aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/models/embedding/word2vec_optimized.py
blob: 23e7645a0bc077695fe46a118ea943ebc4181e67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""Multi-threaded word2vec unbatched skip-gram model.

Trains the model described in:
(Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space
ICLR 2013.
http://arxiv.org/abs/1301.3781
This model does true SGD (i.e. no minibatching). To do this efficiently, custom
ops are used to sequentially process data within a 'batch'.

The key ops used are:
* skipgram custom op that does input processing.
* neg_train custom op that efficiently calculates and applies the gradient using
  true SGD.
"""

import sys
import threading
import time

import tensorflow.python.platform

import numpy as np
import tensorflow as tf

from tensorflow.models.embedding import gen_word2vec as word2vec

flags = tf.app.flags

flags.DEFINE_string("save_path", None, "Directory to write the model.")
flags.DEFINE_string(
    "train_data", None,
    "Training data. E.g., unzipped file http://mattmahoney.net/dc/text8.zip.")
flags.DEFINE_string(
    "eval_data", None, "Analogy questions. "
    "https://word2vec.googlecode.com/svn/trunk/questions-words.txt.")
flags.DEFINE_integer("embedding_size", 200, "The embedding dimension size.")
flags.DEFINE_integer(
    "epochs_to_train", 15,
    "Number of epochs to train. Each epoch processes the training data once "
    "completely.")
flags.DEFINE_float("learning_rate", 0.025, "Initial learning rate.")
flags.DEFINE_integer("num_neg_samples", 25,
                     "Negative samples per training example.")
flags.DEFINE_integer("batch_size", 500,
                     "Numbers of training examples each step processes "
                     "(no minibatching).")
flags.DEFINE_integer("concurrent_steps", 12,
                     "The number of concurrent training steps.")
flags.DEFINE_integer("window_size", 5,
                     "The number of words to predict to the left and right "
                     "of the target word.")
flags.DEFINE_integer("min_count", 5,
                     "The minimum number of word occurrences for it to be "
                     "included in the vocabulary.")
flags.DEFINE_float("subsample", 1e-3,
                   "Subsample threshold for word occurrence. Words that appear "
                   "with higher frequency will be randomly down-sampled. Set "
                   "to 0 to disable.")
flags.DEFINE_boolean(
    "interactive", False,
    "If true, enters an IPython interactive session to play with the trained "
    "model. E.g., try model.analogy('france', 'paris', 'russia') and "
    "model.nearby(['proton', 'elephant', 'maxwell']")

FLAGS = flags.FLAGS


class Options(object):
  """Options used by our word2vec model."""

  def __init__(self):
    # Model options.

    # Embedding dimension.
    self.emb_dim = FLAGS.embedding_size

    # Training options.

    # The training text file.
    self.train_data = FLAGS.train_data

    # Number of negative samples per example.
    self.num_samples = FLAGS.num_neg_samples

    # The initial learning rate.
    self.learning_rate = FLAGS.learning_rate

    # Number of epochs to train. After these many epochs, the learning
    # rate decays linearly to zero and the training stops.
    self.epochs_to_train = FLAGS.epochs_to_train

    # Concurrent training steps.
    self.concurrent_steps = FLAGS.concurrent_steps

    # Number of examples for one training step.
    self.batch_size = FLAGS.batch_size

    # The number of words to predict to the left and right of the target word.
    self.window_size = FLAGS.window_size

    # The minimum number of word occurrences for it to be included in the
    # vocabulary.
    self.min_count = FLAGS.min_count

    # Subsampling threshold for word occurrence.
    self.subsample = FLAGS.subsample

    # Where to write out summaries.
    self.save_path = FLAGS.save_path

    # Eval options.

    # The text file for eval.
    self.eval_data = FLAGS.eval_data


class Word2Vec(object):
  """Word2Vec model (Skipgram)."""

  def __init__(self, options, session):
    self._options = options
    self._session = session
    self._word2id = {}
    self._id2word = []
    self.build_graph()
    self.build_eval_graph()
    self.save_vocab()
    self._read_analogies()

  def _read_analogies(self):
    """Reads through the analogy question file.

    Returns:
      questions: a [n, 4] numpy array containing the analogy question's
                 word ids.
      questions_skipped: questions skipped due to unknown words.
    """
    questions = []
    questions_skipped = 0
    with open(self._options.eval_data) as analogy_f:
      for line in analogy_f:
        if line.startswith(":"):  # Skip comments.
          continue
        words = line.strip().lower().split(" ")
        ids = [self._word2id.get(w.strip()) for w in words]
        if None in ids or len(ids) != 4:
          questions_skipped += 1
        else:
          questions.append(np.array(ids))
    print "Eval analogy file: ", self._options.eval_data
    print "Questions: ", len(questions)
    print "Skipped: ", questions_skipped
    self._analogy_questions = np.array(questions, dtype=np.int32)

  def build_graph(self):
    """Build the model graph."""
    opts = self._options

    # The training data. A text file.
    (words, counts, words_per_epoch, current_epoch, total_words_processed,
     examples, labels) = word2vec.skipgram(filename=opts.train_data,
                                           batch_size=opts.batch_size,
                                           window_size=opts.window_size,
                                           min_count=opts.min_count,
                                           subsample=opts.subsample)
    (opts.vocab_words, opts.vocab_counts,
     opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch])
    opts.vocab_size = len(opts.vocab_words)
    print "Data file: ", opts.train_data
    print "Vocab size: ", opts.vocab_size - 1, " + UNK"
    print "Words per epoch: ", opts.words_per_epoch

    self._id2word = opts.vocab_words
    for i, w in enumerate(self._id2word):
      self._word2id[w] = i

    # Declare all variables we need.
    # Input words embedding: [vocab_size, emb_dim]
    w_in = tf.Variable(
        tf.random_uniform(
            [opts.vocab_size,
             opts.emb_dim], -0.5 / opts.emb_dim, 0.5 / opts.emb_dim),
        name="w_in")

    # Global step: scalar, i.e., shape [].
    w_out = tf.Variable(tf.zeros([opts.vocab_size, opts.emb_dim]), name="w_out")

    # Global step: []
    global_step = tf.Variable(0, name="global_step")

    # Linear learning rate decay.
    words_to_train = float(opts.words_per_epoch * opts.epochs_to_train)
    lr = opts.learning_rate * tf.maximum(
        0.0001,
        1.0 - tf.cast(total_words_processed, tf.float32) / words_to_train)

    # Training nodes.
    inc = global_step.assign_add(1)
    with tf.control_dependencies([inc]):
      train = word2vec.neg_train(w_in,
                                 w_out,
                                 examples,
                                 labels,
                                 lr,
                                 vocab_count=opts.vocab_counts.tolist(),
                                 num_negative_samples=opts.num_samples)

    self._w_in = w_in
    self._examples = examples
    self._labels = labels
    self._lr = lr
    self._train = train
    self.step = global_step
    self._epoch = current_epoch
    self._words = total_words_processed

  def save_vocab(self):
    """Save the vocabulary to a file so the model can be reloaded."""
    opts = self._options
    with open(opts.save_path + "/vocab.txt", "w") as f:
      for i in xrange(opts.vocab_size):
        f.write(opts.vocab_words[i] + " " + str(opts.vocab_counts[i]) + "\n")

  def build_eval_graph(self):
    """Build the evaluation graph."""
    # Eval graph
    opts = self._options

    # Each analogy task is to predict the 4th word (d) given three
    # words: a, b, c.  E.g., a=italy, b=rome, c=france, we should
    # predict d=paris.

    # The eval feeds three vectors of word ids for a, b, c, each of
    # which is of size N, where N is the number of analogies we want to
    # evaluate in one batch.
    analogy_a = tf.placeholder(dtype=tf.int32)  # [N]
    analogy_b = tf.placeholder(dtype=tf.int32)  # [N]
    analogy_c = tf.placeholder(dtype=tf.int32)  # [N]

    # Normalized word embeddings of shape [vocab_size, emb_dim].
    nemb = tf.nn.l2_normalize(self._w_in, 1)

    # Each row of a_emb, b_emb, c_emb is a word's embedding vector.
    # They all have the shape [N, emb_dim]
    a_emb = tf.gather(nemb, analogy_a)  # a's embs
    b_emb = tf.gather(nemb, analogy_b)  # b's embs
    c_emb = tf.gather(nemb, analogy_c)  # c's embs

    # We expect that d's embedding vectors on the unit hyper-sphere is
    # near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim].
    target = c_emb + (b_emb - a_emb)

    # Compute cosine distance between each pair of target and vocab.
    # dist has shape [N, vocab_size].
    dist = tf.matmul(target, nemb, transpose_b=True)

    # For each question (row in dist), find the top 4 words.
    _, pred_idx = tf.nn.top_k(dist, 4)

    # Nodes for computing neighbors for a given word according to
    # their cosine distance.
    nearby_word = tf.placeholder(dtype=tf.int32)  # word id
    nearby_emb = tf.gather(nemb, nearby_word)
    nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True)
    nearby_val, nearby_idx = tf.nn.top_k(nearby_dist,
                                         min(1000, opts.vocab_size))

    # Nodes in the construct graph which are used by training and
    # evaluation to run/feed/fetch.
    self._analogy_a = analogy_a
    self._analogy_b = analogy_b
    self._analogy_c = analogy_c
    self._analogy_pred_idx = pred_idx
    self._nearby_word = nearby_word
    self._nearby_val = nearby_val
    self._nearby_idx = nearby_idx

    # Properly initialize all variables.
    tf.initialize_all_variables().run()

    self.saver = tf.train.Saver()

  def _train_thread_body(self):
    initial_epoch, = self._session.run([self._epoch])
    while True:
      _, epoch = self._session.run([self._train, self._epoch])
      if epoch != initial_epoch:
        break

  def train(self):
    """Train the model."""
    opts = self._options

    initial_epoch, initial_words = self._session.run([self._epoch, self._words])

    workers = []
    for _ in xrange(opts.concurrent_steps):
      t = threading.Thread(target=self._train_thread_body)
      t.start()
      workers.append(t)

    last_words, last_time = initial_words, time.time()
    while True:
      time.sleep(5)  # Reports our progress once a while.
      (epoch, step, words,
       lr) = self._session.run([self._epoch, self.step, self._words, self._lr])
      now = time.time()
      last_words, last_time, rate = words, now, (words - last_words) / (
          now - last_time)
      print "Epoch %4d Step %8d: lr = %5.3f words/sec = %8.0f\r" % (epoch, step,
                                                                    lr, rate),
      sys.stdout.flush()
      if epoch != initial_epoch:
        break

    for t in workers:
      t.join()

  def _predict(self, analogy):
    """Predict the top 4 answers for analogy questions."""
    idx, = self._session.run([self._analogy_pred_idx], {
        self._analogy_a: analogy[:, 0],
        self._analogy_b: analogy[:, 1],
        self._analogy_c: analogy[:, 2]
    })
    return idx

  def eval(self):
    """Evaluate analogy questions and reports accuracy."""

    # How many questions we get right at precision@1.
    correct = 0

    total = self._analogy_questions.shape[0]
    start = 0
    while start < total:
      limit = start + 2500
      sub = self._analogy_questions[start:limit, :]
      idx = self._predict(sub)
      start = limit
      for question in xrange(sub.shape[0]):
        for j in xrange(4):
          if idx[question, j] == sub[question, 3]:
            # Bingo! We predicted correctly. E.g., [italy, rome, france, paris].
            correct += 1
            break
          elif idx[question, j] in sub[question, :3]:
            # We need to skip words already in the question.
            continue
          else:
            # The correct label is not the precision@1
            break
    print
    print "Eval %4d/%d accuracy = %4.1f%%" % (correct, total,
                                              correct * 100.0 / total)

  def analogy(self, w0, w1, w2):
    """Predict word w3 as in w0:w1 vs w2:w3."""
    wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]])
    idx = self._predict(wid)
    for c in [self._id2word[i] for i in idx[0, :]]:
      if c not in [w0, w1, w2]:
        return c
    return "unknown"

  def nearby(self, words, num=20):
    """Prints out nearby words given a list of words."""
    ids = np.array([self._word2id.get(x, 0) for x in words])
    vals, idx = self._session.run(
        [self._nearby_val, self._nearby_idx], {self._nearby_word: ids})
    for i in xrange(len(words)):
      print "\n%s\n=====================================" % (words[i])
      for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]):
        print "%-20s %6.4f" % (self._id2word[neighbor], distance)


def _start_shell(local_ns=None):
  # An interactive shell is useful for debugging/development.
  import IPython
  user_ns = {}
  if local_ns:
    user_ns.update(local_ns)
  user_ns.update(globals())
  IPython.start_ipython(argv=[], user_ns=user_ns)


def main(_):
  """Train a word2vec model."""
  opts = Options()
  with tf.Graph().as_default(), tf.Session() as session:
    model = Word2Vec(opts, session)
    for _ in xrange(opts.epochs_to_train):
      model.train()  # Process one epoch
      model.eval()  # Eval analogies.
    # Perform a final save.
    model.saver.save(session, opts.save_path + "model", global_step=model.step)
    if FLAGS.interactive:
      # E.g.,
      # [0]: model.Analogy('france', 'paris', 'russia')
      # [1]: model.Nearby(['proton', 'elephant', 'maxwell'])
      _start_shell(locals())


if __name__ == "__main__":
  tf.app.run()