aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/eager/function.py
blob: 5e4f9e29da0324248acc31131f3ecc03b5edfeee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=unidiomatic-typecheck
"""Defun decorator for defining graph-mode functions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import functools
import threading

import numpy as np

from tensorflow.core.framework import attr_value_pb2
from tensorflow.core.framework import function_pb2
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.eager import context
from tensorflow.python.eager import execute
from tensorflow.python.eager import tape
from tensorflow.python.eager.graph_only_ops import graph_placeholder
from tensorflow.python.framework import c_api_util
from tensorflow.python.framework import dtypes as dtypes_module
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import functional_ops
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.util import compat
from tensorflow.python.util import nest
from tensorflow.python.util import tf_decorator


def capture_value(tensor_map, value, dtype, name):
  """Capture a value from outside the function, to pass in as an extra arg."""
  captured_value = tensor_map.get(ops.tensor_id(value), None)
  if captured_value is None:
    # Note: setting ops.control_dependencies(None) ensures we always put
    # capturing placeholders outside of any control flow context.
    with ops.control_dependencies(None):
      captured_value = graph_placeholder(
          dtype=dtype or value.dtype, shape=value.shape, name=name)
    if captured_value.dtype == dtypes_module.resource:
      if ops._USE_C_SHAPES:  # pylint: disable=protected-access
        if isinstance(value, ops.EagerTensor):
          handle_data = value._handle_data  # pylint: disable=protected-access
        else:
          handle_data = resource_variable_ops.get_resource_handle_data(value)
      else:
        handle_data = value._handle_data  # pylint: disable=protected-access
      if handle_data is not None and handle_data.is_set:
        # pylint: disable=protected-access
        if ops._USE_C_SHAPES:
          pywrap_tensorflow.SetResourceHandleShapeAndType(
              captured_value.graph._c_graph, captured_value._as_tf_output(),
              handle_data.SerializeToString())
        else:
          captured_value._handle_data = handle_data
        # pylint: enable=protected-access
        # Ensure that shapes and dtypes are propagated.
        shapes, types = zip(*[(pair.shape, pair.dtype)
                              for pair in handle_data.shape_and_type])
        ranks = [len(s.dim) if not s.unknown_rank else -1 for s in shapes]
        shapes = [[d.size for d in s.dim]
                  if not s.unknown_rank else None for s in shapes]
        pywrap_tensorflow.TF_GraphSetOutputHandleShapesAndTypes_wrapper(
            captured_value._op._graph._c_graph,  # pylint: disable=protected-access
            captured_value._as_tf_output(),  # pylint: disable=protected-access
            shapes, ranks, types)

    tensor_map[ops.tensor_id(value)] = (value, captured_value)
  else:
    captured_value = captured_value[1]
  tape.record_operation("captured_value", [captured_value], [value],
                        lambda x: [x])
  return captured_value


class CapturingGraph(ops.Graph):
  """Graph used when constructing eager functions."""

  def __init__(self, captures):
    super(CapturingGraph, self).__init__()
    self._building_function = True
    self.captures = captures
    # Map from resource tensor name to last op (in program order) which uses
    # this tensor. Used to enforce that execution order matches program order
    # for resource tensors.
    self._last_op_using_resource_tensor = {}

  # TODO(apassos) remove once the C API is used by default.
  def _use_c_api_hack(self):
    return True

  def clear_resource_control_flow_state(self):
    self._last_op_using_resource_tensor = {}

  def capture(self, tensor, name=None):
    if isinstance(tensor, ops.EagerTensor):
      if name is None:
        name = str(ops.uid())
      return capture_value(self.captures, tensor, tensor.dtype, name)
    if tensor.graph is not self:
      if name is None:
        name = tensor.op.name
      return capture_value(self.captures, tensor, tensor.dtype, name)
    return tensor

  def create_op(
      self,
      op_type,
      inputs,
      dtypes,  # pylint: disable=redefined-outer-name
      input_types=None,
      name=None,
      attrs=None,
      op_def=None,
      compute_shapes=True,
      compute_device=True):
    # TODO(apassos) this should do some form of alias analysis as ops which
    # forward the resources such as Identity and Switch can cause serialization
    # to fail.
    for i, inp in enumerate(inputs):
      inputs[i] = self.capture(inp)
    return super(CapturingGraph, self).create_op(
        op_type, inputs, dtypes, input_types, name, attrs, op_def,
        compute_device=compute_device)


# pylint: disable=invalid-name
class HelperContext(object):
  """ControlFlowContext with a customizable AddOp method."""

  def __init__(self, add_op_internal):
    self._add_op_internal = add_op_internal
    self._values = set()  # control flow code sometimes updates this.

  def _AddOpInternal(self, op):
    self._add_op_internal(op)

  @property
  def outer_context(self):
    return self._outer_context

  def GetWhileContext(self):
    if self._outer_context:
      return self._outer_context.GetWhileContext()

  def IsWhileContext(self):
    return False

  def IsCondContext(self):
    return False

  def IsXLAContext(self):
    return False

  def AddOp(self, op):  # pylint: disable=invalid-name
    self._AddOpInternal(op)
    if self._outer_context:
      self._outer_context.AddOp(op)

  def AddName(self, _):
    pass

  def AddInnerOp(self, op):
    self._AddOpInternal(op)
    if self._outer_context:
      self._outer_context.AddInnerOp(op)

  def AddValue(self, val):
    if self._outer_context:
      return self._outer_context.AddValue(val)
    else:
      return val

  def EnterGradientColocation(self, op, gradient_uid):
    """Start building a gradient colocated with an op."""
    if self._outer_context:
      self._outer_context.EnterGradientColocation(op, gradient_uid)

  def ExitGradientColocation(self, op, gradient_uid):
    """Start building a gradient colocated with an op."""
    if self._outer_context:
      self._outer_context.ExitGradientColocation(op, gradient_uid)

  def __enter__(self):
    # pylint: disable=protected-access
    self._g = ops.get_default_graph()
    self._outer_context = self._g._get_control_flow_context()
    self._g._set_control_flow_context(self)
    self._nested_contexts = (
        self._outer_context._nested_contexts
        if self._outer_context is not None else None)
    # pylint: enable=protected-access

  def __exit__(self, *_):
    self._g._set_control_flow_context(self._outer_context)  # pylint: disable=protected-access
# pylint: enable=invalid-name


def _forward_name(n):
  """The name of a generated forward defun named n."""
  return "__forward_%s_%s" % (n, ops.uid())


def _backward_name(n):
  """The name of a generated backward defun named n."""
  return "__backward_%s_%s" % (n, ops.uid())


def _inference_name(n):
  """The name of a forward-but-no-gradient defun named n."""
  return "__inference_%s_%s" % (n, ops.uid())


def _register(fn):
  """Registers the function `fn`."""
  context.context().add_function(fn)


_xla_compile_attr = "_XlaCompile"


# TODO(apassos) get rid of this by splitting framework.function._DefinedFunction
# so it doesn't have the definition-generating logic and is just a container for
# an already-defined function.
class _EagerDefinedFunction(object):
  """Callable with the interface of `framework.function._DefinedFunction.`

  `_EagerDefinedFunction` encapsulates a function definition and its properties,
  and it provides a method for calling the encapsulated function. Some Ops
  take functions as attributes, which have type `func`; an instance of this
  class may be provided as the value of these `func` attributes.
  """

  def __init__(self, name, graph, operations, inputs, outputs, attrs):
    """Initializes an eager defined function.

    Args:
      name: str, the name for the created function.
      graph: Graph, the graph containing the operations in the function
      operations: list of Operation; the subset of operations in the graph
        which will be in the function
      inputs: the tensors in the graph to be used as inputs to the function
      outputs: the tensors in the graph which will be outputs to the function
      attrs: dict mapping names of attributes to their AttrValue values
    """
    fn = pywrap_tensorflow.TF_GraphToFunction_wrapper(
        graph._c_graph,  # pylint: disable=protected-access
        compat.as_str(name),
        False,
        [o._c_op for o in operations],  # pylint: disable=protected-access
        [t._as_tf_output() for t in inputs],  # pylint: disable=protected-access
        [t._as_tf_output() for t in outputs],  # pylint: disable=protected-access
        [],
        None,
        compat.as_str(""))

    for name, attr_value in attrs.items():
      serialized = attr_value.SerializeToString()
      # TODO(iga): this creates and deletes a new TF_Status for every attr.
      # It might be worth creating a convenient way to re-use status.
      pywrap_tensorflow.TF_FunctionSetAttrValueProto(
          fn, compat.as_str(name), serialized)
    self._xla_compile = _xla_compile_attr in attrs

    # TODO(apassos) avoid creating a FunctionDef (specially to grab the
    # signature, but also in general it's nice not to depend on it.
    with c_api_util.tf_buffer() as buffer_:
      pywrap_tensorflow.TF_FunctionToFunctionDef(fn, buffer_)
      proto_data = pywrap_tensorflow.TF_GetBuffer(buffer_)
    function_def = function_pb2.FunctionDef()
    function_def.ParseFromString(compat.as_bytes(proto_data))
    if context.executing_eagerly():
      _register(fn)
    self.definition = function_def
    self.name = compat.as_bytes(function_def.signature.name)
    self.signature = function_def.signature
    self._num_outputs = len(self.signature.output_arg)
    self._output_types = [o.type for o in self.signature.output_arg]
    self.grad_func_name = None
    self.python_grad_func = None
    self._c_func = c_api_util.ScopedTFFunction(fn)
    self._grad_func = None
    self._graph = graph
    self._stateful_ops = tuple(op for op in operations if op.op_def.is_stateful)

  def add_to_graph(self, g):
    # pylint: disable=protected-access
    if self.name not in g._functions:
      g._add_function(self)
    for f in self._graph._functions.values():
      if f.name not in g._functions:
        g._add_function(f)
    # pylint: enable=protected-access

  @property
  def stateful_ops(self):
    return self._stateful_ops

  def call(self, ctx, args, output_shapes):
    """Calls this function with `args` as inputs.

    Function execution respects device annotations only if the function won't
    be compiled with xla.

    Args:
      ctx: a Context object
      args: a list of arguments to supply this function with.
      output_shapes: shapes to which outputs should be set; ignored when
        executing eagerly.

    Returns:
      The outputs of the function call.
    """

    executing_eagerly = ctx.executing_eagerly()

    xla_compile = self._xla_compile or (executing_eagerly and
                                        ctx.device_spec.device_type == "TPU")

    if xla_compile:
      # XLA compilation relies upon a custom kernel creator to run functions.
      signature = self.signature
      if executing_eagerly:
        outputs = execute.execute(
            str(signature.name),
            num_outputs=self._num_outputs,
            inputs=args,
            attrs=None,
            ctx=ctx)
      else:
        g = ops.get_default_graph()
        self.add_to_graph(g)
        op = g.create_op(
            signature.name,
            [ops.internal_convert_to_tensor(x, ctx=ctx) for x in args],
            tuple(dtypes_module.DType(x.type) for x in signature.output_arg),
            op_def=signature,
            name="FunctionCall",
            compute_shapes=False)
        outputs = op.outputs
        if not outputs:
          return op
        outputs = [outputs] if isinstance(
            outputs, (ops.Tensor, type(None))) else list(outputs)
    else:
      # TODO(akshayka): Either remove this if the FunctionLibraryRuntime
      # creates `PartitionedCallOp` kernels by default, or remove the previous
      # branch if a TPU kernel is registered for `PartitionedCall`.
      outputs = functional_ops.partitioned_call(
          args=args,
          f=self,
          tout=self._output_types,
          executing_eagerly=executing_eagerly)

    if executing_eagerly:
      return outputs
    else:
      for i, shape in enumerate(output_shapes):
        outputs[i].set_shape(shape)
      return outputs


def _map_sequence_obj_to_idx(sequence):
  """Maps objs in the sequence from id(obj) to sequence index."""
  return {id(x): i for i, x in enumerate(sequence)}


def _flatten(sequence):
  """A wrapper around `nest.flatten` that also unpacks `IndexedSlices`."""
  # TODO(akshayka): Support `SparseTensor` in a similar fashion.
  flat_sequence = nest.flatten(sequence)
  outputs = []
  for item in flat_sequence:
    if isinstance(item, ops.IndexedSlices):
      if item.dense_shape is not None:
        outputs.extend([item.values, item.indices, item.dense_shape])
      else:
        outputs.extend([item.values, item.indices])
    else:
      outputs.append(item)
  return outputs


# TODO(akshayka): Perhaps rename to something more appropriate.
class GraphModeFunction(object):
  """Callable object encapsulating a function definition and its gradient.

  `GraphModeFunction` is a callable that encapsulates a function definition and
  is differentiable under `tf.GradientTape` objects.
  """

  def __init__(self,
               name,
               input_placeholders,
               extra_inputs,
               graph,
               operations,
               outputs,
               python_func_outputs,
               output_shapes,
               variables=None,
               attrs=None):
    """Initialize a GraphModeFunction.

    Args:
      name: str the name of the created function
      input_placeholders: list of placeholder values (tensors) to feed when
        calling the wrapped function.
      extra_inputs: Tensor inputs this function definition closed over which
        are passed as arguments. Need to track so gradients are supported
        correctly.
      graph: the Graph from which the operations will be pulled. Used as
        a context when computing gradients.
      operations: the subset of Operations in the graph used in the function
        definition.
      outputs: a flat list of the Tensors in the graph used as outputs to the
        function
      python_func_outputs: a possibly nested python object which will be
        returned by this function. The Tensors in this structure will be
        replaced by their corresponding values in outputs. Note that this
        structure might contain Python `None`s.
      output_shapes: List of shapes of all tensors in outputs
      variables: (optional) List of variables to watch during function
        execution.
      attrs: (optional) dict mapping names of attributes to their AttrValue
        values. Attributes in `attrs` will be included in this function's
        definition.
    """
    self._attrs = attrs or {}
    defined_function = _EagerDefinedFunction(
        name, graph, operations, input_placeholders, outputs, self._attrs)
    if len(input_placeholders) != len(defined_function.signature.input_arg):
      raise ValueError("Internal error: invalid lengths. %s %s" % (
          len(input_placeholders), len(defined_function.signature.input_arg)))
    self._input_placeholders = input_placeholders
    self._extra_inputs = list(extra_inputs)
    self._graph = graph
    self._backward_function = None
    self._func_name = name
    self._function_def = defined_function
    self._num_outputs = len(defined_function.signature.output_arg)
    self._ops = operations
    self._python_func_outputs = python_func_outputs
    self._python_returns = [python_func_outputs] if isinstance(
        python_func_outputs,
        (ops.Tensor, type(None))) else _flatten(python_func_outputs)
    self._output_shapes = output_shapes
    self._variables = variables if variables is not None else []

  @property
  def variables(self):
    return self._variables

  def _construct_backprop_function(self):
    """Constructs the backprop function object for this function."""
    filtered_outputs = [x for x in self._python_returns if x is not None]
    captures = {}
    backwards_graph = CapturingGraph(captures)
    backwards_graph._graph_key = self._graph._graph_key  # pylint: disable=protected-access
    for collection in self._graph.collections:
      backwards_graph.get_collection_ref(
          collection)[:] = self._graph.get_collection(collection)
    backwards_graph.seed = self._graph.seed
    with backwards_graph.as_default():
      self._out_grad_placeholders = [
          graph_placeholder(x.dtype, x.shape) for x in filtered_outputs]
      in_gradients = gradients_impl._GradientsHelper(  # pylint: disable=protected-access
          filtered_outputs,
          self._input_placeholders,
          grad_ys=self._out_grad_placeholders,
          src_graph=self._graph)

    backward_outputs = tuple(
        grad for grad in _flatten(in_gradients) if grad is not None)
    output_shapes = tuple(grad.shape for grad in backward_outputs)

    ids = list(sorted(captures.keys()))
    if ids:
      extra_inputs, extra_placeholders = zip(*[captures[x] for x in ids])
    else:
      extra_inputs = []
      extra_placeholders = []

    forward_name = _forward_name(self._func_name)
    self._forward_fdef = _EagerDefinedFunction(
        forward_name, self._graph, self._ops, self._input_placeholders,
        filtered_outputs + list(extra_inputs), self._attrs)
    all_inputs = self._out_grad_placeholders + list(extra_placeholders)
    # Excluding input ops from the body as we do not intend to execute these
    # operations when the function is executed.
    all_ignored_ops = frozenset(x.op for x in all_inputs)
    # Enforce a deterministic order of operations in the generated graph. This
    # means rerunning the function-defining code will always define the same
    # function, which is useful if we serialize this etc.
    function_def_ops = tuple(x
                             for x in sorted(backwards_graph.get_operations(),
                                             key=lambda x: x.name)
                             if x not in all_ignored_ops)
    bname = _backward_name(self._func_name)
    self._backward_function = GraphModeFunction(
        bname, all_inputs, [], backwards_graph, function_def_ops,
        backward_outputs, in_gradients, output_shapes, attrs=self._attrs)

  def _backprop_call(self, args):
    """Calls the wrapped function and records the result on a tape.

    (Only records results on a tape if the function has outputs)

    Args:
      args: The tensor inputs to the function.
    Returns:
      The call output.
    """
    all_args = args + self._extra_inputs
    ctx = context.context()
    outputs = self._forward_fdef.call(ctx, all_args, self._output_shapes)
    if isinstance(outputs, ops.Operation) or outputs is None:
      return outputs

    # `real_outputs` are the actual outputs of the inference graph function;
    # `side_outputs` are the intermediate Tensors that were added as outputs to
    # the forward graph function so that we can compute its gradient.
    real_outputs = outputs[:self._num_outputs]
    side_outputs = outputs[self._num_outputs:]

    def backward_function(*args):
      return self._backward_function(*(list(args) + side_outputs))  # pylint: disable=not-callable

    tape.record_operation(
        self._forward_fdef.signature.name,
        real_outputs,
        (args + self._extra_inputs),
        backward_function)

    return self._build_call_outputs(real_outputs)

  @property
  def output_shapes(self):
    """The function's output shapes."""
    # TODO(ebrevdo): Should we only keep the output shapes associated
    # with len(self._python_returns) outputs?
    outputs_list = nest.flatten(self._python_func_outputs)
    j = 0
    for i, o in enumerate(outputs_list):
      if o is not None:
        if isinstance(o, ops.IndexedSlices):
          # Extract the shape of the `IndexedSlices` object's `values` field.
          outputs_list[i] = self._output_shapes[j]  # the `values` shape
          if o.dense_shape is not None:
            j += 3  # skip over shapes for `values`, `indices`, `dense_shape`
          else:
            j += 2  # skip over shapes for `values`, `indices`
        else:
          outputs_list[i] = self._output_shapes[j]
          j += 1
    return nest.pack_sequence_as(self._python_func_outputs, outputs_list)

  @property
  def output_dtypes(self):
    return nest.map_structure(
        lambda x: x.dtype if x is not None else None, self._python_func_outputs)

  @property
  def captured_inputs(self):
    return self._extra_inputs

  @property
  def name(self):
    """Returns the name of the function in Eager-compatible format."""
    return self._function_def.name.encode("utf-8")

  def __call__(self, *args):
    """Executes the passed function in eager mode."""
    for v in self._variables:
      if v.trainable:
        tape.watch_variable(v)

    tensor_inputs = [x for x in nest.flatten(args) if isinstance(x, ops.Tensor)]
    if tape.should_record(tensor_inputs) or tape.should_record(
        self._extra_inputs):
      if self._backward_function is None:
        self._construct_backprop_function()
      return self._backprop_call(tensor_inputs)

    ctx = context.context()
    args = tensor_inputs + self._extra_inputs
    outputs = self._function_def.call(ctx, args, self._output_shapes)
    return self._build_call_outputs(outputs)

  def _build_call_outputs(self, result):
    """Maps the fdef output list to actual output structure.

    Args:
      result: Output lists defined by FunctionDef.
    Returns:
      The actual call output.
    """
    if self._python_func_outputs is None:
      return result

    # Use `nest.flatten` instead of `_flatten` in order to preserve any
    # IndexedSlices in `self._python_func_outputs`.
    outputs_list = nest.flatten(self._python_func_outputs)
    j = 0
    for i, o in enumerate(outputs_list):
      if o is not None:
        if isinstance(o, ops.IndexedSlices):
          # Repack Tensors for IndexedSlices.
          if o.dense_shape is not None:
            outputs_list[i] = ops.IndexedSlices(
                values=result[j],
                indices=result[j + 1],
                dense_shape=result[j + 2])
            j += 3
          else:
            outputs_list[i] = ops.IndexedSlices(
                values=result[j],
                indices=result[j + 1])
            j += 2
        else:
          outputs_list[i] = result[j]
          j += 1
    ret = nest.pack_sequence_as(self._python_func_outputs, outputs_list)
    return ret


def _get_defun_inputs(args):
  """Maps the inputs args to graph inputs."""
  ret = []
  flat_args = nest.flatten(args)
  for a in flat_args:
    if isinstance(a, ops.Tensor):
      ret.append(graph_placeholder(a.dtype, a.shape))
    else:
      ret.append(a)
  return nest.pack_sequence_as(args, ret)


def _deterministic_dict_values(kwds):
  return tuple(kwds[key] for key in sorted(kwds))


def _trace_and_define_function(name, func, compiled, args, kwds):
  """Defines and returns graph-mode version of func."""
  graph_key = ops.get_default_graph()._graph_key  # pylint: disable=protected-access
  captures = {}
  tmp_graph = CapturingGraph(captures)
  # Inherit the graph key, since this is used for matching variables in
  # optimizers.
  tmp_graph._graph_key = graph_key  # pylint: disable=protected-access
  # Copy the graph collections to ensure summaries and other things work. This
  # lets the function access (but not mutate) collections of the containing
  # graph, such as the global step and the summary writer collections.
  curr_graph = ops.get_default_graph()
  for collection in curr_graph.collections:
    tmp_graph.get_collection_ref(collection)[:] = curr_graph.get_collection(
        collection)
  if context.executing_eagerly():
    tmp_graph.seed = context.global_seed()
  else:
    tmp_graph.seed = curr_graph.seed
  with tmp_graph.as_default(), AutomaticControlDependencies() as a:
    func_args = _get_defun_inputs(args)
    func_kwds = _get_defun_inputs(kwds)

    def convert(x):
      if x is None:
        return None
      x = ops.convert_to_tensor_or_indexed_slices(x)
      x = a.mark_as_return(x)
      return x

    this_tape = tape.push_new_tape()
    try:
      func_outputs = func(*func_args, **func_kwds)
      func_outputs = nest.map_structure(convert, func_outputs)
    finally:
      tape.pop_tape(this_tape)
    variables = this_tape.watched_variables()

    # Returning a closed-over tensor as an output does not trigger a
    # call to convert_to_tensor, so we manually capture all such tensors.
    outputs_list = _flatten(func_outputs)
    func_def_outputs = [
        tmp_graph.capture(x) for x in outputs_list
        if x is not None
    ]

    ids = list(sorted(captures.keys()))
    if ids:
      extra_inputs, extra_placeholders = zip(* [captures[x] for x in ids])
    else:
      extra_inputs = []
      extra_placeholders = []
    output_shapes = tuple(
        x.shape if isinstance(x, ops.Tensor) else None
        for x in func_def_outputs)

  func_kwds_values = _deterministic_dict_values(func_kwds)
  flat_inputs = [
      x for x in nest.flatten(func_args) + nest.flatten(func_kwds_values)
      if isinstance(x, ops.Tensor)
  ]
  all_inputs = flat_inputs + list(extra_placeholders)
  all_ignored_ops = frozenset(x.op for x in all_inputs)
  fname = _inference_name(name)
  operations = tuple(x for x in tmp_graph.get_operations()
                     if x not in all_ignored_ops)
  # Register any other functions defined in the graph
  # TODO(ashankar): Oh lord, forgive me for this lint travesty.
  if context.executing_eagerly():
    for f in tmp_graph._functions.values():  # pylint: disable=protected-access
      # TODO(ashankar): What about the gradient registry?
      _register(f._c_func.func)  # pylint: disable=protected-access

  attrs = {}
  if compiled:
    attrs[_xla_compile_attr] = attr_value_pb2.AttrValue(b=True)

  return GraphModeFunction(
      fname, all_inputs, extra_inputs, tmp_graph, operations, func_def_outputs,
      func_outputs, output_shapes, variables, attrs)


# Defun uses this instead of Tensor as a cache key. Using dtype because
# TensorFlow graphs are not parametric wrt dtypes, and using shapes for
# performance reasons, as much TensorFlow code specializes on known shapes to
# produce slimmer graphs.
_TensorDtype = collections.namedtuple("_TensorDtype", ["dtype", "shape"])
_ZeroDtype = collections.namedtuple("_ZeroDtype", ["dtype", "shape"])


def _cache_key(x):
  """Cache key for tfe functions."""
  if isinstance(x, ops.Tensor):
    return _TensorDtype(x.dtype, x._shape_tuple())  # pylint: disable=protected-access
  if isinstance(x, ops.IndexedSlices):
    if x.dense_shape is not None:
      return tuple([
          _TensorDtype(x.values.dtype, x.values._shape_tuple()),  # pylint: disable=protected-access
          _TensorDtype(x.indices.dtype, x.indices._shape_tuple()),  # pylint: disable=protected-access
          _TensorDtype(x.dense_shape.dtype, x.dense_shape._shape_tuple())  # pylint: disable=protected-access
      ])
    else:
      return tuple([
          _TensorDtype(x.values.dtype, x.values._shape_tuple()),  # pylint: disable=protected-access
          _TensorDtype(x.indices.dtype, x.indices._shape_tuple())  # pylint: disable=protected-access
      ])
  if isinstance(x, np.ndarray):
    return ("array", x.shape, tuple(x.reshape(-1)))
  if isinstance(x, (list, tuple)):
    return tuple([_cache_key(a) for a in x])
  if isinstance(x, dict):
    return tuple(tuple([_cache_key(k), _cache_key(v)]) for k, v in x.items())
  return x


class _PolymorphicFunction(object):
  """Wrapper class for the graph functions defined for a Python function.

  See the documentation for `defun` for more information on the semantics of
  defined functions.

  _PolymorphicFunction class is thread-compatible meaning that minimal
  usage of defuns (defining and calling) is thread-safe, but if users call other
  methods or invoke the base `python_function` themselves, external
  synchronization is necessary.
  """

  def __init__(self, python_function, name, compiled=False):
    """Initializes a polymorphic function.

    Args:
      python_function: the function to be wrapped.
      name: the name given to it.
      compiled: if True, the framework will attempt to compile func with XLA.
    """

    self._python_function = python_function
    self._name = name
    self._compiled = compiled
    self._arguments_to_functions = {}
    self._variables = []

    self._lock = threading.Lock()

  def __get__(self, instance, owner):
    """Makes it possible to defun instance methods."""
    del owner
    # `instance` here is the instance that this `_PolymorphicFunction` was
    # accessed through; e.g., for
    #
    #   class Foo(object):
    #
    #     @function.defun
    #     def bar(self):
    #       ...
    #
    #   foo = Foo()
    #   foo.bar()  # `foo.bar` is a `_PolymorphicFunction` instance
    #
    # then `instance` will be `foo` (and `owner` will be `Foo`).
    return functools.partial(self.__call__, instance)

  def _maybe_define_function(self, *args, **kwds):
    """Gets a function for these inputs, defining it if necessary.

    Args:
      *args: args for the Python function; used to compute the signature
      **kwds: kwds for the Python function; used to compute the signature

    Returns:
      A graph function corresponding to the input signature implied by args and
      kwds, as well as the inputs that the object should be called with.
    """

    # TODO(apassos): Better error messages for non-hashable arguments.
    kwd_values = _deterministic_dict_values(kwds)
    inputs = args + kwd_values
    signature = tuple(_cache_key(x) for x in inputs)
    # The graph, or whether we're executing eagerly, should be a part of the
    # signature so we don't improperly capture tensors such as variables.
    signature += tuple([context.executing_eagerly() or ops.get_default_graph()])

    with self._lock:
      if signature not in self._arguments_to_functions:
        graph_function = _trace_and_define_function(
            self._name, self._python_function, self._compiled, args, kwds)
        self._arguments_to_functions[signature] = graph_function
        self._variables.extend(
            [v for v in graph_function.variables if v not in self._variables])
        return graph_function, inputs
      else:
        return self._arguments_to_functions[signature], inputs

  def __call__(self, *args, **kwds):
    """Calls a graph function specialized for this input signature."""
    graph_function, inputs = self._maybe_define_function(*args, **kwds)
    return graph_function(*inputs)

  def call_python_function(self, *args, **kwargs):
    """Directly calls the wrapped python function."""
    return self._python_function(*args, **kwargs)

  @property
  def variables(self):
    """Returns a list of variables used in any of the defined functions."""
    return self._variables


# TODO(akshayka): Remove the `compiled` flag and create a separate
# API for xla compilation (`defun` is already complicated enough
# as it is, and the keyword argument makes 'compiled' an overloaded concept)
def defun(func=None, compiled=False):
  """Compiles a Python function into a callable TensorFlow graph.

  `defun` (short for "define function") trace-compiles a Python function
  composed of TensorFlow operations into a callable that executes a @{tf.Graph}
  containing those operations. The callable produced by `defun` contains only
  the subgraph of TensorFlow operations that were executed when the Python
  function was called with a particular input signature, defined as a list
  of the shapes and dtypes of the Python function's Tensor-valued arguments and
  the values of its non-Tensor Python objects. In particular, `defun` is _not_ a
  compiler for arbitrary Python code.

  When eager execution is enabled, the ability to create graphs from Python
  functions makes it possible to incrementally trade off debugability and
  interactivity for performance.  Functions compiled with `defun` cannot be
  inspected with `pdb` and `print` statements; however, executing a graph
  generated by `defun` sometimes takes less time and memory than eagerly
  executing the corresponding Python function, since specifying computations as
  graphs allows for optimizations like automatic buffer reuse and
  parallelization among ops. Note that executing a `defun`-compiled function
  incurs a small constant overhead, so eagerly executing sufficiently small
  Python functions might take less time than executing their corresponding
  `defun`-generated graphs.

  For a Python function to be compatible with `defun`, all of its arguments must
  be hashable Python objects or lists thereof. Additionally, it must return zero
  or more @{tf.Tensor} objects.

  Executing a graph generated by `defun` respects device annotations (i.e.,
  all `with tf.device` directives present in a Python function will also be
  present in its corresponding graph), but it is not yet possible to execute the
  generated graphs across multiple machines.

  _Example Usage_

  ```python
  import tensorflow as tf

  tf.enable_eager_execution()

  # A simple example.
  def f(x, y):
    return tf.reduce_mean(tf.multiply(x ** 2, 3) + y)

  g = tf.contrib.eager.defun(f)

  x = tf.constant([[2.0, 3.0]])
  y = tf.constant([[3.0, -2.0]])

  # `f` and `g` will return the same value, but `g` will be executed as a
  # TensorFlow graph.
  assert f(x, y).numpy() == g(x, y).numpy()

  # `defun` is capable of compiling Python functions that close over Python
  # objects, including Tensors and Variables.
  @tf.contrib.eager.defun
  def h():
    return f(x, y)

  assert (h().numpy() == f(x, y).numpy()).all()

  # `defun` automatically lifts variables out of the graphs it creates,
  # allowing you to compile the `call` methods of `tf.keras.layers.Layer` and
  # `tf.keras.Model` objects.
  class MyModel(tf.keras.Model):

    def __init__(self, keep_probability=0.2):
      super(MyModel, self).__init__()
      self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
      self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)
      self.keep_probability = keep_probability

    def call(self, inputs, training=True):
      x = self.dense2(self.dense1(inputs))
      if training:
        return tf.nn.dropout(x, self.keep_probability)
      else:
        return x

  model = MyModel()
  model.call = tf.contrib.eager.defun(model.call)
  model(x, training=True)  # executes a graph, with dropout
  model(x, training=False) # executes a graph, without dropout

  # `defun`-compiled functions are differentiable.
  optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
  with tf.GradientTape() as tape:
    outputs = model(x)
  gradient = tape.gradient(outputs, model.trainable_variables)
  optimizer.apply_gradients((grad, var) for grad, var in zip(gradient,
                            model.trainable_variables))
  ```

  When using `defun`, there are subtleties regarding inputs, Python control
  flow, and variable creation that one should be aware of. For concreteness, let
  `f` be a Python function that returns zero or more @{tf.Tensor} objects and
  let `F = defun(f)`. `F` builds a graph for each unique input signature it
  sees, Python control flow is baked into graphs, and operations related to
  variable initialization are automatically lifted out of the graphs that `F`
  generates and placed in the eager context if executing eagerly or into an
  outer graph otherwise.

  _Tracing and Input Signatures_.
  The signature of inputs supplied to `F` is defined to be a tuple of the shapes
  and dtypes of Tensor-typed arguments and the values of non-Tensor arguments,
  where "arguments" includes both args and kwargs. Every time `F` is invoked,
  the signature of its inputs are inferred. The first time `F(*args, **kwargs)`
  is invoked with a particular signature, `f(*args, **kwargs)` is executed and
  all the TensorFlow operations that `f` executes, along with the Tensors that
  flow between them, are recorded in a TensorFlow graph. `F` caches this graph
  and binds it to the inputs' signature; every subsequent invocation of `F` with
  inputs conforming to this signature will immediately retrieve the cached graph
  and pass it to the TensorFlow runtime for execution.

  Be aware that because `F` only logs TensorFlow operations, all the other
  Python code that `f` executes will only shape the _construction_ of the graphs
  that `F` executes: the Python code won't be executed when the graphs
  themselves are executed, though it will be executed every time the Python
  function is traced (and a given Python function might be traced multiple
  times, once for each input signature it is invoked with). For example, whereas
  the Python function

  ```python
  import tensorflow as tf
  import numpy as np

  tf.enable_eager_execution()

  def add_noise():
    return tf.eye(5) + np.random.randn(5, 5)
  ```

  will return a different output everytime it is invoked, the compiled function
  `compiled = tf.contrib.eager.defun(add_noise)` will return the same value
  every time it is called, since a particular random offset generated by NumPy
  will be inserted into the graph as a TensorFlow constant. The solution is to
  replace the call to `np.random.randn` with `tf.random_normal((5, 5))`.

  _Python Side-Effects_
  A corollary of the previous discussion on tracing is the following: If a
  Python function `f` has Python side-effects, then executing `f` multiple times
  will not necessarily be semantically equivalent to executing `F =
  tf.contrib.eager.defun(f)` multiple times; this difference is due to the fact
  that `defun` only captures the subgraph of TensorFlow operations that is
  constructed when `f` is called in a graph-building context.

  _Python Control Flow_.
  The structure of many machine learning computations depend upon whether one is
  training or validating, and it is common to nest specialized logic under `if
  training:` blocks. By mapping each input signature to a unique graph, `defun`
  lets users transparently compile such code, as the following code snippet
  demonstrates:

  ```python
  import tensorflow as tf

  tf.enable_eager_execution()

  @tf.contrib.eager.defun
  def lossy_matmul(W, x, training=True):
    outputs = tf.matmul(W, x)
    if training:
      outputs = tf.nn.dropout(outputs, keep_probability=0.2)
    return outputs

  W = tf.random_normal((3, 5))
  x = tf.random_normal((5, 1))

  # Executes a graph that applies dropout.
  lossy_outputs = lossy_matmul(W, x, training=True)

  # Executes a graph that does not apply dropout.
  exact_outputs = lossy_matmul(W, x, training=False)
  ```

  On the other hand, because `defun` generates graphs by tracing and not by
  source code analysis, it fully unrolls Python `for` and `while` loops,
  potentially creating large graphs. If your Python function has native loops
  that run for many iterations, consider replacing them with @{tf.while_loop}
  operations.

  When constructing graphs, @{tf.Tensor} objects cannot be used as Python
  `bool` objects. This means, for example, that you should replace code in `f`
  resembling

  ```python

  if tensor < 10:
    true_fn()
  else:
    false_fn()
  ```

  with `tf.cond(tensor < 10, true_fn, false_fn)`.

  _Variables_
  TensorFlow operations related to variable creation and initialization are
  automatically lifted out of the graphs generated by `defun`. In practice, this
  implies that variable creation and initialization only happen the first time
  `F` is called, and that variables are reused every time thereafter. Many
  TensorFlow APIs, like @{tf.keras.layers.Layer} objects, create variables the
  first time they are called and reuse them thereafter. Automatic variable
  lifting makes it possible to compile these APIs without extra effort, at the
  cost of introducing a discrepancy between the semantics of executing Python
  functions and their corresponding compiled functions. For example:

  ```python
  import tensorflow as tf

  tf.enable_eager_execution()

  def fn():
    x = tf.Variable(0.0)
    x.assign_add(1.0)
    return x.read_value()

  # `fn` is a Python function, so x is created, initialized, and destroyed upon
  # every invocation
  assert fn().numpy() == fn().numpy() == 1.0

  compiled = tf.contrib.eager.defun(fn)

  # Compiling `fn` with `defun` hoists all variables outside of the generated
  # graph, so initialization happens exactly once.
  assert compiled().numpy() == 1.0
  assert compiled().numpy() == 2.0
  ```

  Finally, because each input signature is bound to a unique graph, if your
  Python function constructs `tf.Variable` objects, then each graph constructed
  for that Python function will reference a unique set of variables. To
  circumvent this problem, we recommend against compiling Python functions that
  create `tf.Variable` objects. Instead, Python functions should either
  lexically close over `tf.Variable` objects or accept them as arguments,
  preferably encapsulated in an object-oriented container. If you must create
  variables inside your Python function and you want each graph generated for it
  to reference the same set of variables, add logic to your Python function that
  ensures that variables are only created the first time it is called and are
  reused for every subsequent invocation; note that this is precisely what
  @{tf.keras.layers.Layer} objects do, so we recommend using them to represent
  variable-bearing computations whenever possible.

  Args:
    func: function to be compiled. If `func` is None, returns a
      decorator that can be invoked with a single argument - `func`. The
      end result is equivalent to providing all the arguments up front.
      In other words, defun(compiled=True)(func) is equivalent to
      defun(func, compiled=True). The former allows the following use case:
        @tf.contrib.eager.defun(compiled=True)
        def foo(...):
          ...

    compiled: If True, an attempt to compile `func` with XLA will be made.
      If it fails, function will be run normally. Experimental.  Currently
      supported only for execution on TPUs. For the vast majority of users,
      this argument should be False.

  Returns:
     If `func` is not None, returns a callable that will execute the compiled
     function (and return zero or more `tf.Tensor` objects).
     If `func` is None, returns a decorator that, when invoked with a single
     `func` argument, returns a callable equivalent to the case above.
  """
  # TODO(apassos): deal with captured global state. Deal with control flow.
  def decorated(function):
    try:
      name = function.__name__
    except AttributeError:
      name = "function"
    return tf_decorator.make_decorator(
        function, _PolymorphicFunction(function, name, compiled=compiled))

  # This code path is for the `foo = tfe.defun(foo, ...)` use case
  if func is not None:
    return decorated(func)

  # This code path is for the
  #
  # @tfe.defun(...)
  # def foo(...):
  #    ...
  #
  # use case, which is equivalent to `foo = tfe.defun(...)(foo)`
  return decorated


def make_defun_op(func, *args, **kwds):
  """Compile func into graph_mode, assuming func arguments are *args, **kwargs.

  `make_defun_op` converts a function that constructs a TensorFlow graph into
  a function object and attaches it to the graph.  The resulting function
  object can be queried for its properties, and called directly with different
  inputs to execute.

  More details on use cases and limitations are available in the
  documentation for `defun`.

  Example:
  ```python
  def f(x, y):
    return tf.reduce_mean(tf.multiply(x ** 2, 3) + y)

  def g(x, y):
    return tf.reduce_mean(tf.multiply(x ** 2, 3) + y)

  z = tf.constant([[0.0, 0.0]])
  g_op = make_defun_op(g, z, z)

  assert g_op.output_shapes == tf.TensorShape([])
  assert g_op.output_types == tf.float32

  x = tf.constant([[2.0, 3.0]])
  y = tf.constant([[3.0, -2.0]])

  # The plain function and defun-compiled function should return the same value.
  assert f(x, y).numpy() == g_op(x, y).numpy()
  ```

  Args:
    func: function to be compiled.
    *args: List arguments to pass to `func` when attaching to the graph.
    **kwds: Keyword arguments to pass to `func` when attaching to the graph.

  Returns:
     A wrapper object which can be queried for its output properties,
     and which can be called directly the way a `@defun` wrapped function
     can.
  """
  return _trace_and_define_function(func.__name__, func, False, args, kwds)


class AutomaticControlDependencies(object):
  """Context manager to automatically add control dependencies.

  Code under this context manager will act as if a sensible set of control
  dependencies were present. More specifically:
    1. All stateful ops in the scope will execute
    2. Stateful ops which modify the same resource will execute in program order

  Note: creating variables in an automatic control dependencies context is not
  supported (the value of the variables will never change as they will keep
  getting reinitialized).

  NOT THREAD SAFE
  """

  def __init__(self):
    self._returned_tensors = set()

  def mark_as_return(self, tensor):
    """Acts like identity but marks the `Tensor` as a return value.

    This will possibly return a copy of the `Tensor`. Usage:

    ```
      with AutomaticControlDependencies() as a:
       ...
       t = a.mark_as_return(t)
      _ = ...(t...)  # i.e. it's safe to use t here
    ```

    Args:
      tensor: the `Tensor` to be marked

    Returns:
      a copy of the `Tensor`.
    """
    if isinstance(tensor, ops.IndexedSlices):
      values = array_ops.identity(tensor.values)
      indices = array_ops.identity(tensor.indices)
      self._returned_tensors.add(indices)
      self._returned_tensors.add(values)
      return ops.IndexedSlices(values, indices, dense_shape=tensor.dense_shape)
    # We want to make the return values depend on the stateful operations, but
    # we don't want to introduce a cycle, so we make the return value the result
    # of a new identity operation that the stateful operations definitely don't
    # depend on.
    tensor = array_ops.identity(tensor)
    self._returned_tensors.add(tensor)
    return tensor

  def __enter__(self):
    if context.executing_eagerly():
      return self
    # This code assumes no other thread is adding ops to the graph while
    # we're adding ops to the graph.
    # TODO(apassos): Fix this by locking the graph or using a temporary
    # graph (but that would mess up devices and collections at least,
    # probably other things as well).
    self._graph = ops.get_default_graph()
    self._n_operations = len(self._graph.get_operations())
    return self

  def _process_switch(self, switch_op, ops_which_must_run,
                      last_op_using_resource_tensor, merge_for_resource):
    """Processes a switch node for a resource input.

    When tensorflow creates a cond, it creates a control flow context for each
    branch of the cond. Each external tensor accessed by that branch is routed
    through a switch op, which gets created in the graph _after_ the op which
    uses that tensor get created.

    If the resource comes from another switch op we process that one first.

    _process_switch creates a corresponding merge node for the switch node. This
    merge node is added to the outer control flow context of the switch
    node. We also ensure that:

      1. The switch node executes after the previous op which used the resource
         tensor

      2. Any op which uses a resource output of the switch node executes before
         the merge for the switch node.

      3. The next op which uses the input resource to the switch node (which
         might be another switch node for the other branch of the conditional)
         will execute after the merge node is done.

      4. The merge node is marked as must_run so it will run even if no
         subsequent operation uses the resource.

    Args:
      switch_op: the switch op to be processed
      ops_which_must_run: the set of ops which must run
      last_op_using_resource_tensor: map from resource tensor to last op using
        it
      merge_for_resource: map from resource tensor to merge which must follow
        all usages of it.
    """
    inp = switch_op.inputs[0]
    if inp.dtype == dtypes_module.resource and inp.op.type == "Switch":
      self._process_switch(inp.op, ops_which_must_run,
                           last_op_using_resource_tensor, merge_for_resource)
    if switch_op.outputs[0] in merge_for_resource:
      return
    new_merge = control_flow_ops.merge(switch_op.outputs,
                                       name="artificial_merge")
    new_merge[0].op._control_flow_context = (  # pylint: disable=protected-access
        switch_op._control_flow_context.outer_context)  # pylint: disable=protected-access
    # Ensures the merge always runs
    ops_which_must_run.add(new_merge[0].op)
    if inp in last_op_using_resource_tensor:
      # Ensures the switch executes after the previous op using the resource.
      switch_op._add_control_input(last_op_using_resource_tensor[inp])  # pylint: disable=protected-access
    # Ensure the next op outside the cond happens after the merge.
    last_op_using_resource_tensor[inp] = new_merge[0].op
    if inp in merge_for_resource:
      merge_for_resource[inp]._add_control_input(new_merge[0].op)  # pylint: disable=protected-access
    for o in switch_op.outputs:
      # Ensures the merge will execute after all ops inside the cond
      merge_for_resource[o] = new_merge[0].op

  def __exit__(self, unused_type, unused_value, unused_traceback):
    if context.executing_eagerly():
      return

    if self._graph is not ops.get_default_graph():
      raise RuntimeError(
          "Graph changed while trying to add control dependencies.")

    # map from resource tensor to the last op which used it
    last_op_using_resource_tensor = {}
    # set of conditional and loop exits
    ops_which_must_run = set()
    # merge which must depend on ops which use this resource
    merge_for_resource = {}

    new_operations = self._graph.get_operations()[self._n_operations:]

    # Ensures that uses of resource tensors get serialized properly and all
    # execute. This is done by keeping a map from resource tensor to the last op
    # in graph-construction order which used it (last_op_using_resource_tensor).
    #
    # Conditionals are written in TensorFlow such that every external tensor
    # accessed in the conditional goes through a switch op and every return
    # tensor (it's guaranteed that there will be at least one) goes through a
    # merge op.
    #
    # To handle conditionals, switches are handled in a special way (see
    # comments for _process_switch). Merge nodes created by TF's conditional
    # logic (as opposed to by _process_switch) are forced to run and also get a
    # control dependency added to them to ensure all stateful ops inside their
    # control flow context run.
    #
    # We also ensure that if an op is using a resource output by a switch node
    # (that is, a resource tensor for which there's a value in
    # merge_for_resource) this op will run before the merge for that resource.
    #
    # We try to add control inputs to nodes respecting their control flow
    # contexts to avoid dead nodes propagating everywhere and leading to
    # "retval[0] doesn't have value" errors. If a node gets a control dependency
    # on a dead node (i.e. a note from an untaken control flow branch) that node
    # will be marked as dead unless it's a merge node.
    #
    # TODO(apassos): serialize non-resource-taking stateful ops as well, and
    # test that it works. Support while loops. Support init_scope escaping from
    # this.
    for op in new_operations:
      # TODO(apassos) make this code safely support while loops.
      if isinstance(op._control_flow_context, control_flow_ops.WhileContext):  # pylint: disable=protected-access
        continue
      control_inputs = set()
      # Ensure stateful ops run
      if (op.type not in self._graph._registered_ops  # pylint: disable=protected-access
          or self._graph._registered_ops[op.type].is_stateful):  # pylint: disable=protected-access
        ops_which_must_run.add(op)
      # Ignore switches (they're handled separately)
      if op.type == "Switch" and op.inputs[0].dtype == dtypes_module.resource:
        continue
      # Make merges trigger all other computation which must run
      if op.type == "Merge":
        for o in ops_which_must_run:
          op._add_control_input(o)  # pylint: disable=protected-access
          for inp in o.inputs:
            if inp in last_op_using_resource_tensor:
              last_op_using_resource_tensor[inp] = op
        ops_which_must_run = set([op])
        continue
      for inp in op.inputs:
        if inp.dtype == dtypes_module.resource:
          # Deal with switches, finally.
          if inp.op.type == "Switch":
            self._process_switch(inp.op, ops_which_must_run,
                                 last_op_using_resource_tensor,
                                 merge_for_resource)
          # Ensure uses of resources are serialized
          if inp in last_op_using_resource_tensor:
            if (last_op_using_resource_tensor[inp]._control_flow_context  # pylint: disable=protected-access
                is op._control_flow_context):  # pylint: disable=protected-access
              control_inputs.add(last_op_using_resource_tensor[inp])
          # Ensure merges happen after the closing of a cond block
          if inp in merge_for_resource:
            merge_for_resource[inp]._add_control_input(op)  # pylint: disable=protected-access
          last_op_using_resource_tensor[inp] = op
      control_inputs = [c for c in control_inputs
                        if c._control_flow_context is op._control_flow_context]  # pylint: disable=protected-access
      op._add_control_inputs(control_inputs)  # pylint: disable=protected-access

    # Ensure all ops which must run do run
    for r in self._returned_tensors:
      if ops_which_must_run:
        r.op._add_control_inputs(  # pylint: disable=protected-access
            [o for o in ops_which_must_run
             if o._control_flow_context is r.op._control_flow_context])  # pylint: disable=protected-access


def automatic_control_dependencies(f):
  """Wraps f to automatically insert control dependencies.

  The inserted dependencies ensure that:
    1. All stateful ops in f run when the result of f runs
    2. Updates to the same resources happen in order.

  Args:
    f: the function to be wrapped.

  Returns:
    The wrapped function.
  """

  def wrapper(*args, **kwds):
    with AutomaticControlDependencies() as a:
      result = f(*args, **kwds)
      result_flat = [a.mark_as_return(t) for t in nest.flatten(result)]
      return nest.pack_sequence_as(result, result_flat)

  return tf_decorator.make_decorator(f, wrapper)