aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/python/client/tf_session_helper.cc
blob: dc0c10bab74635e240502e2f8e762b61e533b319 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/python/client/tf_session_helper.h"

#include <cstring>

#include "tensorflow/c/c_api.h"
#include "tensorflow/c/c_api_internal.h"
#include "tensorflow/c/tf_status_helper.h"
#include "tensorflow/core/framework/allocator.h"
#include "tensorflow/core/framework/attr_value.pb.h"
#include "tensorflow/core/framework/attr_value_util.h"
#include "tensorflow/core/framework/log_memory.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/graph/tensor_id.h"
#include "tensorflow/core/lib/core/coding.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/util/equal_graph_def.h"
#include "tensorflow/python/client/session_ref.h"
#include "tensorflow/python/lib/core/ndarray_tensor.h"
#include "tensorflow/python/lib/core/ndarray_tensor_bridge.h"
#include "tensorflow/python/lib/core/safe_ptr.h"

namespace tensorflow {

namespace {

static const char* kFeedDictErrorMsg =
    "feed_dict must be a dictionary mapping strings to NumPy arrays.";
}  // end namespace

TF_Session* TF_NewSessionRef(TF_Graph* graph, const TF_SessionOptions* opts,
                             TF_Status* status) {
  TF_Session* tf_session = TF_NewSession(graph, opts, status);
  if (tf_session == nullptr) {
    return nullptr;
  }

  Session* session = reinterpret_cast<Session*>(tf_session->session);
  SessionRef* session_ref = new SessionRef(session);
  tf_session->session = session_ref;
  return tf_session;
}

void TF_Run_wrapper_helper(TF_DeprecatedSession* session, const char* handle,
                           const TF_Buffer* run_options, PyObject* feed_dict,
                           const NameVector& output_names,
                           const NameVector& target_nodes,
                           TF_Status* out_status, PyObjectVector* out_values,
                           TF_Buffer* run_outputs) {
  // 1. Convert the feed inputs to the appropriate form for TF_Run.
  if (!PyDict_Check(feed_dict)) {
    Set_TF_Status_from_Status(out_status,
                              errors::InvalidArgument(kFeedDictErrorMsg));
    return;
  }

  NameVector input_names;
  std::vector<Safe_TF_TensorPtr> inputs_safe;  // Used to delete tensors.
  TF_TensorVector inputs_unsafe;  // Used to contain the arg to TF_Run.

  PyObject* key;
  PyObject* value;
  Py_ssize_t pos = 0;
  int index = 0;
  Status s;

  while (PyDict_Next(feed_dict, &pos, &key, &value)) {
    char* key_string = PyBytes_AsString(key);
    if (!key_string) {
      Set_TF_Status_from_Status(out_status,
                                errors::InvalidArgument(kFeedDictErrorMsg));
      return;
    }
    input_names.push_back(key_string);

    inputs_safe.emplace_back(make_safe(static_cast<TF_Tensor*>(nullptr)));
    s = PyArrayToTF_Tensor(value, &inputs_safe.back());
    if (!s.ok()) {
      Set_TF_Status_from_Status(out_status, s);
      return;
    }
    inputs_unsafe.push_back(inputs_safe.back().get());
    ++index;
  }

  // 2. Allocate a container for the output data.
  TF_TensorVector outputs(output_names.size());

  // In case any tensors were leftover from previous runs we might as well clear
  // them here.
  ClearDecrefCache();

  // 3. Actually call TF_Run().
  Py_BEGIN_ALLOW_THREADS;
  if (handle == nullptr) {
    TF_Run(session, run_options, input_names.data(), inputs_unsafe.data(),
           input_names.size(), const_cast<const char**>(output_names.data()),
           outputs.data(), output_names.size(),
           const_cast<const char**>(target_nodes.data()), target_nodes.size(),
           run_outputs, out_status);
  } else {
    TF_PRun(session, handle, input_names.data(), inputs_unsafe.data(),
            input_names.size(), const_cast<const char**>(output_names.data()),
            outputs.data(), output_names.size(),
            const_cast<const char**>(target_nodes.data()), target_nodes.size(),
            out_status);
  }

  Py_END_ALLOW_THREADS;

  // Decref any numpy arrays we are not using anymore.
  ClearDecrefCache();

  if (TF_GetCode(out_status) != TF_OK) {
    return;
  }

  // 4. We now own the fetched tensors, so set up a safe container to
  // delete them when we exit this scope.
  std::vector<Safe_TF_TensorPtr> tf_outputs_safe;
  for (const auto& output : outputs) {
    tf_outputs_safe.emplace_back(make_safe(output));
  }

  // 5. Convert the fetched tensors into numpy ndarrays. Store them in a safe
  // container so that we do not leak
  std::vector<Safe_PyObjectPtr> py_outputs_safe;
  for (size_t i = 0; i < output_names.size(); ++i) {
    PyObject* py_array;
    s = TF_TensorToPyArray(std::move(tf_outputs_safe[i]), &py_array);
    if (!s.ok()) {
      Set_TF_Status_from_Status(out_status, s);
      return;
    }
    py_outputs_safe.emplace_back(make_safe(py_array));
  }

  // 6. If we reach this point, we have successfully built a list of objects
  // so we can release them from the safe container.
  for (auto& output : py_outputs_safe) {
    out_values->push_back(output.release());
  }
}

// Wrapper for TF_Run that converts the arguments to appropriate types.
// If *out_status is OK, the caller becomes the owner of the PyObjects
// in *out_values.
void TF_Run_wrapper(TF_DeprecatedSession* session, const TF_Buffer* run_options,
                    PyObject* feed_dict, const NameVector& output_names,
                    const NameVector& target_nodes, TF_Status* out_status,
                    PyObjectVector* out_values, TF_Buffer* run_outputs) {
  TF_Run_wrapper_helper(session, nullptr, run_options, feed_dict, output_names,
                        target_nodes, out_status, out_values, run_outputs);
  ClearDecrefCache();
}

namespace {
void MakeCallableHelper(tensorflow::Session* session,
                        const TF_Buffer* callable_options, int64_t* out_handle,
                        TF_Status* out_status) {
  tensorflow::CallableOptions callable_options_proto;
  if (callable_options != nullptr &&
      !callable_options_proto.ParseFromArray(callable_options->data,
                                             callable_options->length)) {
    Set_TF_Status_from_Status(
        out_status,
        errors::InvalidArgument("Unparseable CallableOptions proto"));
    return;
  }
  tensorflow::Session::CallableHandle handle;
  Status s = session->MakeCallable(callable_options_proto, &handle);
  if (!s.ok()) {
    Set_TF_Status_from_Status(out_status, s);
    return;
  }
  *out_handle = handle;
}
}  // namespace

void TF_DeprecatedSessionMakeCallable(TF_DeprecatedSession* session,
                                      const TF_Buffer* callable_options,
                                      int64_t* out_handle,
                                      TF_Status* out_status) {
  MakeCallableHelper(session->session, callable_options, out_handle,
                     out_status);
}
void TF_SessionMakeCallable(TF_Session* session,
                            const TF_Buffer* callable_options,
                            int64_t* out_handle, TF_Status* out_status) {
  MakeCallableHelper(session->session, callable_options, out_handle,
                     out_status);
}

namespace {
void RunCallableHelper(tensorflow::Session* session, int64_t handle,
                       PyObject* feed_values, TF_Status* out_status,
                       PyObjectVector* out_values, TF_Buffer* run_metadata) {
  // Convert feed values to a vector of tensorflow::Tensor objects.
  std::vector<Tensor> input_tensors;
  Status s;
  {
    feed_values =
        PySequence_Fast(feed_values, "feed_values must be a sequence");
    if (feed_values == nullptr) return;
    Safe_PyObjectPtr feed_values_holder(make_safe(feed_values));
    Py_ssize_t len = PySequence_Fast_GET_SIZE(feed_values);
    input_tensors.reserve(len);
    for (Py_ssize_t i = 0; i < len; ++i) {
      PyObject* elem = PySequence_Fast_GET_ITEM(feed_values, i);
      if (!elem) {
        Set_TF_Status_from_Status(
            out_status, errors::Internal("Could not get feed value ", i));
        return;
      }
      Tensor t;
      s = NdarrayToTensor(elem, &t);
      if (!s.ok()) {
        Set_TF_Status_from_Status(out_status, s);
        return;
      }
      input_tensors.push_back(std::move(t));
    }
  }

  // Allocate a RunMetadata protobuf object to receive the metadata,
  // if the caller is expecting any.
  std::unique_ptr<RunMetadata> run_metadata_proto;
  if (run_metadata != nullptr) {
    run_metadata_proto.reset(new RunMetadata);
  }

  // Run the callable.
  std::vector<Tensor> output_tensors;
  Py_BEGIN_ALLOW_THREADS;
  s = session->RunCallable(handle, input_tensors, &output_tensors,
                           run_metadata_proto.get());
  Py_END_ALLOW_THREADS;

  if (!s.ok()) {
    Set_TF_Status_from_Status(out_status, s);
    return;
  }

  // If requested, serialize the RunMetadata to pass it back to the caller.
  if (run_metadata != nullptr) {
    s = MessageToBuffer(*run_metadata_proto, run_metadata);
    if (!s.ok()) {
      Set_TF_Status_from_Status(out_status, s);
      return;
    }
  }

  // Convert results to NumPy arrays. Since this can fail, stage the
  // results via a safe container that takes care of decreasing the
  // reference count on failure.
  std::vector<Safe_PyObjectPtr> py_outputs_safe;
  py_outputs_safe.reserve(output_tensors.size());
  for (const Tensor& output : output_tensors) {
    PyObject* py_array;
    s = TensorToNdarray(output, &py_array);
    if (!s.ok()) {
      Set_TF_Status_from_Status(out_status, s);
      return;
    }
    py_outputs_safe.push_back(make_safe(py_array));
  }

  // If we reach this point, we have successfully built a list of objects
  // so we can release them from the safe container.
  out_values->reserve(py_outputs_safe.size());
  for (auto& output : py_outputs_safe) {
    out_values->push_back(output.release());
  }
}
}  // namespace

void TF_DeprecatedSessionRunCallable(TF_DeprecatedSession* session,
                                     int64_t handle, PyObject* feed_values,
                                     TF_Status* out_status,
                                     PyObjectVector* out_values,
                                     TF_Buffer* run_metadata) {
  RunCallableHelper(session->session, handle, feed_values, out_status,
                    out_values, run_metadata);
  ClearDecrefCache();
}
void TF_SessionRunCallable(TF_Session* session, int64_t handle,
                           PyObject* feed_values, TF_Status* out_status,
                           PyObjectVector* out_values,
                           TF_Buffer* run_metadata) {
  RunCallableHelper(session->session, handle, feed_values, out_status,
                    out_values, run_metadata);
  ClearDecrefCache();
}

void TF_DeprecatedSessionReleaseCallable(TF_DeprecatedSession* session,
                                         int64_t handle,
                                         TF_Status* out_status) {
  Set_TF_Status_from_Status(out_status,
                            session->session->ReleaseCallable(handle));
}
void TF_SessionReleaseCallable(TF_Session* session, int64_t handle,
                               TF_Status* out_status) {
  Set_TF_Status_from_Status(out_status,
                            session->session->ReleaseCallable(handle));
}

// Wrapper for TF_PRunSetup that converts the arguments to appropriate types.
// If *out_status is OK, the caller becomes the owner of *out_handle.
void TF_PRunSetup_wrapper(TF_DeprecatedSession* session,
                          const NameVector& input_names,
                          const NameVector& output_names,
                          const NameVector& target_nodes, TF_Status* out_status,
                          const char** out_handle) {
  Py_BEGIN_ALLOW_THREADS;
  TF_PRunSetup(
      session, const_cast<const char**>(input_names.data()), input_names.size(),
      const_cast<const char**>(output_names.data()), output_names.size(),
      const_cast<const char**>(target_nodes.data()), target_nodes.size(),
      out_handle, out_status);
  Py_END_ALLOW_THREADS;
}

// Wrapper for TF_PRun that converts the arguments to appropriate types.
// If *out_status is OK, the caller becomes the owner of the PyObjects
// in *out_values.
void TF_PRun_wrapper(TF_DeprecatedSession* session, const char* handle,
                     PyObject* feed_dict, const NameVector& output_names,
                     TF_Status* out_status, PyObjectVector* out_values) {
  TF_Run_wrapper_helper(session, handle, nullptr, feed_dict, output_names,
                        NameVector(), out_status, out_values, nullptr);
  ClearDecrefCache();
}

// Wrapper for TF_Reset that converts the string vectors to character arrays.
void TF_Reset_wrapper(const TF_SessionOptions* opt,
                      const NameVector& containers, TF_Status* out_status) {
  TF_Reset(opt, const_cast<const char**>(containers.data()), containers.size(),
           out_status);
}

void TF_SessionRun_wrapper_helper(TF_Session* session, const char* handle,
                                  const TF_Buffer* run_options,
                                  const std::vector<TF_Output>& inputs,
                                  const std::vector<PyObject*>& input_ndarrays,
                                  const std::vector<TF_Output>& outputs,
                                  const std::vector<TF_Operation*>& targets,
                                  TF_Buffer* run_metadata,
                                  TF_Status* out_status,
                                  std::vector<PyObject*>* py_outputs) {
  DCHECK_EQ(inputs.size(), input_ndarrays.size());
  DCHECK(py_outputs != nullptr);
  DCHECK(py_outputs->empty());
  Status s;

  // Convert input ndarray PyObjects to TF_Tensors. We maintain a continuous
  // array of TF_Tensor*s as well as scoped containers to make sure they're
  // cleaned up properly.
  //
  // Memory management:
  // PyArrayToTF_Tensor() creates a new ndarray PyObject from the input
  // ndarray. We manage the new ndarray's lifetime in order to keep the
  // underlying data buffer alive (the new ndarray also guarantees a contiguous
  // data buffer). The new ndarray's data buffer is used to create the
  // corresponding TF_Tensor. The TF_Tensor's deallocator will queue the new
  // ndarray to be decref'd by the next ClearDecrefCache() call (we can't call
  // Py_DECREF in the deallocator directly because the GIL must be held).
  //
  // Note that TF_Tensor may directly delegate its data and deallocator to a
  // TensorBuffer, which may outlive the TF_Tensor (e.g. if the tensor gets
  // queued or assigned to a variable).
  TF_TensorVector input_vals;
  std::vector<Safe_TF_TensorPtr> input_vals_safe;
  for (PyObject* ndarray : input_ndarrays) {
    input_vals_safe.emplace_back(make_safe(static_cast<TF_Tensor*>(nullptr)));
    s = PyArrayToTF_Tensor(ndarray, &input_vals_safe.back());
    if (!s.ok()) {
      Set_TF_Status_from_Status(out_status, s);
      return;
    }
    input_vals.push_back(input_vals_safe.back().get());
  }

  // Allocate space for output TF_Tensor*s
  TF_TensorVector output_vals(outputs.size());

  // Clear up any unused memory leftover from previous runs
  ClearDecrefCache();

  // Call TF_SessionRun() (and release GIL during execution)
  Py_BEGIN_ALLOW_THREADS;
  if (handle == nullptr) {
    TF_SessionRun(session, run_options, inputs.data(), input_vals.data(),
                  inputs.size(), outputs.data(), output_vals.data(),
                  outputs.size(), targets.data(), targets.size(), run_metadata,
                  out_status);
  } else {
    TF_SessionPRun(session, handle, inputs.data(), input_vals.data(),
                   inputs.size(), outputs.data(), output_vals.data(),
                   outputs.size(), targets.data(), targets.size(), out_status);
  }
  Py_END_ALLOW_THREADS;

  // Create scoped containers for output tensors
  std::vector<Safe_TF_TensorPtr> output_vals_safe;
  for (TF_Tensor* output : output_vals) {
    output_vals_safe.emplace_back(make_safe(output));
  }

  // Convert outputs to ndarrays (in scoped containers)
  std::vector<Safe_PyObjectPtr> py_outputs_safe;
  for (size_t i = 0; i < outputs.size(); ++i) {
    PyObject* py_array;
    s = TF_TensorToPyArray(std::move(output_vals_safe[i]), &py_array);
    if (!s.ok()) {
      Set_TF_Status_from_Status(out_status, s);
      return;
    }
    py_outputs_safe.emplace_back(make_safe(py_array));
  }

  // If we reach this point, we have successfully built a list of objects so we
  // can release them from the safe container into the return vector.
  for (size_t i = 0; i < outputs.size(); ++i) {
    py_outputs->push_back(py_outputs_safe[i].release());
  }
}

void TF_SessionRun_wrapper(TF_Session* session, const TF_Buffer* run_options,
                           const std::vector<TF_Output>& inputs,
                           const std::vector<PyObject*>& input_ndarrays,
                           const std::vector<TF_Output>& outputs,
                           const std::vector<TF_Operation*>& targets,
                           TF_Buffer* run_metadata, TF_Status* out_status,
                           std::vector<PyObject*>* py_outputs) {
  TF_SessionRun_wrapper_helper(session, nullptr, run_options, inputs,
                               input_ndarrays, outputs, targets, run_metadata,
                               out_status, py_outputs);
  // Release any unused ndarray references (see memory management comment in
  // TF_SessionRun_wrapper_helper)
  ClearDecrefCache();
}

string EqualGraphDefWrapper(const string& actual, const string& expected) {
  GraphDef actual_def;
  if (!actual_def.ParseFromString(actual)) {
    return "actual is not a valid serialized GraphDef";
  }
  GraphDef expected_def;
  if (!expected_def.ParseFromString(expected)) {
    return "expected is not a valid serialized GraphDef";
  }
  string diff;
  return EqualGraphDef(actual_def, expected_def, &diff) ? "" : diff;
}

string EqualAttrValueWrapper(const string& actual, const string& expected) {
  AttrValue actual_attr_value;
  if (!actual_attr_value.ParseFromString(actual)) {
    return "actual is not a valid serialized AttrValue";
  }

  AttrValue expected_attr_value;
  if (!expected_attr_value.ParseFromString(expected)) {
    return "expected is not a valid serialized AttrValue";
  }

  string diff;
  if (!AreAttrValuesEqual(actual_attr_value, expected_attr_value)) {
    diff = strings::Printf(
        "Actual AttrValue %s does not match Expected AttrValue %s.",
        SummarizeAttrValue(actual_attr_value).c_str(),
        SummarizeAttrValue(expected_attr_value).c_str());
  }
  return diff;
}

// Return value set to 6 inlined elements so it fits in a 64-byte cache line.
tensorflow::gtl::InlinedVector<int64_t, 6> TF_GraphGetTensorShapeHelper(
    TF_Graph* graph, TF_Output output, TF_Status* out_status,
    bool* unknown_shape) {
  // Allocate a single variable for holding the result for RVO.
  tensorflow::gtl::InlinedVector<int64_t, 6> result;
  *unknown_shape = false;
  int num_dims = TF_GraphGetTensorNumDims(graph, output, out_status);
  if (TF_GetCode(out_status) != TF_OK) {
    return result;
  }
  // If shape is unknown, set boolean and return.
  if (num_dims == -1) {
    *unknown_shape = true;
    return result;
  }

  // If shape is a scalar, avoid another C call and just return {}.
  if (num_dims == 0) {
    return result;
  }

  result.resize(num_dims);
  TF_GraphGetTensorShape(graph, output, result.data(), num_dims, out_status);
  return result;
}

void TF_SessionPRunSetup_wrapper(TF_Session* session,
                                 const std::vector<TF_Output>& inputs,
                                 const std::vector<TF_Output>& outputs,
                                 const std::vector<TF_Operation*>& targets,
                                 const char** out_handle,
                                 TF_Status* out_status) {
  // Call TF_SessionPRunSetup() (and release GIL during execution)
  Py_BEGIN_ALLOW_THREADS;
  TF_SessionPRunSetup(session, inputs.data(), inputs.size(), outputs.data(),
                      outputs.size(), targets.data(), targets.size(),
                      out_handle, out_status);
  Py_END_ALLOW_THREADS;
}

void TF_SessionPRun_wrapper(TF_Session* session, const char* handle,
                            const std::vector<TF_Output>& inputs,
                            const std::vector<PyObject*>& input_ndarrays,
                            const std::vector<TF_Output>& outputs,
                            TF_Status* out_status,
                            std::vector<PyObject*>* py_outputs) {
  const std::vector<TF_Operation*> targets;
  TF_SessionRun_wrapper_helper(session, handle,
                               nullptr,  // run_options
                               inputs, input_ndarrays, outputs, targets,
                               nullptr,  // run_metadata
                               out_status, py_outputs);
  // Release any unused ndarray references (see memory management comment in
  // TF_SessionRun_wrapper_helper)
  ClearDecrefCache();
}

std::vector<TF_Output> GetOperationInputs(TF_Operation* oper) {
  int num_inputs = TF_OperationNumInputs(oper);
  std::vector<TF_Output> inputs(num_inputs);
  for (int i = 0; i < num_inputs; ++i) {
    inputs[i] = TF_OperationInput({oper, i});
  }
  return inputs;
}

std::vector<TF_Operation*> TF_OperationGetControlInputs_wrapper(
    TF_Operation* oper) {
  std::vector<TF_Operation*> control_inputs(TF_OperationNumControlInputs(oper));
  TF_OperationGetControlInputs(oper, control_inputs.data(),
                               control_inputs.size());
  return control_inputs;
}

std::vector<TF_Operation*> TF_OperationGetControlOutputs_wrapper(
    TF_Operation* oper) {
  std::vector<TF_Operation*> control_outputs(
      TF_OperationNumControlOutputs(oper));
  TF_OperationGetControlOutputs(oper, control_outputs.data(),
                                control_outputs.size());
  return control_outputs;
}

std::vector<const char*> TF_OperationOutputConsumers_wrapper(
    TF_Output oper_out) {
  int num_consumers = TF_OperationOutputNumConsumers(oper_out);
  std::vector<TF_Input> consumers(num_consumers);
  TF_OperationOutputConsumers(oper_out, consumers.data(), num_consumers);

  std::vector<const char*> consumer_names(num_consumers);
  for (int i = 0; i < num_consumers; ++i) {
    consumer_names[i] = TF_OperationName(consumers[i].oper);
  }
  return consumer_names;
}

TF_Function* TF_GraphToFunction_wrapper(
    const TF_Graph* fn_body, const char* fn_name, bool append_hash_to_fn_name,
    const std::vector<TF_Operation*>* opers,
    const std::vector<TF_Output>& inputs, const std::vector<TF_Output>& outputs,
    const NameVector& output_names, const TF_FunctionOptions* opts,
    const char* description, TF_Status* out_status) {
  if (!output_names.empty() && output_names.size() != outputs.size()) {
    Set_TF_Status_from_Status(
        out_status,
        errors::InvalidArgument(
            "output names must be either empty or equal in size to outputs. ",
            "output names size = ", output_names.size(),
            " outputs size = ", outputs.size()));
    return nullptr;
  }

  int nopers = -1;
  const TF_Operation* const* opers_array = nullptr;
  if (opers != nullptr) {
    nopers = opers->size();
    opers_array = opers->data();
  }

  const char** output_names_ptr =
      output_names.empty() ? nullptr
                           : const_cast<const char**>(output_names.data());

  return TF_GraphToFunction(fn_body, fn_name, append_hash_to_fn_name, nopers,
                            opers_array, inputs.size(), inputs.data(),
                            outputs.size(), outputs.data(), output_names_ptr,
                            opts, description, out_status);
}

void TF_GraphSetOutputHandleShapesAndTypes_wrapper(
    TF_Graph* graph, TF_Output output,
    const std::vector<std::vector<int64_t>>& shapes,
    const std::vector<int>& ranks, const std::vector<TF_DataType>& types,
    TF_Status* status) {
  std::vector<const int64_t*> shapes_pointers(shapes.size());
  for (int i = 0; i < shapes.size(); ++i) {
    shapes_pointers[i] = ranks[i] <= 0 ? nullptr : &shapes[i][0];
  }
  TF_GraphSetOutputHandleShapesAndTypes(graph, output, shapes.size(),
                                        shapes_pointers.data(), ranks.data(),
                                        types.data(), status);
}

void TF_GraphSetTensorShape_wrapper(TF_Graph* graph, TF_Output output,
                                    const std::vector<int64_t>& dims,
                                    bool unknown_shape, TF_Status* status) {
  if (unknown_shape) {
    TF_GraphSetTensorShape(graph, output, nullptr, -1, status);
    return;
  }
  TF_GraphSetTensorShape(graph, output, dims.data(), dims.size(), status);
}

std::vector<string> TF_ImportGraphDefResultsMissingUnusedInputMappings_wrapper(
    TF_ImportGraphDefResults* results) {
  int num_missing_unused_input_mappings;
  const char** src_names;
  int* src_indexes;
  TF_ImportGraphDefResultsMissingUnusedInputMappings(
      results, &num_missing_unused_input_mappings, &src_names, &src_indexes);
  std::vector<string> input_strs(num_missing_unused_input_mappings);
  for (int i = 0; i < num_missing_unused_input_mappings; ++i) {
    input_strs[i] = TensorId(src_names[i], src_indexes[i]).ToString();
  }
  return input_strs;
}

PyObject* TF_TryEvaluateConstant_wrapper(TF_Graph* graph, TF_Output output,
                                         TF_Status* status) {
  TF_Tensor* result_tensor;
  bool evaluated =
      TF_TryEvaluateConstant(graph, output, &result_tensor, status);
  if (!evaluated || TF_GetCode(status) != TF_OK) Py_RETURN_NONE;

  Safe_TF_TensorPtr safe_result_tensor(result_tensor);
  PyObject* out;
  Status s = TF_TensorToPyArray(std::move(safe_result_tensor), &out);
  Set_TF_Status_from_Status(status, s);
  if (!s.ok()) Py_RETURN_NONE;
  return out;
}

}  // namespace tensorflow