PY_MAJOR_VERSION >= 3
  return PyUnicode_FromString(device);
#else
  return PyBytes_FromString(device);
#endif
}

static PyGetSetDef EagerTensor_getseters[] = {
    {const_cast<char*>("_id"), (getter)EagerTensor_getid, nullptr,
     const_cast<char*>("_id"), nullptr},
    {const_cast<char*>("device"), (getter)EagerTensor_device, nullptr,
     const_cast<char*>("device"), nullptr},
    {const_cast<char*>("_handle_data"), (getter)EagerTensor_tensor_handle,
     (setter)EagerTensor_settensor_handle, const_cast<char*>("_tensor_handle"),
     nullptr},
    {const_cast<char*>("_keras_mask"), (getter)EagerTensor_keras_mask,
     (setter)EagerTensor_setkeras_mask, const_cast<char*>("_keras_mask"),
     nullptr},
    {const_cast<char*>("_tensor_shape"), (getter)EagerTensor_tensor_shape,
     (setter)EagerTensor_settensor_shape, const_cast<char*>("_tensor_shape"),
     nullptr},
    {nullptr} /* Sentinel */
};

static PyMethodDef EagerTensor_methods[] = {
    {"_numpy", (PyCFunction)EagerTensor_numpy, METH_NOARGS,
     PyDoc_STR("_numpy")},
    {"_datatype_enum", (PyCFunction)EagerTensor_datatype_enum, METH_NOARGS,
     PyDoc_STR("_datatype_enum")},
    {"_shape_tuple", (PyCFunction)EagerTensor_shape_tuple, METH_NOARGS,
     PyDoc_STR("_shape_tuple")},
    {"_rank", (PyCFunction)EagerTensor_rank, METH_NOARGS, PyDoc_STR("_rank")},
    {"_copy_to_device", (PyCFunction)EagerTensor_copy_to_device,
     METH_VARARGS | METH_KEYWORDS, PyDoc_STR("_copy_to_device")},
    {nullptr, nullptr},
};

// Note that here we are trying to dynamically create a new class as a subclass
// of a "HEAPTYPE" class that is itself created in python code and passed in at
// runtime. This is fairly atypical and undocumented.
//
// We use the following strategy for this. Unfortunately, we have to use
// different approaches for python2.x vs python3.x
// For python2.x, we create the class as a static type and set its tp_base to
// the passed in type. Unfortunately setting tp_flags to include
// Py_TPFLAGS_HEAPTYPE does not work by itself since it needs some more
// initialization of the underlying PyHeapTypeObject and not doing that leads to
// some random crashes especially during garbage collection.
// python3.x explicitly disables a static subclass of a HEAPTYPE base class.
// However it provides a new function, PyType_FromSpecWithBases, to create
// types dynamically.

// Type object for EagerTensor. This is set by TFE_Py_InitEagerTensor.
PyTypeObject* EagerTensorType = nullptr;

#if PY_MAJOR_VERSION >= 3
static PyType_Slot EagerTensor_Type_slots[] = {
    {Py_tp_dealloc, reinterpret_cast<void*>(EagerTensor_dealloc)},
    {Py_tp_methods, reinterpret_cast<void*>(EagerTensor_methods)},
    {Py_tp_getset, reinterpret_cast<void*>(EagerTensor_getseters)},
    {Py_tp_init, reinterpret_cast<void*>(EagerTensor_init)},
    {0, nullptr},
};

PyType_Spec EagerTensor_Type_spec = {"EagerTensor", sizeof(EagerTensor), 0,
                                     Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE,
                                     EagerTensor_Type_slots};
#else
// TODO(agarwal): support active_trace.
static PyTypeObject _EagerTensorType = {
    // clang-format off
    PyVarObject_HEAD_INIT(nullptr, 0)
    // clang-format on
    "EagerTensor",                      /* tp_name */
    sizeof(EagerTensor),                /* tp_basicsize */
    0,                                  /* tp_itemsize */
    (destructor)EagerTensor_dealloc,    /* tp_dealloc */
    nullptr,                            /* tp_print */
    nullptr,                            /* tp_getattr */
    nullptr,                            /* tp_setattr */
    nullptr,                            /* tp_compare */
    nullptr,                            /* tp_repr */
    nullptr,                            /* tp_as_number */
    nullptr,                            /* tp_as_sequence */
    nullptr,                            /* tp_as_mapping */
    nullptr,                            /* tp_hash */
    nullptr,                            /* tp_call */
    nullptr,                            /* tp_str */
    nullptr,                            /* tp_getattro */
    nullptr,                            /* tp_setattro */
    nullptr,                            /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT,                 /* tp_flags */
    nullptr,                            /* tp_doc */
    nullptr,                            /* tp_traverse */
    nullptr,                            /* tp_clear */
    nullptr,                            /* tp_richcompare */
    offsetof(EagerTensor, weakreflist), /* tp_weaklistoffset */
    nullptr,                            /* tp_iter */
    nullptr,                            /* tp_iternext */
    EagerTensor_methods,                /* tp_methods */
    nullptr,                            /* tp_members */
    EagerTensor_getseters,              /* tp_getset */
    nullptr,                            /* tp_base */
    nullptr,                            /* tp_dict */
    nullptr,                            /* tp_descr_get */
    nullptr,                            /* tp_descr_set */
    0,                                  /* tp_dictoffset */
    (initproc)EagerTensor_init,         /* tp_init */
    nullptr,                            /* tp_alloc */
    nullptr,                            /* tp_new */
};

#endif

}  // extern "C"

bool EagerTensor_CheckExact(const PyObject* o) {
  return Py_TYPE(o) == EagerTensorType;
}

TFE_TensorHandle* EagerTensor_Handle(const PyObject* o) {
  return reinterpret_cast<const EagerTensor*>(o)->handle;
}

PyObject* EagerTensorFromHandle(TFE_TensorHandle* handle) {
  if (handle == nullptr) {
    return nullptr;
  }
  EagerTensor* t = reinterpret_cast<EagerTensor*>(
      EagerTensorType->tp_new(EagerTensorType, Py_None, Py_None));
  if (t != nullptr) {
    t->id = get_uid();
    Py_INCREF(Py_None);
    t->handle_data = Py_None;
    Py_INCREF(Py_None);
    t->keras_mask = Py_None;
    Py_INCREF(Py_None);
    t->tensor_shape = Py_None;
    t->handle = handle;
    t->status = TF_NewStatus();
    t->weakreflist = nullptr;

    if (!MaybeInvokeCreatedOnEagerTensorProfiler(t)) {
      return nullptr;
    }
  }
  return reinterpret_cast<PyObject*>(t);
}

tensorflow::int64 EagerTensor_id(const PyObject* tensor) {
  CHECK(EagerTensor_CheckExact(tensor));
  return reinterpret_cast<const EagerTensor*>(tensor)->id;
}

tensorflow::DataType EagerTensor_dtype(const PyObject* tensor) {
  CHECK(EagerTensor_CheckExact(tensor));
  return static_cast<tensorflow::DataType>(TFE_TensorHandleDataType(
      reinterpret_cast<const EagerTensor*>(tensor)->handle));
}

PyObject* TFE_Py_InitEagerTensor(PyObject* base_class) {
  if (!PyType_Check(base_class)) {
    PyErr_SetString(
        PyExc_TypeError,
        tensorflow::strings::StrCat(
            "Expecting a class definition for `base_class` passed to ",
            "TFE_InitEagerTensor. Got ", Py_TYPE(base_class)->tp_name)
            .c_str());
    return nullptr;
  }
  // Note that we allocated kMaxEagerTensorParentSize bytes of unused space in
  // EagerTensor to allow for the space usage of the base class.
  PyTypeObject* base_class_type = reinterpret_cast<PyTypeObject*>(base_class);
  if (base_class_type->tp_basicsize > kMaxEagerTensorParentSize) {
    PyErr_SetString(
        PyExc_TypeError,
        tensorflow::strings::StrCat(
            "Unable to create subclass EagerTensor from base class ",
            Py_TYPE(base_class)->tp_name,
            ". Need its size to be <= ", kMaxEagerTensorParentSize)
            .c_str());
    return nullptr;
  }
  if (base_class_type->tp_itemsize != 0) {
    PyErr_SetString(
        PyExc_TypeError,
        tensorflow::strings::StrCat(
            "Unable to create subclass EagerTensor from base class ",
            Py_TYPE(base_class)->tp_name,
            " which supports variable length instances.")
            .c_str());
    return nullptr;
  }
  Py_INCREF(base_class);
#if PY_MAJOR_VERSION >= 3
  PyObject* bases = PyTuple_New(1);
  PyTuple_SET_ITEM(bases, 0, base_class);
  EagerTensorType = reinterpret_cast<PyTypeObject*>(
      PyType_FromSpecWithBases(&EagerTensor_Type_spec, bases));
  if (PyErr_Occurred()) {
    return nullptr;
  }
  if (EagerTensorType == nullptr) {
    PyErr_SetString(PyExc_RuntimeError, "Error while creating EagerTensorType");
    return nullptr;
  }
#else
  _EagerTensorType.tp_base = reinterpret_cast<PyTypeObject*>(base_class);

  if (PyType_Ready(&_EagerTensorType) < 0) {
    if (PyErr_Occurred()) return nullptr;
    PyErr_SetString(PyExc_RuntimeError,
                    "Error while creating EagerTensor type.");
    return nullptr;
  }
  EagerTensorType = &_EagerTensorType;
  Py_INCREF(EagerTensorType);
#endif
  // We disable instance based attribute lookup. Its not clear if these
  // dictionaries are correctly initialized in the first place.
  EagerTensorType->tp_dictoffset = 0;
  return reinterpret_cast<PyObject*>(EagerTensorType);
}

PyObject* TFE_Py_SetEagerTensorProfiler(PyObject* profiler) {
  Py_XDECREF(eager_tensor_profiler);

  if (profiler == Py_None) {
    eager_tensor_profiler = nullptr;
  } else {
    eager_tensor_profiler = profiler;
    Py_INCREF(eager_tensor_profiler);
  }
  Py_RETURN_NONE;
}

PyObject* TFE_Py_TensorShapeSlice(PyObject* tensors, int slice_dim) {
  if (!PyList_Check(tensors) && !PyTuple_Check(tensors)) {
    PyErr_SetString(PyExc_TypeError,
                    tensorflow::strings::StrCat(
                        "tensors argument must be a list or a tuple. Got \"",
                        Py_TYPE(tensors)->tp_name, "\"")
                        .c_str());
    return nullptr;
  }
  if (slice_dim < 0) {
    PyErr_SetString(
        PyExc_ValueError,
        tensorflow::strings::StrCat("Slice dimension must be non-negative. "
                                    "Got ",
                                    slice_dim)
            .c_str());
    return nullptr;
  }

  Py_ssize_t num_tensors = PySequence_Fast_GET_SIZE(tensors);
  int64_t num_tensors_int = static_cast<int64_t>(num_tensors);
  auto tensor = tensorflow::make_safe(TF_AllocateTensor(
      TF_INT32, &num_tensors_int, /*num_dims=*/1, /*len=*/4 * num_tensors_int));
  int32_t* data = reinterpret_cast<int32_t*>(TF_TensorData(tensor.get()));
  auto status = tensorflow::make_safe(TF_NewStatus());
  for (Py_ssize_t i = 0; i < num_tensors; ++i) {
    PyObject* tensor_obj = PySequence_Fast_GET_ITEM(tensors, i);
    if (!EagerTensor_CheckExact(tensor_obj)) {
      PyErr_SetString(PyExc_TypeError,
                      tensorflow::strings::StrCat(
                          "Expected a list of EagerTensors but "
                          "element ",
                          i, " has type \"", Py_TYPE(tensor_obj)->tp_name, "\"")
                          .c_str());
      return nullptr;
    }

    EagerTensor* t = reinterpret_cast<EagerTensor*>(tensor_obj);
    TFE_TensorHandle* handle = t->handle;
    int num_dims = TFE_TensorHandleNumDims(handle, status.get());
    if (MaybeRaiseExceptionFromTFStatus(status.get(), PyExc_ValueError)) {
      return nullptr;
    }
    if (slice_dim >= num_dims) {
      PyErr_SetString(
          PyExc_IndexError,
          tensorflow::strings::StrCat("Slice dimension (", slice_dim,
                                      ") must be smaller than rank of all "
                                      "tensors, but tensor at index ",
                                      i, " has rank ", num_dims)
              .c_str());
      return nullptr;
    }
    int64_t dim = TFE_TensorHandleDim(handle, slice_dim, status.get());
    if (MaybeRaiseExceptionFromTFStatus(status.get(), PyExc_ValueError)) {
      return nullptr;
    }
    data[i] = dim;
  }

  TFE_TensorHandle* handle = TFE_NewTensorHandle(tensor.get(), status.get());
  if (TF_GetCode(status.get()) != TF_OK) {
    PyErr_SetString(
        PyExc_RuntimeError,
        tensorflow::strings::StrCat("Failed to construct new tensor handle: ",
                                    TF_Message(status.get()))
            .c_str());
    return nullptr;
  }

  return EagerTensorFromHandle(handle);
}

PyObject* TFE_Py_TensorShapeOnDevice(PyObject* tensor) {
  if (!EagerTensor_CheckExact(tensor)) {
    PyErr_SetString(
        PyExc_TypeError,
        tensorflow::strings::StrCat("Expected an EagerTensors but got type \"",
                                    Py_TYPE(tensor)->tp_name, "\"")
            .c_str());
    return nullptr;
  }
  TFE_TensorHandle* handle = EagerTensor_Handle(tensor);

  auto status = tensorflow::make_safe(TF_NewStatus());
  TFE_TensorDebugInfo* debug_info =
      TFE_TensorHandleTensorDebugInfo(handle, status.get());
  if (TF_GetCode(status.get()) != TF_OK) {
    PyErr_SetString(
        PyExc_RuntimeError,
        tensorflow::strings::StrCat("Error retrieving tensor's device shape: ",
                                    TF_Message(status.get()))
            .c_str());
    return nullptr;
  }

  int rank = TFE_TensorDebugInfoOnDeviceNumDims(debug_info);
  PyObject* shape = PyTuple_New(rank);
  for (int i = 0; i < rank; ++i) {
    tensorflow::int64 dim_size = TFE_TensorDebugInfoOnDeviceDim(debug_info, i);
    PyTuple_SET_ITEM(shape, i, PyLong_FromLongLong(dim_size));
  }
  TFE_DeleteTensorDebugInfo(debug_info);

  return shape;
}