aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/data/experimental/kernel_tests/group_by_window_test.py
blob: 557d56e8b9a60ec4cd4fb248dd6dfeb1c2ed4589 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for `tf.data.experimental.group_by_window()`."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow.python.data.experimental.ops import grouping
from tensorflow.python.data.kernel_tests import test_base
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import string_ops
from tensorflow.python.platform import test


# NOTE(mrry): These tests are based on the tests in bucket_ops_test.py.
# Currently, they use a constant batch size, though should be made to use a
# different batch size per key.
class GroupByWindowTest(test_base.DatasetTestBase):

  def _dynamicPad(self, bucket, window, window_size):
    # TODO(mrry): To match `tf.contrib.training.bucket()`, implement a
    # generic form of padded_batch that pads every component
    # dynamically and does not rely on static shape information about
    # the arguments.
    return dataset_ops.Dataset.zip(
        (dataset_ops.Dataset.from_tensors(bucket),
         window.padded_batch(
             32, (tensor_shape.TensorShape([]), tensor_shape.TensorShape(
                 [None]), tensor_shape.TensorShape([3])))))

  def testSingleBucket(self):

    def _map_fn(v):
      return (v, array_ops.fill([v], v),
              array_ops.fill([3], string_ops.as_string(v)))

    input_dataset = (
        dataset_ops.Dataset.from_tensor_slices(math_ops.range(32)).map(_map_fn))

    bucketed_dataset = input_dataset.apply(
        grouping.group_by_window(
            lambda x, y, z: 0,
            lambda k, bucket: self._dynamicPad(k, bucket, 32), 32))

    iterator = bucketed_dataset.make_initializable_iterator()
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)

      which_bucket, bucketed_values = sess.run(get_next)

      self.assertEqual(0, which_bucket)

      expected_scalar_int = np.arange(32, dtype=np.int64)
      expected_unk_int64 = np.zeros((32, 31)).astype(np.int64)
      for i in range(32):
        expected_unk_int64[i, :i] = i
      expected_vec3_str = np.vstack(3 * [np.arange(32).astype(bytes)]).T

      self.assertAllEqual(expected_scalar_int, bucketed_values[0])
      self.assertAllEqual(expected_unk_int64, bucketed_values[1])
      self.assertAllEqual(expected_vec3_str, bucketed_values[2])

  def testEvenOddBuckets(self):

    def _map_fn(v):
      return (v, array_ops.fill([v], v),
              array_ops.fill([3], string_ops.as_string(v)))

    input_dataset = (
        dataset_ops.Dataset.from_tensor_slices(math_ops.range(64)).map(_map_fn))

    bucketed_dataset = input_dataset.apply(
        grouping.group_by_window(
            lambda x, y, z: math_ops.cast(x % 2, dtypes.int64),
            lambda k, bucket: self._dynamicPad(k, bucket, 32), 32))

    iterator = bucketed_dataset.make_initializable_iterator()
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)

      # Get two minibatches (one containing even values, one containing odds)
      which_bucket_even, bucketed_values_even = sess.run(get_next)
      which_bucket_odd, bucketed_values_odd = sess.run(get_next)

      # Count number of bucket_tensors.
      self.assertEqual(3, len(bucketed_values_even))
      self.assertEqual(3, len(bucketed_values_odd))

      # Ensure bucket 0 was used for all minibatch entries.
      self.assertAllEqual(0, which_bucket_even)
      self.assertAllEqual(1, which_bucket_odd)

      # Test the first bucket outputted, the events starting at 0
      expected_scalar_int = np.arange(0, 32 * 2, 2, dtype=np.int64)
      expected_unk_int64 = np.zeros((32, 31 * 2)).astype(np.int64)
      for i in range(0, 32):
        expected_unk_int64[i, :2 * i] = 2 * i
        expected_vec3_str = np.vstack(
            3 * [np.arange(0, 32 * 2, 2).astype(bytes)]).T

      self.assertAllEqual(expected_scalar_int, bucketed_values_even[0])
      self.assertAllEqual(expected_unk_int64, bucketed_values_even[1])
      self.assertAllEqual(expected_vec3_str, bucketed_values_even[2])

      # Test the second bucket outputted, the odds starting at 1
      expected_scalar_int = np.arange(1, 32 * 2 + 1, 2, dtype=np.int64)
      expected_unk_int64 = np.zeros((32, 31 * 2 + 1)).astype(np.int64)
      for i in range(0, 32):
        expected_unk_int64[i, :2 * i + 1] = 2 * i + 1
        expected_vec3_str = np.vstack(
            3 * [np.arange(1, 32 * 2 + 1, 2).astype(bytes)]).T

      self.assertAllEqual(expected_scalar_int, bucketed_values_odd[0])
      self.assertAllEqual(expected_unk_int64, bucketed_values_odd[1])
      self.assertAllEqual(expected_vec3_str, bucketed_values_odd[2])

  def testEvenOddBucketsFilterOutAllOdd(self):

    def _map_fn(v):
      return {
          "x": v,
          "y": array_ops.fill([v], v),
          "z": array_ops.fill([3], string_ops.as_string(v))
      }

    def _dynamic_pad_fn(bucket, window, _):
      return dataset_ops.Dataset.zip(
          (dataset_ops.Dataset.from_tensors(bucket),
           window.padded_batch(
               32, {
                   "x": tensor_shape.TensorShape([]),
                   "y": tensor_shape.TensorShape([None]),
                   "z": tensor_shape.TensorShape([3])
               })))

    input_dataset = (
        dataset_ops.Dataset.from_tensor_slices(math_ops.range(128)).map(_map_fn)
        .filter(lambda d: math_ops.equal(d["x"] % 2, 0)))

    bucketed_dataset = input_dataset.apply(
        grouping.group_by_window(
            lambda d: math_ops.cast(d["x"] % 2, dtypes.int64),
            lambda k, bucket: _dynamic_pad_fn(k, bucket, 32), 32))

    iterator = bucketed_dataset.make_initializable_iterator()
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)

      # Get two minibatches ([0, 2, ...] and [64, 66, ...])
      which_bucket0, bucketed_values_even0 = sess.run(get_next)
      which_bucket1, bucketed_values_even1 = sess.run(get_next)

      # Ensure that bucket 1 was completely filtered out
      self.assertAllEqual(0, which_bucket0)
      self.assertAllEqual(0, which_bucket1)
      self.assertAllEqual(
          np.arange(0, 64, 2, dtype=np.int64), bucketed_values_even0["x"])
      self.assertAllEqual(
          np.arange(64, 128, 2, dtype=np.int64), bucketed_values_even1["x"])

  def testDynamicWindowSize(self):
    components = np.arange(100).astype(np.int64)

    # Key fn: even/odd
    # Reduce fn: batches of 5
    # Window size fn: even=5, odd=10

    def window_size_func(key):
      window_sizes = constant_op.constant([5, 10], dtype=dtypes.int64)
      return window_sizes[key]

    dataset = dataset_ops.Dataset.from_tensor_slices(components).apply(
        grouping.group_by_window(lambda x: x % 2, lambda _, xs: xs.batch(20),
                                 None, window_size_func))
    iterator = dataset.make_initializable_iterator()
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)
      with self.assertRaises(errors.OutOfRangeError):
        batches = 0
        while True:
          result = sess.run(get_next)
          is_even = all(x % 2 == 0 for x in result)
          is_odd = all(x % 2 == 1 for x in result)
          self.assertTrue(is_even or is_odd)
          expected_batch_size = 5 if is_even else 10
          self.assertEqual(expected_batch_size, result.shape[0])
          batches += 1

      self.assertEqual(batches, 15)

  def testSimple(self):
    components = np.random.randint(100, size=(200,)).astype(np.int64)
    iterator = (
        dataset_ops.Dataset.from_tensor_slices(components).map(lambda x: x * x)
        .apply(
            grouping.group_by_window(lambda x: x % 2, lambda _, xs: xs.batch(4),
                                     4)).make_initializable_iterator())
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)
      counts = []
      with self.assertRaises(errors.OutOfRangeError):
        while True:
          result = sess.run(get_next)
          self.assertTrue(
              all(x % 2 == 0
                  for x in result) or all(x % 2 == 1)
              for x in result)
          counts.append(result.shape[0])

      self.assertEqual(len(components), sum(counts))
      num_full_batches = len([c for c in counts if c == 4])
      self.assertGreaterEqual(num_full_batches, 24)
      self.assertTrue(all(c == 4 for c in counts[:num_full_batches]))

  def testImmediateOutput(self):
    components = np.array(
        [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 0, 0, 2, 2, 0, 0], dtype=np.int64)
    iterator = (
        dataset_ops.Dataset.from_tensor_slices(components).repeat(-1).apply(
            grouping.group_by_window(lambda x: x % 3, lambda _, xs: xs.batch(4),
                                     4)).make_initializable_iterator())
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)
      # The input is infinite, so this test demonstrates that:
      # 1. We produce output without having to consume the entire input,
      # 2. Different buckets can produce output at different rates, and
      # 3. For deterministic input, the output is deterministic.
      for _ in range(3):
        self.assertAllEqual([0, 0, 0, 0], sess.run(get_next))
        self.assertAllEqual([1, 1, 1, 1], sess.run(get_next))
        self.assertAllEqual([2, 2, 2, 2], sess.run(get_next))
        self.assertAllEqual([0, 0, 0, 0], sess.run(get_next))

  def testSmallGroups(self):
    components = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0], dtype=np.int64)
    iterator = (
        dataset_ops.Dataset.from_tensor_slices(components).apply(
            grouping.group_by_window(lambda x: x % 2, lambda _, xs: xs.batch(4),
                                     4)).make_initializable_iterator())
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)
      self.assertAllEqual([0, 0, 0, 0], sess.run(get_next))
      self.assertAllEqual([1, 1, 1, 1], sess.run(get_next))
      # The small outputs at the end are deterministically produced in key
      # order.
      self.assertAllEqual([0, 0, 0], sess.run(get_next))
      self.assertAllEqual([1], sess.run(get_next))

  def testEmpty(self):
    iterator = (
        dataset_ops.Dataset.range(4).apply(
            grouping.group_by_window(lambda _: 0, lambda _, xs: xs, 0))
        .make_initializable_iterator())
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)
      with self.assertRaisesRegexp(
          errors.InvalidArgumentError,
          "Window size must be greater than zero, but got 0."):
        print(sess.run(get_next))

  def testReduceFuncError(self):
    components = np.random.randint(100, size=(200,)).astype(np.int64)

    def reduce_func(_, xs):
      # Introduce an incorrect padded shape that cannot (currently) be
      # detected at graph construction time.
      return xs.padded_batch(
          4,
          padded_shapes=(tensor_shape.TensorShape([]),
                         constant_op.constant([5], dtype=dtypes.int64) * -1))

    iterator = (
        dataset_ops.Dataset.from_tensor_slices(components)
        .map(lambda x: (x, ops.convert_to_tensor([x * x]))).apply(
            grouping.group_by_window(lambda x, _: x % 2, reduce_func,
                                     32)).make_initializable_iterator())
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)
      with self.assertRaises(errors.InvalidArgumentError):
        sess.run(get_next)

  def testConsumeWindowDatasetMoreThanOnce(self):
    components = np.random.randint(50, size=(200,)).astype(np.int64)

    def reduce_func(key, window):
      # Apply two different kinds of padding to the input: tight
      # padding, and quantized (to a multiple of 10) padding.
      return dataset_ops.Dataset.zip((
          window.padded_batch(
              4, padded_shapes=tensor_shape.TensorShape([None])),
          window.padded_batch(
              4, padded_shapes=ops.convert_to_tensor([(key + 1) * 10])),
      ))

    iterator = (
        dataset_ops.Dataset.from_tensor_slices(components)
        .map(lambda x: array_ops.fill([math_ops.cast(x, dtypes.int32)], x))
        .apply(grouping.group_by_window(
            lambda x: math_ops.cast(array_ops.shape(x)[0] // 10, dtypes.int64),
            reduce_func, 4))
        .make_initializable_iterator())
    init_op = iterator.initializer
    get_next = iterator.get_next()

    with self.cached_session() as sess:
      sess.run(init_op)
      counts = []
      with self.assertRaises(errors.OutOfRangeError):
        while True:
          tight_result, multiple_of_10_result = sess.run(get_next)
          self.assertEqual(0, multiple_of_10_result.shape[1] % 10)
          self.assertAllEqual(tight_result,
                              multiple_of_10_result[:, :tight_result.shape[1]])
          counts.append(tight_result.shape[0])
      self.assertEqual(len(components), sum(counts))


if __name__ == "__main__":
  test.main()