aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/data/ops/dataset_ops.py
blob: 5d318531d57f9ded2b750e92ac4a3241ddb7fe41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python wrappers for Datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import collections
import threading

import numpy as np
import six

from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.data.util import nest
from tensorflow.python.data.util import sparse
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import function
from tensorflow.python.framework import ops
from tensorflow.python.framework import random_seed
from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import gen_dataset_ops
from tensorflow.python.ops import gen_io_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import script_ops
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export


@tf_export("data.Dataset")
class Dataset(object):
  """Represents a potentially large set of elements.

  A `Dataset` can be used to represent an input pipeline as a
  collection of elements (nested structures of tensors) and a "logical
  plan" of transformations that act on those elements.
  """
  __metaclass__ = abc.ABCMeta

  def __init__(self):
    pass

  @abc.abstractmethod
  def _as_variant_tensor(self):
    """Creates a scalar `tf.Tensor` of `tf.variant` representing this dataset.

    Returns:
      A scalar `tf.Tensor` of `tf.variant` type, which represents this dataset.
    """
    raise NotImplementedError("Dataset._as_variant_tensor")

  def make_initializable_iterator(self, shared_name=None):
    """Creates an `Iterator` for enumerating the elements of this dataset.

    Note: The returned iterator will be in an uninitialized state,
    and you must run the `iterator.initializer` operation before using it:

    ```python
    dataset = ...
    iterator = dataset.make_initializable_iterator()
    # ...
    sess.run(iterator.initializer)
    ```

    Args:
      shared_name: (Optional.) If non-empty, the returned iterator will be
        shared under the given name across multiple sessions that share the
        same devices (e.g. when using a remote server).

    Returns:
      An `Iterator` over the elements of this dataset.

    Raises:
      RuntimeError: If eager execution is enabled.
    """
    if context.in_eager_mode():
      raise RuntimeError(
          "dataset.make_initializable_iterator is not supported when eager "
          "execution is enabled.")
    if shared_name is None:
      shared_name = ""
    iterator_resource = gen_dataset_ops.iterator(
        container="",
        shared_name=shared_name,
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
    with ops.colocate_with(iterator_resource):
      initializer = gen_dataset_ops.make_iterator(self._as_variant_tensor(),
                                                  iterator_resource)
    return iterator_ops.Iterator(iterator_resource, initializer,
                                 self.output_types, self.output_shapes,
                                 self.output_classes)

  def make_one_shot_iterator(self):
    """Creates an `Iterator` for enumerating the elements of this dataset.

    Note: The returned iterator will be initialized automatically.
    A "one-shot" iterator does not currently support re-initialization.

    Returns:
      An `Iterator` over the elements of this dataset.

    Raises:
      RuntimeError: If eager execution is enabled.
    """
    if context.in_eager_mode():
      raise RuntimeError(
          "dataset.make_one_shot_iterator is not supported when eager "
          "execution is enabled.")
    # NOTE(mrry): We capture by value here to ensure that `_make_dataset()` is
    # a 0-argument function.
    @function.Defun(capture_by_value=True)
    def _make_dataset():
      return self._as_variant_tensor()  # pylint: disable=protected-access

    try:
      _make_dataset.add_to_graph(ops.get_default_graph())
    except ValueError as err:
      if "Cannot capture a stateful node" in str(err):
        raise ValueError(
            "Failed to create a one-shot iterator for a dataset. "
            "`Dataset.make_one_shot_iterator()` does not support datasets that "
            "capture stateful objects, such as a `Variable` or `LookupTable`. "
            "In these cases, use `Dataset.make_initializable_iterator()`. "
            "(Original error: %s)" % err)
      else:
        six.reraise(ValueError, err)

    return iterator_ops.Iterator(
        gen_dataset_ops.one_shot_iterator(
            dataset_factory=_make_dataset,
            output_types=nest.flatten(
                sparse.as_dense_types(self.output_types, self.output_classes)),
            output_shapes=nest.flatten(
                sparse.as_dense_shapes(self.output_shapes,
                                       self.output_classes))), None,
        self.output_types, self.output_shapes, self.output_classes)

  @abc.abstractproperty
  def output_classes(self):
    """Returns the class of each component of an element of this dataset.

    The expected values are `tf.Tensor` and `tf.SparseTensor`.

    Returns:
      A nested structure of Python `type` objects corresponding to each
      component of an element of this dataset.
    """
    raise NotImplementedError("Dataset.output_classes")

  @abc.abstractproperty
  def output_shapes(self):
    """Returns the shape of each component of an element of this dataset.

    Returns:
      A nested structure of `tf.TensorShape` objects corresponding to each
      component of an element of this dataset.
    """
    raise NotImplementedError("Dataset.output_shapes")

  @abc.abstractproperty
  def output_types(self):
    """Returns the type of each component of an element of this dataset.

    Returns:
      A nested structure of `tf.DType` objects corresponding to each component
      of an element of this dataset.
    """
    raise NotImplementedError("Dataset.output_types")

  def __repr__(self):
    output_shapes = nest.map_structure(str, self.output_shapes)
    output_shapes = str(output_shapes).replace("'", "")
    output_types = nest.map_structure(repr, self.output_types)
    output_types = str(output_types).replace("'", "")
    return ("<%s shapes: %s, types: %s>" % (type(self).__name__, output_shapes,
                                            output_types))

  @staticmethod
  def from_tensors(tensors):
    """Creates a `Dataset` with a single element, comprising the given tensors.

    Args:
      tensors: A nested structure of tensors.

    Returns:
      A `Dataset`.
    """
    return TensorDataset(tensors)

  @staticmethod
  def from_tensor_slices(tensors):
    """Creates a `Dataset` whose elements are slices of the given tensors.

    Args:
      tensors: A nested structure of tensors, each having the same size in the
        0th dimension.

    Returns:
      A `Dataset`.
    """
    return TensorSliceDataset(tensors)

  @staticmethod
  @deprecation.deprecated(None, "Use `tf.data.Dataset.from_tensor_slices()`.")
  def from_sparse_tensor_slices(sparse_tensor):
    """Splits each rank-N `tf.SparseTensor` in this dataset row-wise.

    Args:
      sparse_tensor: A `tf.SparseTensor`.

    Returns:
      A `Dataset` of rank-(N-1) sparse tensors.
    """
    return SparseTensorSliceDataset(sparse_tensor)

  class _GeneratorState(object):
    """Stores outstanding iterators created from a Python generator.

    This class keeps track of potentially multiple iterators that may have
    been created from a generator, e.g. in the case that the dataset is
    repeated, or nested within a parallel computation.
    """

    def __init__(self, generator):
      self._generator = generator
      self._lock = threading.Lock()
      self._next_id = 0  # GUARDED_BY(self._lock)
      self._iterators = collections.defaultdict(lambda: iter(generator()))

    def get_next_id(self):
      with self._lock:
        ret = self._next_id
        self._next_id += 1
      # NOTE(mrry): Explicitly create an array of `np.int64` because implicit
      # casting in `py_func()` will create an array of `np.int32` on Windows,
      # leading to a runtime error.
      return np.array(ret, dtype=np.int64)

    def get_iterator(self, iterator_id):
      return self._iterators[iterator_id]

    def iterator_completed(self, iterator_id):
      del self._iterators[iterator_id]

  @staticmethod
  def from_generator(generator, output_types, output_shapes=None):
    """Creates a `Dataset` whose elements are generated by `generator`.

    The `generator` argument must be a callable object that returns
    an object that support the `iter()` protocol (e.g. a generator function).
    The elements generated by `generator` must be compatible with the given
    `output_types` and (optional) `output_shapes` arguments.

    For example:

    ```python
    import itertools

    def gen():
      for i in itertools.count(1):
        yield (i, [1] * i)

    ds = Dataset.from_generator(
        gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None])))
    value = ds.make_one_shot_iterator().get_next()

    sess.run(value)  # (1, array([1]))
    sess.run(value)  # (2, array([1, 1]))
    ```

    NOTE: The current implementation of `Dataset.from_generator()` uses
    @{tf.py_func} and inherits the same constraints. In particular, it
    requires the `Dataset`- and `Iterator`-related operations to be placed
    on a device in the same process as the Python program that called
    `Dataset.from_generator()`. The body of `generator` will not be
    serialized in a `GraphDef`, and you should not use this method if you
    need to serialize your model and restore it in a different environment.

    NOTE: If `generator` depends on mutable global variables or other external
    state, be aware that the runtime may invoke `generator` multiple times
    (in order to support repeating the `Dataset`) and at any time
    between the call to `Dataset.from_generator()` and the production of the
    first element from the generator. Mutating global variables or external
    state can cause undefined behavior, and we recommend that you explicitly
    cache any external state in `generator` before calling
    `Dataset.from_generator()`.

    Args:
      generator: A callable object that takes no arguments and returns an
        object that supports the `iter()` protocol.
      output_types: A nested structure of `tf.DType` objects corresponding to
        each component of an element yielded by `generator`.
      output_shapes: (Optional.) A nested structure of `tf.TensorShape`
        objects corresponding to each component of an element yielded by
        `generator`.

    Returns:
      A `Dataset`.
    """
    if not callable(generator):
      raise TypeError("`generator` must be callable.")
    if output_shapes is None:
      output_shapes = nest.map_structure(
          lambda _: tensor_shape.TensorShape(None), output_types)
    else:
      output_shapes = nest.map_structure_up_to(
          output_types, tensor_shape.as_shape, output_shapes)

    flattened_types = nest.flatten(output_types)
    flattened_shapes = nest.flatten(output_shapes)

    generator_state = Dataset._GeneratorState(generator)

    def get_iterator_id_map_fn(unused_dummy):
      """Creates a unique `iterator_id` for each pass over the dataset.

      The "iterator_id" disambiguates between multiple concurrently
      existing iterators.

      Args:
        unused_dummy: Ignored value.

      Returns:
        A `tf.int64` tensor whose value uniquely identifies an iterator in
        `generator_state`.
      """
      return script_ops.py_func(
          generator_state.get_next_id, [], dtypes.int64, stateful=True)

    def generator_map_fn(iterator_id_t):
      """Generates the next element from iterator with ID `iterator_id_t`.

      We map this function across an infinite repetition of the
      `iterator_id_t`, and raise `StopIteration` to terminate the iteration.

      Args:
        iterator_id_t: A `tf.int64` tensor whose value uniquely identifies
          the iterator in `generator_state` from which to generate an element.

      Returns:
        A nested structure of tensors representing an element from the iterator.
      """

      def generator_py_func(iterator_id):
        """A `py_func` that will be called to invoke the iterator."""
        try:
          values = next(generator_state.get_iterator(iterator_id))
        except StopIteration:
          generator_state.iterator_completed(iterator_id)
          raise StopIteration("Iteration finished.")

        # Use the same _convert function from the py_func() implementation to
        # convert the returned values to arrays early, so that we can inspect
        # their values.
        # pylint: disable=protected-access
        ret_arrays = [
            script_ops.FuncRegistry._convert(ret, dtype=dtype.as_numpy_dtype)
            for ret, dtype in zip(
                nest.flatten_up_to(output_types, values), flattened_types)
        ]
        # pylint: enable=protected-access

        # Additional type and shape checking to ensure that the components
        # of the generated element match the `output_types` and `output_shapes`
        # arguments.
        for (ret_array, expected_dtype, expected_shape) in zip(
            ret_arrays, flattened_types, flattened_shapes):
          if ret_array.dtype != expected_dtype.as_numpy_dtype:
            raise TypeError(
                "`generator` yielded an element of type %s where an element "
                "of type %s was expected." % (ret_array.dtype,
                                              expected_dtype.as_numpy_dtype))
          if not expected_shape.is_compatible_with(ret_array.shape):
            raise ValueError(
                "`generator` yielded an element of shape %s where an element "
                "of shape %s was expected." % (ret_array.shape, expected_shape))

        return ret_arrays

      flat_values = script_ops.py_func(
          generator_py_func, [iterator_id_t], flattened_types, stateful=True)

      # The `py_func()` op drops the inferred shapes, so we add them back in
      # here.
      if output_shapes is not None:
        for ret_t, shape in zip(flat_values, flattened_shapes):
          ret_t.set_shape(shape)

      return nest.pack_sequence_as(output_types, flat_values)

    # This function associates each traversal of `generator` with a unique
    # iterator ID.
    def flat_map_fn(iterator_id_t):
      # First, generate an infinite dataset containing the iterator ID repeated
      # forever.
      repeated_id = Dataset.from_tensors(iterator_id_t).repeat(None)

      # The `generator_map_fn` gets the next element from the iterator with the
      # relevant ID, and raises StopIteration when that iterator contains no
      # more elements.
      return repeated_id.map(generator_map_fn)

    # A single-element dataset that, each time it is evaluated, contains a
    # freshly-generated and unique (for the returned dataset) int64
    # ID that will be used to identify the appropriate Python state, which
    # is encapsulated in `generator_state`, and captured in
    # `get_iterator_id_map_fn`.
    dummy = 0
    id_dataset = Dataset.from_tensors(dummy).map(get_iterator_id_map_fn)

    # A dataset that contains all of the elements generated by a
    # single iterator created from `generator`, identified by the
    # iterator ID contained in `id_dataset`. Lifting the iteration
    # into a flat_map here enables multiple repetitions and/or nested
    # versions of the returned dataset to be created, because it forces
    # the generation of a new ID for each version.
    return id_dataset.flat_map(flat_map_fn)

  @staticmethod
  def range(*args):
    """Creates a `Dataset` of a step-separated range of values.

    For example:

    ```python
    Dataset.range(5) == [0, 1, 2, 3, 4]
    Dataset.range(2, 5) == [2, 3, 4]
    Dataset.range(1, 5, 2) == [1, 3]
    Dataset.range(1, 5, -2) == []
    Dataset.range(5, 1) == []
    Dataset.range(5, 1, -2) == [5, 3]
    ```

    Args:
      *args: follow same semantics as python's xrange.
        len(args) == 1 -> start = 0, stop = args[0], step = 1
        len(args) == 2 -> start = args[0], stop = args[1], step = 1
        len(args) == 3 -> start = args[0], stop = args[1, stop = args[2]

    Returns:
      A `RangeDataset`.

    Raises:
      ValueError: if len(args) == 0.
    """
    return RangeDataset(*args)

  @staticmethod
  def zip(datasets):
    """Creates a `Dataset` by zipping together the given datasets.

    This method has similar semantics to the built-in `zip()` function
    in Python, with the main difference being that the `datasets`
    argument can be an arbitrary nested structure of `Dataset` objects.
    For example:

    ```python
    # NOTE: The following examples use `{ ... }` to represent the
    # contents of a dataset.
    a = { 1, 2, 3 }
    b = { 4, 5, 6 }
    c = { (7, 8), (9, 10), (11, 12) }
    d = { 13, 14 }

    # The nested structure of the `datasets` argument determines the
    # structure of elements in the resulting dataset.
    Dataset.zip((a, b)) == { (1, 4), (2, 5), (3, 6) }
    Dataset.zip((b, a)) == { (4, 1), (5, 2), (6, 3) }

    # The `datasets` argument may contain an arbitrary number of
    # datasets.
    Dataset.zip((a, b, c)) == { (1, 4, (7, 8)),
                                (2, 5, (9, 10)),
                                (3, 6, (11, 12)) }

    # The number of elements in the resulting dataset is the same as
    # the size of the smallest dataset in `datasets`.
    Dataset.zip((a, d)) == { (1, 13), (2, 14) }
    ```

    Args:
      datasets: A nested structure of datasets.

    Returns:
      A `Dataset`.
    """
    return ZipDataset(datasets)

  def concatenate(self, dataset):
    """Creates a `Dataset` by concatenating given dataset with this dataset.

    ```python
    # NOTE: The following examples use `{ ... }` to represent the
    # contents of a dataset.
    a = { 1, 2, 3 }
    b = { 4, 5, 6, 7 }

    # Input dataset and dataset to be concatenated should have same
    # nested structures and output types.
    # c = { (8, 9), (10, 11), (12, 13) }
    # d = { 14.0, 15.0, 16.0 }
    # a.concatenate(c) and a.concatenate(d) would result in error.

    a.concatenate(b) == { 1, 2, 3, 4, 5, 6, 7 }
    ```

    Args:
      dataset: `Dataset` to be concatenated.

    Returns:
      A `Dataset`.
    """
    return ConcatenateDataset(self, dataset)

  def prefetch(self, buffer_size):
    """Creates a `Dataset` that prefetches elements from this dataset.

    Args:
      buffer_size: A `tf.int64` scalar `tf.Tensor`, representing the
        maximum number elements that will be buffered when prefetching.

    Returns:
      A `Dataset`.
    """
    return PrefetchDataset(self, buffer_size)

  @staticmethod
  def list_files(file_pattern):
    """A dataset of all files matching a pattern.

    Example:
      If we had the following files on our filesystem:
        - /path/to/dir/a.txt
        - /path/to/dir/b.py
        - /path/to/dir/c.py
      If we pass "/path/to/dir/*.py" as the directory, the dataset would
      produce:
        - /path/to/dir/b.py
        - /path/to/dir/c.py

    Args:
      file_pattern: A string or scalar string `tf.Tensor`, representing
        the filename pattern that will be matched.

    Returns:
     A `Dataset` of strings corresponding to file names.
    """
    return Dataset.from_tensor_slices(gen_io_ops.matching_files(file_pattern))

  def repeat(self, count=None):
    """Repeats this dataset `count` times.

    NOTE: If this dataset is a function of global state (e.g. a random number
    generator), then different repetitions may produce different elements.

    Args:
      count: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the
        number of times the dataset should be repeated. The default behavior
        (if `count` is `None` or `-1`) is for the dataset be repeated
        indefinitely.

    Returns:
      A `Dataset`.
    """
    return RepeatDataset(self, count)

  def _enumerate(self, start=0):

    max_value = np.iinfo(dtypes.int64.as_numpy_dtype).max
    return Dataset.zip((Dataset.range(start, max_value), self))

  def shuffle(self, buffer_size, seed=None, reshuffle_each_iteration=None):
    """Randomly shuffles the elements of this dataset.

    Args:
      buffer_size: A `tf.int64` scalar `tf.Tensor`, representing the
        number of elements from this dataset from which the new
        dataset will sample.
      seed: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the
        random seed that will be used to create the distribution. See
        @{tf.set_random_seed} for behavior.
      reshuffle_each_iteration: (Optional.) A boolean, which if true indicates
        that the dataset should be pseudorandomly reshuffled each time it is
        iterated over. (Defaults to `True`.)

    Returns:
      A `Dataset`.
    """
    return ShuffleDataset(self, buffer_size, seed, reshuffle_each_iteration)

  def cache(self, filename=""):
    """Caches the elements in this dataset.

    Args:
      filename: A `tf.string` scalar `tf.Tensor`, representing the name of a
        directory on the filesystem to use for caching tensors in this Dataset.
        If a filename is not provided, the dataset will be cached in memory.

    Returns:
      A `Dataset`.
    """
    return CacheDataset(self, filename)

  def take(self, count):
    """Creates a `Dataset` with at most `count` elements from this dataset.

    Args:
      count: A `tf.int64` scalar `tf.Tensor`, representing the number of
        elements of this dataset that should be taken to form the new dataset.
        If `count` is -1, or if `count` is greater than the size of this
        dataset, the new dataset will contain all elements of this dataset.

    Returns:
      A `Dataset`.
    """
    return TakeDataset(self, count)

  def skip(self, count):
    """Creates a `Dataset` that skips `count` elements from this dataset.

    Args:
      count: A `tf.int64` scalar `tf.Tensor`, representing the number
        of elements of this dataset that should be skipped to form the
        new dataset.  If `count` is greater than the size of this
        dataset, the new dataset will contain no elements.  If `count`
        is -1, skips the entire dataset.

    Returns:
      A `Dataset`.
    """
    return SkipDataset(self, count)

  def shard(self, num_shards, index):
    """Creates a `Dataset` that includes only 1/`num_shards` of this dataset.

    This dataset operator is very useful when running distributed training, as
    it allows each worker to read a unique subset.

    When reading a single input file, you can skip elements as follows:

    ```python
    d = tf.data.TFRecordDataset(FLAGS.input_file)
    d = d.shard(FLAGS.num_workers, FLAGS.worker_index)
    d = d.repeat(FLAGS.num_epochs)
    d = d.shuffle(FLAGS.shuffle_buffer_size)
    d = d.map(parser_fn, num_parallel_calls=FLAGS.num_map_threads)
    ```

    Important caveats:

    - Be sure to shard before you use any randomizing operator (such as
      shuffle).
    - Generally it is best if the shard operator is used early in the dataset
      pipeline. For example, when reading from a set of TFRecord files, shard
      before converting the dataset to input samples. This avoids reading every
      file on every worker. The following is an example of an efficient
      sharding strategy within a complete pipeline:

    ```python
    d = Dataset.list_files(FLAGS.pattern)
    d = d.shard(FLAGS.num_workers, FLAGS.worker_index)
    d = d.repeat(FLAGS.num_epochs)
    d = d.shuffle(FLAGS.shuffle_buffer_size)
    d = d.repeat()
    d = d.interleave(tf.data.TFRecordDataset,
                     cycle_length=FLAGS.num_readers, block_length=1)
    d = d.map(parser_fn, num_parallel_calls=FLAGS.num_map_threads)
    ```

    Args:
      num_shards: A `tf.int64` scalar `tf.Tensor`, representing the number of
        shards operating in parallel.
      index: A `tf.int64` scalar `tf.Tensor`, representing the worker index.

    Returns:
      A `Dataset`.

    Raises:
      ValueError: if `num_shards` or `index` are illegal values. Note: error
        checking is done on a best-effort basis, and aren't guaranteed to be
        caught upon dataset creation. (e.g. providing in a placeholder tensor
        bypasses the early checking, and will instead result in an error during
        a session.run call.)
    """
    num_shards = ops.convert_to_tensor(
        num_shards, name="num_shards", dtype=dtypes.int64)
    num_shards_static = tensor_util.constant_value(num_shards)
    index = ops.convert_to_tensor(index, name="index", dtype=dtypes.int64)
    index_static = tensor_util.constant_value(index)

    if num_shards_static is not None and num_shards_static < 1:
      raise ValueError("num_shards must be >= 1; got: %s" % num_shards_static)
    if index_static is not None and index_static < 0:
      raise ValueError("index must be >= 0; got: %s" % index_static)
    if (index_static is not None and num_shards_static is not None and
        index_static >= num_shards_static):
      raise ValueError("index must be <= num_shards; %s is not < %s" %
                       (index_static, num_shards_static))

    def filter_fn(elem_index, _):
      mod_result = math_ops.mod(elem_index, num_shards)
      return math_ops.equal(mod_result, index)

    return self._enumerate().filter(filter_fn).map(lambda _, elem: elem)

  def batch(self, batch_size):
    """Combines consecutive elements of this dataset into batches.

    NOTE: If the number of elements (`N`) in this dataset is not an exact
    multiple of `batch_size`, the final batch contain smaller tensors with
    shape `N % batch_size` in the batch dimension. If your program depends on
    the batches having the same shape, consider using the
    @{tf.contrib.data.batch_and_drop_remainder} transformation instead.

    Args:
      batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
        consecutive elements of this dataset to combine in a single batch.

    Returns:
      A `Dataset`.
    """
    return BatchDataset(self, batch_size)

  def padded_batch(self, batch_size, padded_shapes, padding_values=None):
    """Combines consecutive elements of this dataset into padded batches.

    Like `Dataset.dense_to_sparse_batch()`, this method combines
    multiple consecutive elements of this dataset, which might have
    different shapes, into a single element. The tensors in the
    resulting element have an additional outer dimension, and are
    padded to the respective shape in `padded_shapes`.

    Args:
      batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
        consecutive elements of this dataset to combine in a single batch.
      padded_shapes: A nested structure of `tf.TensorShape` or
        `tf.int64` vector tensor-like objects representing the shape
        to which the respective component of each input element should
        be padded prior to batching. Any unknown dimensions
        (e.g. `tf.Dimension(None)` in a `tf.TensorShape` or `-1` in a
        tensor-like object) will be padded to the maximum size of that
        dimension in each batch.
      padding_values: (Optional.) A nested structure of scalar-shaped
        `tf.Tensor`, representing the padding values to use for the
        respective components.  Defaults are `0` for numeric types and
        the empty string for string types.

    Returns:
      A `Dataset`.
    """
    return PaddedBatchDataset(self, batch_size, padded_shapes, padding_values)

  def map(self, map_func, num_parallel_calls=None):
    """Maps `map_func` across this datset.

    Args:
      map_func: A function mapping a nested structure of tensors (having
        shapes and types defined by `self.output_shapes` and
       `self.output_types`) to another nested structure of tensors.
      num_parallel_calls: (Optional.) A `tf.int32` scalar `tf.Tensor`,
        representing the number elements to process in parallel. If not
        specified, elements will be processed sequentially.

    Returns:
      A `Dataset`.
    """
    if num_parallel_calls is None:
      return MapDataset(self, map_func)
    else:
      return ParallelMapDataset(self, map_func, num_parallel_calls)

  def flat_map(self, map_func):
    """Maps `map_func` across this dataset and flattens the result.

    Args:
      map_func: A function mapping a nested structure of tensors (having shapes
        and types defined by `self.output_shapes` and `self.output_types`) to a
        `Dataset`.

    Returns:
      A `Dataset`.
    """
    return FlatMapDataset(self, map_func)

  def interleave(self, map_func, cycle_length, block_length=1):
    """Maps `map_func` across this dataset, and interleaves the results.

    For example, you can use `Dataset.interleave()` to process many input files
    concurrently:

    ```python
    # Preprocess 4 files concurrently, and interleave blocks of 16 records from
    # each file.
    filenames = ["/var/data/file1.txt", "/var/data/file2.txt", ...]
    dataset = (Dataset.from_tensor_slices(filenames)
               .interleave(lambda x:
                   TextLineDataset(x).map(parse_fn, num_parallel_calls=1),
                   cycle_length=4, block_length=16))
    ```

    The `cycle_length` and `block_length` arguments control the order in which
    elements are produced. `cycle_length` controls the number of input elements
    that are processed concurrently. If you set `cycle_length` to 1, this
    transformation will handle one input element at a time, and will produce
    identical results = to @{tf.data.Dataset.flat_map}. In general,
    this transformation will apply `map_func` to `cycle_length` input elements,
    open iterators on the returned `Dataset` objects, and cycle through them
    producing `block_length` consecutive elements from each iterator, and
    consuming the next input element each time it reaches the end of an
    iterator.

    For example:

    ```python
    # NOTE: The following examples use `{ ... }` to represent the
    # contents of a dataset.
    a = { 1, 2, 3, 4, 5 }

    # NOTE: New lines indicate "block" boundaries.
    a.interleave(lambda x: Dataset.from_tensors(x).repeat(6),
                 cycle_length=2, block_length=4) == {
        1, 1, 1, 1,
        2, 2, 2, 2,
        1, 1,
        2, 2,
        3, 3, 3, 3,
        4, 4, 4, 4,
        3, 3,
        4, 4,
        5, 5, 5, 5,
        5, 5,
    }
    ```

    NOTE: The order of elements yielded by this transformation is
    deterministic, as long as `map_func` is a pure function. If
    `map_func` contains any stateful operations, the order in which
    that state is accessed is undefined.

    Args:
      map_func: A function mapping a nested structure of tensors (having shapes
        and types defined by `self.output_shapes` and `self.output_types`) to a
        `Dataset`.
      cycle_length: The number of elements from this dataset that will be
        processed concurrently.
      block_length: The number of consecutive elements to produce from each
        input element before cycling to another input element.

    Returns:
      A `Dataset`.
    """
    return InterleaveDataset(self, map_func, cycle_length, block_length)

  def filter(self, predicate):
    """Filters this dataset according to `predicate`.

    Args:
      predicate: A function mapping a nested structure of tensors (having shapes
        and types defined by `self.output_shapes` and `self.output_types`) to a
        scalar `tf.bool` tensor.

    Returns:
      A `Dataset`.
    """
    return FilterDataset(self, predicate)

  def apply(self, transformation_func):
    """Apply a transformation function to this dataset.

    `apply` enables chaining of custom `Dataset` transformations, which are
    represented as functions that take one `Dataset` argument and return a
    transformed `Dataset`.

    For example:

    ```
    dataset = (dataset.map(lambda x: x ** 2)
               .apply(group_by_window(key_func, reduce_func, window_size))
               .map(lambda x: x ** 3))
    ```

    Args:
      transformation_func: A function that takes one `Dataset` argument and
        returns a `Dataset`.

    Returns:
      The `Dataset` returned by applying `transformation_func` to this dataset.
    """
    dataset = transformation_func(self)
    if not isinstance(dataset, Dataset):
      raise TypeError("`transformation_func` must return a Dataset.")
    return dataset


class TensorDataset(Dataset):
  """A `Dataset` with a single element, viz. a nested structure of tensors."""

  def __init__(self, tensors):
    """See `Dataset.from_tensors()` for details."""
    super(TensorDataset, self).__init__()
    with ops.name_scope("tensors"):
      tensors = nest.pack_sequence_as(tensors, [
          sparse_tensor_lib.SparseTensor.from_value(t)
          if sparse_tensor_lib.is_sparse(t) else ops.convert_to_tensor(
              t, name="component_%d" % i)
          for i, t in enumerate(nest.flatten(tensors))
      ])

    self._tensors = sparse.serialize_sparse_tensors(tensors)
    self._output_classes = sparse.get_classes(tensors)
    self._output_shapes = nest.pack_sequence_as(
        tensors, [t.get_shape() for t in nest.flatten(tensors)])
    self._output_types = nest.pack_sequence_as(
        tensors, [t.dtype for t in nest.flatten(tensors)])

  def _as_variant_tensor(self):
    return gen_dataset_ops.tensor_dataset(
        nest.flatten(self._tensors),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))

  @property
  def output_classes(self):
    return self._output_classes

  @property
  def output_shapes(self):
    return self._output_shapes

  @property
  def output_types(self):
    return self._output_types


class TensorSliceDataset(Dataset):
  """A `Dataset` of slices from a nested structure of tensors."""

  def __init__(self, tensors):
    """See `Dataset.from_tensor_slices()` for details."""
    super(TensorSliceDataset, self).__init__()
    with ops.name_scope("tensors"):
      tensors = nest.pack_sequence_as(tensors, [
          sparse_tensor_lib.SparseTensor.from_value(t)
          if sparse_tensor_lib.is_sparse(t) else ops.convert_to_tensor(
              t, name="component_%d" % i)
          for i, t in enumerate(nest.flatten(tensors))
      ])
      flat_tensors = nest.flatten(tensors)

    batch_dim = flat_tensors[0].get_shape()[0]
    for t in flat_tensors[1:]:
      batch_dim.assert_is_compatible_with(t.get_shape()[0])
    self._tensors = sparse.serialize_many_sparse_tensors(tensors)
    self._output_classes = sparse.get_classes(tensors)
    self._output_shapes = nest.pack_sequence_as(
        tensors, [t.get_shape()[1:] for t in nest.flatten(tensors)])
    self._output_types = nest.pack_sequence_as(
        tensors, [t.dtype for t in nest.flatten(tensors)])

  def _as_variant_tensor(self):
    return gen_dataset_ops.tensor_slice_dataset(
        nest.flatten(self._tensors),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))

  @property
  def output_classes(self):
    return self._output_classes

  @property
  def output_shapes(self):
    return self._output_shapes

  @property
  def output_types(self):
    return self._output_types


class SparseTensorSliceDataset(Dataset):
  """A `Dataset` that splits a rank-N `tf.SparseTensor` into its rows."""

  def __init__(self, sparse_tensor):
    """See `Dataset.from_sparse_tensor_slices()` for details."""
    super(SparseTensorSliceDataset, self).__init__()
    if not isinstance(sparse_tensor, sparse_tensor_lib.SparseTensor):
      raise TypeError("`sparse_tensor` must be a `tf.SparseTensor` object.")
    self._sparse_tensor = sparse_tensor

  def _as_variant_tensor(self):
    return gen_dataset_ops.sparse_tensor_slice_dataset(
        self._sparse_tensor.indices, self._sparse_tensor.values,
        self._sparse_tensor.dense_shape)

  @property
  def output_classes(self):
    return (ops.Tensor, ops.Tensor, ops.Tensor)

  @property
  def output_shapes(self):
    indices_shape = self._sparse_tensor.indices.get_shape()
    shape_shape = self._sparse_tensor.dense_shape.get_shape()
    rank = (indices_shape[1] - 1).merge_with(shape_shape[0] - 1)
    num_values = tensor_shape.Dimension(None)
    return (tensor_shape.TensorShape([num_values, rank]),
            tensor_shape.TensorShape([num_values]),
            tensor_shape.TensorShape([rank]))

  @property
  def output_types(self):
    return (dtypes.int64, self._sparse_tensor.dtype, dtypes.int64)


class ZipDataset(Dataset):
  """A `Dataset` that zips its inputs together."""

  def __init__(self, datasets):
    """See `Dataset.zip()` for details."""
    super(ZipDataset, self).__init__()
    for ds in nest.flatten(datasets):
      if not isinstance(ds, Dataset):
        if isinstance(ds, list):
          message = ("The argument to `Dataset.zip()` must be a nested "
                     "structure of `Dataset` objects. Nested structures do not "
                     "support Python lists; please use a tuple instead.")
        else:
          message = ("The argument to `Dataset.zip()` must be a nested "
                     "structure of `Dataset` objects.")
        raise TypeError(message)
    self._datasets = datasets

  def _as_variant_tensor(self):
    # pylint: disable=protected-access
    return gen_dataset_ops.zip_dataset(
        [ds._as_variant_tensor() for ds in nest.flatten(self._datasets)],
        output_shapes=[
            s
            for ds in nest.flatten(self._datasets)
            for s in nest.flatten(ds.output_shapes)
        ],
        output_types=[
            t
            for ds in nest.flatten(self._datasets)
            for t in nest.flatten(ds.output_types)
        ])
    # pylint: enable=protected-access

  @property
  def output_classes(self):
    return nest.pack_sequence_as(
        self._datasets,
        [ds.output_classes for ds in nest.flatten(self._datasets)])

  @property
  def output_shapes(self):
    return nest.pack_sequence_as(
        self._datasets,
        [ds.output_shapes for ds in nest.flatten(self._datasets)])

  @property
  def output_types(self):
    return nest.pack_sequence_as(
        self._datasets,
        [ds.output_types for ds in nest.flatten(self._datasets)])


class ConcatenateDataset(Dataset):
  """A `Dataset` that concatenates its input with given dataset."""

  def __init__(self, input_dataset, dataset_to_concatenate):
    """See `Dataset.concatenate()` for details."""
    super(ConcatenateDataset, self).__init__()
    self._input_dataset = input_dataset
    self._dataset_to_concatenate = dataset_to_concatenate
    nest.assert_same_structure(input_dataset.output_types,
                               dataset_to_concatenate.output_types)
    for a, b in zip(
        nest.flatten(input_dataset.output_types),
        nest.flatten(dataset_to_concatenate.output_types)):
      if a != b:
        raise TypeError(
            "Two datasets to concatenate have different types %s and %s" %
            (input_dataset.output_types, dataset_to_concatenate.output_types))

  def _as_variant_tensor(self):
    # pylint: disable=protected-access
    return gen_dataset_ops.concatenate_dataset(
        self._input_dataset._as_variant_tensor(),
        self._dataset_to_concatenate._as_variant_tensor(),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))
    # pylint: enable=protected-access

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    return nest.pack_sequence_as(self._input_dataset.output_shapes, [
        ts1.most_specific_compatible_shape(ts2)
        for (ts1, ts2) in zip(
            nest.flatten(self._input_dataset.output_shapes),
            nest.flatten(self._dataset_to_concatenate.output_shapes))
    ])

  @property
  def output_types(self):
    return self._input_dataset.output_types


class RepeatDataset(Dataset):
  """A `Dataset` that repeats its input several times."""

  def __init__(self, input_dataset, count):
    """See `Dataset.repeat()` for details."""
    super(RepeatDataset, self).__init__()
    self._input_dataset = input_dataset
    if count is None:
      self._count = constant_op.constant(-1, dtype=dtypes.int64, name="count")
    else:
      self._count = ops.convert_to_tensor(
          count, dtype=dtypes.int64, name="count")

  def _as_variant_tensor(self):
    return gen_dataset_ops.repeat_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        count=self._count,
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    return self._input_dataset.output_shapes

  @property
  def output_types(self):
    return self._input_dataset.output_types


class RangeDataset(Dataset):
  """A `Dataset` of a step separated range of values."""

  def __init__(self, *args):
    """See `Dataset.range()` for details."""
    super(RangeDataset, self).__init__()
    self._parse_args(*args)

  def _parse_args(self, *args):
    if len(args) == 1:
      self._start = self._build_tensor(0, "start")
      self._stop = self._build_tensor(args[0], "stop")
      self._step = self._build_tensor(1, "step")
    elif len(args) == 2:
      self._start = self._build_tensor(args[0], "start")
      self._stop = self._build_tensor(args[1], "stop")
      self._step = self._build_tensor(1, "step")
    elif len(args) == 3:
      self._start = self._build_tensor(args[0], "start")
      self._stop = self._build_tensor(args[1], "stop")
      self._step = self._build_tensor(args[2], "step")
    else:
      raise ValueError("Invalid arguments to RangeDataset: %s" % str(args))

  def _build_tensor(self, int64_value, name):
    return ops.convert_to_tensor(int64_value, dtype=dtypes.int64, name=name)

  def _as_variant_tensor(self):
    return gen_dataset_ops.range_dataset(
        start=self._start,
        stop=self._stop,
        step=self._step,
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))

  @property
  def output_classes(self):
    return ops.Tensor

  @property
  def output_shapes(self):
    return tensor_shape.scalar()

  @property
  def output_types(self):
    return dtypes.int64


class CacheDataset(Dataset):
  """A `Dataset` that caches elements of its input."""

  def __init__(self, input_dataset, filename):
    """See `Dataset.cache()` for details."""
    super(CacheDataset, self).__init__()
    self._input_dataset = input_dataset
    self._filename = ops.convert_to_tensor(
        filename, dtype=dtypes.string, name="filename")

  def _as_variant_tensor(self):
    return gen_dataset_ops.cache_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        filename=self._filename,
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    return self._input_dataset.output_shapes

  @property
  def output_types(self):
    return self._input_dataset.output_types


class ShuffleDataset(Dataset):
  """A `Dataset` that randomly shuffles the elements of its input."""

  def __init__(self,
               input_dataset,
               buffer_size,
               seed=None,
               reshuffle_each_iteration=None):
    """Randomly shuffles the elements of this dataset.

    Args:
      input_dataset: The input dataset.
      buffer_size: A `tf.int64` scalar `tf.Tensor`, representing the
        number of elements from this dataset from which the new
        dataset will sample.
      seed: (Optional.) A `tf.int64` scalar `tf.Tensor`, representing the
        random seed that will be used to create the distribution. See
        @{tf.set_random_seed} for behavior.
      reshuffle_each_iteration: (Optional.) A boolean, which if true indicates
        that the dataset should be pseudorandomly reshuffled each time it is
        iterated over. (Defaults to `True`.)

    Returns:
      A `Dataset`.

    Raises:
      ValueError: if invalid arguments are provided.
    """
    super(ShuffleDataset, self).__init__()
    self._input_dataset = input_dataset
    self._buffer_size = ops.convert_to_tensor(
        buffer_size, dtype=dtypes.int64, name="buffer_size")
    seed, seed2 = random_seed.get_seed(seed)
    if seed is None:
      self._seed = constant_op.constant(0, dtype=dtypes.int64, name="seed")
    else:
      self._seed = ops.convert_to_tensor(seed, dtype=dtypes.int64, name="seed")
    if seed2 is None:
      self._seed2 = constant_op.constant(0, dtype=dtypes.int64, name="seed2")
    else:
      self._seed2 = ops.convert_to_tensor(
          seed2, dtype=dtypes.int64, name="seed2")
    if reshuffle_each_iteration is None:
      self._reshuffle_each_iteration = True
    else:
      self._reshuffle_each_iteration = reshuffle_each_iteration

  def _as_variant_tensor(self):
    return gen_dataset_ops.shuffle_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        buffer_size=self._buffer_size,
        seed=self._seed,
        seed2=self._seed2,
        reshuffle_each_iteration=self._reshuffle_each_iteration,
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    return self._input_dataset.output_shapes

  @property
  def output_types(self):
    return self._input_dataset.output_types


class TakeDataset(Dataset):
  """A `Dataset` containing the first `count` elements from its input."""

  def __init__(self, input_dataset, count):
    """See `Dataset.take()` for details."""
    super(TakeDataset, self).__init__()
    self._input_dataset = input_dataset
    self._count = ops.convert_to_tensor(count, dtype=dtypes.int64, name="count")

  def _as_variant_tensor(self):
    return gen_dataset_ops.take_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        count=self._count,
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    return self._input_dataset.output_shapes

  @property
  def output_types(self):
    return self._input_dataset.output_types


class SkipDataset(Dataset):
  """A `Dataset` skipping the first `count` elements from its input."""

  def __init__(self, input_dataset, count):
    """See `Dataset.skip()` for details."""
    super(SkipDataset, self).__init__()
    self._input_dataset = input_dataset
    self._count = ops.convert_to_tensor(count, dtype=dtypes.int64, name="count")

  def _as_variant_tensor(self):
    return gen_dataset_ops.skip_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        count=self._count,
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    return self._input_dataset.output_shapes

  @property
  def output_types(self):
    return self._input_dataset.output_types


class BatchDataset(Dataset):
  """A `Dataset` that batches contiguous elements from its input."""

  def __init__(self, input_dataset, batch_size):
    """See `Dataset.batch()` for details."""
    super(BatchDataset, self).__init__()
    self._input_dataset = input_dataset
    self._batch_size = ops.convert_to_tensor(
        batch_size, dtype=dtypes.int64, name="batch_size")

  def _as_variant_tensor(self):
    return gen_dataset_ops.batch_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        batch_size=self._batch_size,
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    input_shapes = self._input_dataset.output_shapes
    return nest.pack_sequence_as(input_shapes, [
        tensor_shape.vector(None).concatenate(s)
        for s in nest.flatten(self._input_dataset.output_shapes)
    ])

  @property
  def output_types(self):
    return self._input_dataset.output_types


def _partial_shape_to_tensor(shape_like):
  try:
    # First attempt to convert the input to a shape, and return the
    # "canonical" tensor representation, which uses `-1` in place of
    # `None`.
    shape_like = tensor_shape.as_shape(shape_like)
    return ops.convert_to_tensor(
        [dim if dim is not None else -1 for dim in shape_like.as_list()],
        dtype=dtypes.int64)
  except (TypeError, ValueError):
    # The argument was not trivially convertible to a
    # `tf.TensorShape`, so fall back on the conversion to tensor
    # machinery.
    return ops.convert_to_tensor(shape_like, dtype=dtypes.int64)


def _padding_value_to_tensor(value, output_type):
  """Converts the padding value to a tensor.

  Args:
    value: The padding value.
    output_type: Its expected dtype.

  Returns:
    A scalar `Tensor`.

  Raises:
    ValueError: if the padding value is not a scalar.
    TypeError: if the padding value's type does not match `output_type`.
  """
  value = ops.convert_to_tensor(value, name="padding_value")
  if not value.shape.is_compatible_with(tensor_shape.scalar()):
    raise ValueError("Padding value should be a scalar, but is not: %s" % value)
  if value.dtype != output_type:
    raise TypeError("Padding value tensor (%s) does not match output type: %s" %
                    (value, output_type))
  return value


def _default_padding(input_dataset):

  def make_zero(t):
    if t.base_dtype == dtypes.string:
      return ""
    elif t.base_dtype == dtypes.variant:
      raise TypeError("Unable to create padding for field of type 'variant'")
    else:
      return np.zeros_like(t.as_numpy_dtype())

  return nest.map_structure(make_zero, input_dataset.output_types)


class PaddedBatchDataset(Dataset):
  """A `Dataset` that batches and pads contiguous elements from its input."""

  def __init__(self, input_dataset, batch_size, padded_shapes, padding_values):
    """See `Dataset.batch()` for details."""
    super(PaddedBatchDataset, self).__init__()
    if sparse.any_sparse(input_dataset.output_classes):
      # TODO(b/63669786): support batching of sparse tensors
      raise TypeError(
          "Batching of padded sparse tensors is not currently supported")
    self._input_dataset = input_dataset
    self._batch_size = ops.convert_to_tensor(
        batch_size, dtype=dtypes.int64, name="batch_size")
    padding_values = (
        padding_values
        if padding_values is not None else _default_padding(input_dataset))
    self._padded_shapes = nest.map_structure_up_to(
        input_dataset.output_shapes, _partial_shape_to_tensor, padded_shapes)
    self._padding_values = nest.map_structure_up_to(
        input_dataset.output_shapes, _padding_value_to_tensor, padding_values,
        input_dataset.output_types)

  def _as_variant_tensor(self):
    return gen_dataset_ops.padded_batch_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        batch_size=self._batch_size,
        padded_shapes=[
            ops.convert_to_tensor(s, dtype=dtypes.int64)
            for s in nest.flatten(self._padded_shapes)
        ],
        padding_values=nest.flatten(self._padding_values),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):

    def _padded_shape_to_batch_shape(s):
      return tensor_shape.vector(None).concatenate(
          tensor_util.constant_value_as_shape(s))

    return nest.map_structure(_padded_shape_to_batch_shape, self._padded_shapes)

  @property
  def output_types(self):
    return self._input_dataset.output_types


def _should_unpack_args(args):
  """Returns `True` if `args` should be `*args` when passed to a callable."""
  return type(args) is tuple  # pylint: disable=unidiomatic-typecheck


class MapDataset(Dataset):
  """A `Dataset` that maps a function over elements in its input."""

  def __init__(self, input_dataset, map_func):
    """See `Dataset.map()` for details."""
    super(MapDataset, self).__init__()
    self._input_dataset = input_dataset

    self._output_classes = None
    self._output_shapes = None
    self._output_types = None

    @function.Defun(*nest.flatten(
        sparse.as_dense_types(input_dataset.output_types,
                              input_dataset.output_classes)))
    def tf_map_func(*args):
      """A wrapper for Defun that facilitates shape inference."""
      # Pass in shape information from the input_dataset.
      dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
                                            input_dataset.output_classes)
      for arg, shape in zip(args, nest.flatten(dense_shapes)):
        arg.set_shape(shape)

      nested_args = nest.pack_sequence_as(input_dataset.output_types, args)
      nested_args = sparse.deserialize_sparse_tensors(
          nested_args, input_dataset.output_types, input_dataset.output_shapes,
          input_dataset.output_classes)
      if _should_unpack_args(nested_args):
        ret = map_func(*nested_args)
      else:
        ret = map_func(nested_args)

      # If `map_func` returns a list of tensors, `nest.flatten()` and
      # `ops.convert_to_tensor()` would conspire to attempt to stack
      # those tensors into a single tensor, because the customized
      # version of `nest.flatten()` does not recurse into lists. Since
      # it is more likely that the list arose from returning the
      # result of an operation (such as `tf.py_func()`) that returns a
      # list of not-necessarily-stackable tensors, we treat the
      # returned value is a `tuple` instead. A user wishing to pack
      # the return value into a single tensor can use an explicit
      # `tf.stack()` before returning.
      if isinstance(ret, list):
        ret = tuple(ret)

      # Convert any `SparseTensorValue`s to `SparseTensor`s.
      ret = nest.pack_sequence_as(ret, [
          sparse_tensor_lib.SparseTensor.from_value(t)
          if sparse_tensor_lib.is_sparse(t) else t for t in nest.flatten(ret)
      ])

      self._output_classes = sparse.get_classes(ret)
      self._output_shapes = nest.pack_sequence_as(
          ret, [t.get_shape() for t in nest.flatten(ret)])
      self._output_types = nest.pack_sequence_as(
          ret, [t.dtype for t in nest.flatten(ret)])

      # Serialize any sparse tensors and convert result to tensors.
      ret = nest.pack_sequence_as(ret, [
          ops.convert_to_tensor(t)
          for t in nest.flatten(sparse.serialize_sparse_tensors(ret))
      ])
      return nest.flatten(ret)

    self._map_func = tf_map_func
    self._map_func.add_to_graph(ops.get_default_graph())

  def _as_variant_tensor(self):
    input_t = self._input_dataset._as_variant_tensor()  # pylint: disable=protected-access
    return gen_dataset_ops.map_dataset(
        input_t,
        self._map_func.captured_inputs,
        f=self._map_func,
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))

  @property
  def output_classes(self):
    return self._output_classes

  @property
  def output_shapes(self):
    return self._output_shapes

  @property
  def output_types(self):
    return self._output_types


class ParallelMapDataset(MapDataset):
  """A `Dataset` that maps a function over elements in its input in parallel."""

  def __init__(self, input_dataset, map_func, num_parallel_calls):
    """See `Dataset.map()` for details."""
    super(ParallelMapDataset, self).__init__(input_dataset, map_func)

    self._num_parallel_calls = ops.convert_to_tensor(
        num_parallel_calls, dtype=dtypes.int32, name="num_parallel_calls")

  def _as_variant_tensor(self):
    input_t = self._input_dataset._as_variant_tensor()  # pylint: disable=protected-access
    # pylint: disable=protected-access
    return gen_dataset_ops.parallel_map_dataset(
        input_t,
        self._map_func.captured_inputs,
        f=self._map_func,
        num_parallel_calls=self._num_parallel_calls,
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))
    # pylint: enable=protected-access


class FlatMapDataset(Dataset):
  """A `Dataset` that maps a function over its input and flattens the result."""

  def __init__(self, input_dataset, map_func):
    """See `Dataset.flat_map()` for details."""
    super(FlatMapDataset, self).__init__()
    self._input_dataset = input_dataset

    @function.Defun(*nest.flatten(
        sparse.as_dense_types(input_dataset.output_types,
                              input_dataset.output_classes)))
    def tf_map_func(*args):
      """A wrapper for Defun that facilitates shape inference."""
      # Pass in shape information from the input_dataset.
      dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
                                            input_dataset.output_classes)
      for arg, shape in zip(args, nest.flatten(dense_shapes)):
        arg.set_shape(shape)

      nested_args = nest.pack_sequence_as(input_dataset.output_types, args)
      nested_args = sparse.deserialize_sparse_tensors(
          nested_args, input_dataset.output_types, input_dataset.output_shapes,
          input_dataset.output_classes)
      if _should_unpack_args(nested_args):
        dataset = map_func(*nested_args)
      else:
        dataset = map_func(nested_args)

      if not isinstance(dataset, Dataset):
        raise TypeError("`map_func` must return a `Dataset` object.")

      self._output_classes = dataset.output_classes
      self._output_types = dataset.output_types
      self._output_shapes = dataset.output_shapes

      return dataset._as_variant_tensor()  # pylint: disable=protected-access

    self._map_func = tf_map_func
    self._map_func.add_to_graph(ops.get_default_graph())

  def _as_variant_tensor(self):
    return gen_dataset_ops.flat_map_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        self._map_func.captured_inputs,
        f=self._map_func,
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))

  @property
  def output_classes(self):
    return self._output_classes

  @property
  def output_shapes(self):
    return self._output_shapes

  @property
  def output_types(self):
    return self._output_types


class InterleaveDataset(Dataset):
  """A `Dataset` that maps a function over its input and interleaves the result.
  """

  def __init__(self, input_dataset, map_func, cycle_length, block_length):
    """See `Dataset.interleave()` for details."""
    super(InterleaveDataset, self).__init__()
    self._input_dataset = input_dataset

    @function.Defun(*nest.flatten(
        sparse.as_dense_types(input_dataset.output_types,
                              input_dataset.output_classes)))
    def tf_map_func(*args):
      """A wrapper for Defun that facilitates shape inference."""
      # Pass in shape information from the input_dataset.
      dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
                                            input_dataset.output_classes)
      for arg, shape in zip(args, nest.flatten(dense_shapes)):
        arg.set_shape(shape)

      nested_args = nest.pack_sequence_as(input_dataset.output_types, args)
      nested_args = sparse.deserialize_sparse_tensors(
          nested_args, input_dataset.output_types, input_dataset.output_shapes,
          input_dataset.output_classes)
      if _should_unpack_args(nested_args):
        dataset = map_func(*nested_args)
      else:
        dataset = map_func(nested_args)

      if not isinstance(dataset, Dataset):
        raise TypeError("`map_func` must return a `Dataset` object.")

      self._output_classes = dataset.output_classes
      self._output_types = dataset.output_types
      self._output_shapes = dataset.output_shapes

      return dataset._as_variant_tensor()  # pylint: disable=protected-access

    self._map_func = tf_map_func
    self._map_func.add_to_graph(ops.get_default_graph())

    self._cycle_length = ops.convert_to_tensor(
        cycle_length, dtype=dtypes.int64, name="cycle_length")
    self._block_length = ops.convert_to_tensor(
        block_length, dtype=dtypes.int64, name="block_length")

  def _as_variant_tensor(self):
    return gen_dataset_ops.interleave_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        self._map_func.captured_inputs,
        self._cycle_length,
        self._block_length,
        f=self._map_func,
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))

  @property
  def output_classes(self):
    return self._output_classes

  @property
  def output_shapes(self):
    return self._output_shapes

  @property
  def output_types(self):
    return self._output_types


class FilterDataset(Dataset):
  """A `Dataset` that filters its input according to a predicate function."""

  def __init__(self, input_dataset, predicate):
    """See `Dataset.filter()` for details."""
    super(FilterDataset, self).__init__()
    self._input_dataset = input_dataset

    @function.Defun(*nest.flatten(
        sparse.as_dense_types(input_dataset.output_types,
                              input_dataset.output_classes)))
    def tf_predicate(*args):
      """A wrapper for Defun that facilitates shape inference."""
      # Pass in shape information from the input_dataset.
      dense_shapes = sparse.as_dense_shapes(input_dataset.output_shapes,
                                            input_dataset.output_classes)
      for arg, shape in zip(args, nest.flatten(dense_shapes)):
        arg.set_shape(shape)

      nested_args = nest.pack_sequence_as(input_dataset.output_types, args)
      nested_args = sparse.deserialize_sparse_tensors(
          nested_args, input_dataset.output_types, input_dataset.output_shapes,
          input_dataset.output_classes)
      if _should_unpack_args(nested_args):
        ret = predicate(*nested_args)
      else:
        ret = predicate(nested_args)

      ret = ops.convert_to_tensor(ret, dtype=dtypes.bool)
      if not (ret.dtype == dtypes.bool and
              ret.shape.is_compatible_with(tensor_shape.scalar())):
        raise ValueError("`predicate` must return a scalar boolean tensor.")

      return ret

    self._predicate = tf_predicate
    self._predicate.add_to_graph(ops.get_default_graph())

  def _as_variant_tensor(self):
    return gen_dataset_ops.filter_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        other_arguments=self._predicate.captured_inputs,
        predicate=self._predicate,
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)),
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    return self._input_dataset.output_shapes

  @property
  def output_types(self):
    return self._input_dataset.output_types


class PrefetchDataset(Dataset):
  """A `Dataset` that asynchronously prefetches its input."""

  def __init__(self, input_dataset, buffer_size):
    """See `Dataset.prefetch()` for details."""
    super(PrefetchDataset, self).__init__()
    self._input_dataset = input_dataset
    self._buffer_size = ops.convert_to_tensor(
        buffer_size, dtype=dtypes.int64, name="buffer_size")

  def _as_variant_tensor(self):
    return gen_dataset_ops.prefetch_dataset(
        self._input_dataset._as_variant_tensor(),  # pylint: disable=protected-access
        buffer_size=self._buffer_size,
        output_shapes=nest.flatten(
            sparse.as_dense_shapes(self.output_shapes, self.output_classes)),
        output_types=nest.flatten(
            sparse.as_dense_types(self.output_types, self.output_classes)))

  @property
  def output_classes(self):
    return self._input_dataset.output_classes

  @property
  def output_shapes(self):
    return self._input_dataset.output_shapes

  @property
  def output_types(self):
    return self._input_dataset.output_types