aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/models/image/mnist/convolutional.py
blob: 8fb0e4dfb4b8a9633784bcde295cad6dd77f2d3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""Simple, end-to-end, LeNet-5-like convolutional MNIST model example.

This should achieve a test error of 0.8%. Please keep this model as simple and
linear as possible, it is meant as a tutorial for simple convolutional models.
Run with --self_test on the command line to exectute a short self-test.
"""
import gzip
import os
import sys
import urllib

import tensorflow.python.platform

import numpy
import tensorflow as tf

SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
WORK_DIRECTORY = 'data'
IMAGE_SIZE = 28
NUM_CHANNELS = 1
PIXEL_DEPTH = 255
NUM_LABELS = 10
VALIDATION_SIZE = 5000  # Size of the validation set.
SEED = 66478  # Set to None for random seed.
BATCH_SIZE = 64
NUM_EPOCHS = 10


tf.app.flags.DEFINE_boolean("self_test", False, "True if running a self test.")
FLAGS = tf.app.flags.FLAGS


def maybe_download(filename):
    """Download the data from Yann's website, unless it's already here."""
    if not os.path.exists(WORK_DIRECTORY):
        os.mkdir(WORK_DIRECTORY)
    filepath = os.path.join(WORK_DIRECTORY, filename)
    if not os.path.exists(filepath):
        filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath)
        statinfo = os.stat(filepath)
        print 'Succesfully downloaded', filename, statinfo.st_size, 'bytes.'
    return filepath


def extract_data(filename, num_images):
    """Extract the images into a 4D tensor [image index, y, x, channels].

    Values are rescaled from [0, 255] down to [-0.5, 0.5].
    """
    print 'Extracting', filename
    with gzip.open(filename) as bytestream:
        bytestream.read(16)
        buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
        data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
        data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, 1)
        return data


def extract_labels(filename, num_images):
    """Extract the labels into a 1-hot matrix [image index, label index]."""
    print 'Extracting', filename
    with gzip.open(filename) as bytestream:
        bytestream.read(8)
        buf = bytestream.read(1 * num_images)
        labels = numpy.frombuffer(buf, dtype=numpy.uint8)
    # Convert to dense 1-hot representation.
    return (numpy.arange(NUM_LABELS) == labels[:, None]).astype(numpy.float32)


def fake_data(num_images):
    """Generate a fake dataset that matches the dimensions of MNIST."""
    data = numpy.ndarray(
        shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS),
        dtype=numpy.float32)
    labels = numpy.zeros(shape=(num_images, NUM_LABELS), dtype=numpy.float32)
    for image in xrange(num_images):
        label = image % 2
        data[image, :, :, 0] = label - 0.5
        labels[image, label] = 1.0
    return data, labels


def error_rate(predictions, labels):
    """Return the error rate based on dense predictions and 1-hot labels."""
    return 100.0 - (
        100.0 *
        numpy.sum(numpy.argmax(predictions, 1) == numpy.argmax(labels, 1)) /
        predictions.shape[0])


def main(argv=None):  # pylint: disable=unused-argument
    if FLAGS.self_test:
        print 'Running self-test.'
        train_data, train_labels = fake_data(256)
        validation_data, validation_labels = fake_data(16)
        test_data, test_labels = fake_data(256)
        num_epochs = 1
    else:
        # Get the data.
        train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
        train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
        test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
        test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')

        # Extract it into numpy arrays.
        train_data = extract_data(train_data_filename, 60000)
        train_labels = extract_labels(train_labels_filename, 60000)
        test_data = extract_data(test_data_filename, 10000)
        test_labels = extract_labels(test_labels_filename, 10000)

        # Generate a validation set.
        validation_data = train_data[:VALIDATION_SIZE, :, :, :]
        validation_labels = train_labels[:VALIDATION_SIZE]
        train_data = train_data[VALIDATION_SIZE:, :, :, :]
        train_labels = train_labels[VALIDATION_SIZE:]
        num_epochs = NUM_EPOCHS
    train_size = train_labels.shape[0]

    # This is where training samples and labels are fed to the graph.
    # These placeholder nodes will be fed a batch of training data at each
    # training step using the {feed_dict} argument to the Run() call below.
    train_data_node = tf.placeholder(
        tf.float32,
        shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
    train_labels_node = tf.placeholder(tf.float32,
                                       shape=(BATCH_SIZE, NUM_LABELS))
    # For the validation and test data, we'll just hold the entire dataset in
    # one constant node.
    validation_data_node = tf.constant(validation_data)
    test_data_node = tf.constant(test_data)

    # The variables below hold all the trainable weights. They are passed an
    # initial value which will be assigned when when we call:
    # {tf.initialize_all_variables().run()}
    conv1_weights = tf.Variable(
        tf.truncated_normal([5, 5, NUM_CHANNELS, 32],  # 5x5 filter, depth 32.
                            stddev=0.1,
                            seed=SEED))
    conv1_biases = tf.Variable(tf.zeros([32]))
    conv2_weights = tf.Variable(
        tf.truncated_normal([5, 5, 32, 64],
                            stddev=0.1,
                            seed=SEED))
    conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]))
    fc1_weights = tf.Variable(  # fully connected, depth 512.
        tf.truncated_normal([IMAGE_SIZE / 4 * IMAGE_SIZE / 4 * 64, 512],
                            stddev=0.1,
                            seed=SEED))
    fc1_biases = tf.Variable(tf.constant(0.1, shape=[512]))
    fc2_weights = tf.Variable(
        tf.truncated_normal([512, NUM_LABELS],
                            stddev=0.1,
                            seed=SEED))
    fc2_biases = tf.Variable(tf.constant(0.1, shape=[NUM_LABELS]))

    # We will replicate the model structure for the training subgraph, as well
    # as the evaluation subgraphs, while sharing the trainable parameters.
    def model(data, train=False):
        """The Model definition."""
        # 2D convolution, with 'SAME' padding (i.e. the output feature map has
        # the same size as the input). Note that {strides} is a 4D array whose
        # shape matches the data layout: [image index, y, x, depth].
        conv = tf.nn.conv2d(data,
                            conv1_weights,
                            strides=[1, 1, 1, 1],
                            padding='SAME')
        # Bias and rectified linear non-linearity.
        relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
        # Max pooling. The kernel size spec {ksize} also follows the layout of
        # the data. Here we have a pooling window of 2, and a stride of 2.
        pool = tf.nn.max_pool(relu,
                              ksize=[1, 2, 2, 1],
                              strides=[1, 2, 2, 1],
                              padding='SAME')
        conv = tf.nn.conv2d(pool,
                            conv2_weights,
                            strides=[1, 1, 1, 1],
                            padding='SAME')
        relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
        pool = tf.nn.max_pool(relu,
                              ksize=[1, 2, 2, 1],
                              strides=[1, 2, 2, 1],
                              padding='SAME')
        # Reshape the feature map cuboid into a 2D matrix to feed it to the
        # fully connected layers.
        pool_shape = pool.get_shape().as_list()
        reshape = tf.reshape(
            pool,
            [pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
        # Fully connected layer. Note that the '+' operation automatically
        # broadcasts the biases.
        hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
        # Add a 50% dropout during training only. Dropout also scales
        # activations such that no rescaling is needed at evaluation time.
        if train:
            hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
        return tf.matmul(hidden, fc2_weights) + fc2_biases

    # Training computation: logits + cross-entropy loss.
    logits = model(train_data_node, True)
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
        logits, train_labels_node))

    # L2 regularization for the fully connected parameters.
    regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
                    tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
    # Add the regularization term to the loss.
    loss += 5e-4 * regularizers

    # Optimizer: set up a variable that's incremented once per batch and
    # controls the learning rate decay.
    batch = tf.Variable(0)
    # Decay once per epoch, using an exponential schedule starting at 0.01.
    learning_rate = tf.train.exponential_decay(
        0.01,                # Base learning rate.
        batch * BATCH_SIZE,  # Current index into the dataset.
        train_size,          # Decay step.
        0.95,                # Decay rate.
        staircase=True)
    # Use simple momentum for the optimization.
    optimizer = tf.train.MomentumOptimizer(learning_rate,
                                           0.9).minimize(loss,
                                                         global_step=batch)

    # Predictions for the minibatch, validation set and test set.
    train_prediction = tf.nn.softmax(logits)
    # We'll compute them only once in a while by calling their {eval()} method.
    validation_prediction = tf.nn.softmax(model(validation_data_node))
    test_prediction = tf.nn.softmax(model(test_data_node))

    # Create a local session to run this computation.
    with tf.Session() as s:
        # Run all the initializers to prepare the trainable parameters.
        tf.initialize_all_variables().run()
        print 'Initialized!'
        # Loop through training steps.
        for step in xrange(int(num_epochs * train_size / BATCH_SIZE)):
            # Compute the offset of the current minibatch in the data.
            # Note that we could use better randomization across epochs.
            offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
            batch_data = train_data[offset:(offset + BATCH_SIZE), :, :, :]
            batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
            # This dictionary maps the batch data (as a numpy array) to the
            # node in the graph is should be fed to.
            feed_dict = {train_data_node: batch_data,
                         train_labels_node: batch_labels}
            # Run the graph and fetch some of the nodes.
            _, l, lr, predictions = s.run(
                [optimizer, loss, learning_rate, train_prediction],
                feed_dict=feed_dict)
            if step % 100 == 0:
                print 'Epoch %.2f' % (float(step) * BATCH_SIZE / train_size)
                print 'Minibatch loss: %.3f, learning rate: %.6f' % (l, lr)
                print 'Minibatch error: %.1f%%' % error_rate(predictions,
                                                             batch_labels)
                print 'Validation error: %.1f%%' % error_rate(
                    validation_prediction.eval(), validation_labels)
                sys.stdout.flush()
        # Finally print the result!
        test_error = error_rate(test_prediction.eval(), test_labels)
        print 'Test error: %.1f%%' % test_error
        if FLAGS.self_test:
            print 'test_error', test_error
            assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (
                test_error,)


if __name__ == '__main__':
    tf.app.run()