aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/g3doc/how_tos/adding_an_op/index.md
blob: 5c6243cd9cda052d563a0cc54a739434f3949fe3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
# Adding a New Op to TensorFlow

PREREQUISITES:

* Some familiarity with C++.
* Must have [downloaded TensorFlow source](../../get_started/index.md#source),
  and be able to build it.

If you'd like to incorporate an operation that isn't covered by the existing
library, you can create a custom Op. To incorporate your custom Op, you'll need
to:

* Register the new Op in a C++ file. The Op registration is independent of the
  implementation, and describes the semantics of how the Op is invoked. For
  example, it defines the Op name, and specifies its inputs and outputs.
* Implement the Op in C++. This implementation is called a "kernel", and there
  can be multiple kernels for different architectures (e.g. CPUs, GPUs) or
  input / output types.
* Create a Python wrapper. This wrapper is the public API to create the Op. A
  default wrapper is generated from the Op registration, which can be used
  directly or added to.
* Optionally, write a function to compute gradients for the Op.
* Optionally, write a function that describes the input and output shapes
  for the Op.  This allows shape inference to work with your Op.
* Test the Op, typically in Python. If you define gradients, verify them with
  the Python [`GradientChecker`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/python/kernel_tests/gradient_checker.py).

<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
## Contents
* [Define the Op's interface](#define_interface)
* [Implement the kernel for the Op](#AUTOGENERATED-implement-the-kernel-for-the-op)
* [Generate the client wrapper](#AUTOGENERATED-generate-the-client-wrapper)
  * [The Python Op wrapper](#AUTOGENERATED-the-python-op-wrapper)
  * [The C++ Op wrapper](#AUTOGENERATED-the-c---op-wrapper)
* [Verify it works](#AUTOGENERATED-verify-it-works)
* [Validation](#validation)
* [Op registration](#AUTOGENERATED-op-registration)
  * [Attrs](#AUTOGENERATED-attrs)
  * [Attr types](#AUTOGENERATED-attr-types)
  * [Polymorphism](#polymorphism)
  * [Inputs and Outputs](#AUTOGENERATED-inputs-and-outputs)
  * [Backwards compatibility](#AUTOGENERATED-backwards-compatibility)
* [GPU Support](#mult-archs)
* [Implement the gradient in Python](#AUTOGENERATED-implement-the-gradient-in-python)
* [Implement a shape function in Python](#AUTOGENERATED-implement-a-shape-function-in-python)


<!-- TOC-END This section was generated by neural network, THANKS FOR READING! -->

## Define the Op's interface <div class="md-anchor" id="define_interface">{#define_interface}</div>

You define the interface of an Op by registering it with the TensorFlow system.
In the registration, you specify the name of your Op, its inputs (types and
names) and outputs (types and names), as well as [docstrings](#docstrings) and
any [attrs](#attrs) the Op might require.

To see how this works, suppose you'd like to create an Op that takes a tensor of
`int32`s and outputs a copy of the tensor, with all but the first element set to
zero. Create file [`tensorflow/core/user_ops`][user_ops]`/zero_out.cc` and
add a call to the `REGISTER_OP` macro that defines the interface for such an Op:

```c++
#include "tensorflow/core/framework/op.h"

REGISTER_OP("ZeroOut")
    .Input("to_zero: int32")
    .Output("zeroed: int32");
```

This `ZeroOut` Op takes one tensor `to_zero` of 32-bit integers as input, and
outputs a tensor `zeroed` of 32-bit integers.

> A note on naming: The name of the Op should be unique and CamelCase.  Names
> starting with an underscore (`_`) are reserved for internal use.

## Implement the kernel for the Op <div class="md-anchor" id="AUTOGENERATED-implement-the-kernel-for-the-op">{#AUTOGENERATED-implement-the-kernel-for-the-op}</div>

After you define the interface, provide one or more implementations of the Op.
To create one of these kernels, create a class that extends `OpKernel` and
overrides the `Compute` method. The `Compute` method provides one `context`
argument of type `OpKernelContext*`, from which you can access useful things
like the input and output tensors.

Add your kernel to the file you created above. The kernel might look something
like this:

```c++
#include "tensorflow/core/framework/op_kernel.h"

using namespace tensorflow;

class ZeroOutOp : public OpKernel {
 public:
  explicit ZeroOutOp(OpKernelConstruction* context) : OpKernel(context) {}

  void Compute(OpKernelContext* context) override {
    // Grab the input tensor
    const Tensor& input_tensor = context->input(0);
    auto input = input_tensor.flat<int32>();

    // Create an output tensor
    Tensor* output_tensor = NULL;
    OP_REQUIRES_OK(context, context->allocate_output(0, input_tensor.shape(),
                                                     &output_tensor));
    auto output = output_tensor->template flat<int32>();

    // Set all but the first element of the output tensor to 0.
    const int N = input.size();
    for (int i = 1; i < N; i++) {
      output(i) = 0;
    }

    // Preserve the first input value if possible.
    if (N > 0) output(0) = input(0);
  }
};
```

After implementing your kernel, you register it with the TensorFlow system. In
the registration, you specify different constraints under which this kernel
will run. For example, you might have one kernel made for CPUs, and a separate
one for GPUs.

To do this for the `ZeroOut` op, add the following to `zero_out.cc`:

```c++
REGISTER_KERNEL_BUILDER(Name("ZeroOut").Device(DEVICE_CPU), ZeroOutOp);
```

TODO: instructions or pointer to building TF

At this point, the Tensorflow system can reference and use the Op when
requested.

## Generate the client wrapper <div class="md-anchor" id="AUTOGENERATED-generate-the-client-wrapper">{#AUTOGENERATED-generate-the-client-wrapper}</div>
### The Python Op wrapper <div class="md-anchor" id="AUTOGENERATED-the-python-op-wrapper">{#AUTOGENERATED-the-python-op-wrapper}</div>

Python op wrappers are created automatically in
`bazel-genfiles/tensorflow/python/ops/gen_user_ops.py` for all ops placed in the
[`tensorflow/core/user_ops`][user_ops] directory when you build Tensorflow.
Those ops are imported into
[`tensorflow/python/user_ops/user_ops.py`][python-user_ops] with the statement:

```python
from tensorflow.python.ops.gen_user_ops import *
```

You may optionally use your own function instead.  To do this, you first hide
the generated code for that op by adding its name to the `hidden` list in the
`"user_ops"` rule in
[`tensorflow/python/BUILD`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/python/BUILD):

```python
tf_gen_op_wrapper_py(
    name = "user_ops",
    hidden = [
        "Fact",
    ],
    require_shape_functions = False,
)
```

List your op next to `"Fact"`.  Next you add your replacement function to
[`tensorflow/python/user_ops/user_ops.py`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/python/user_ops/user_ops.py).
Typically your function will call the generated function to actually add the op
to the graph.  The hidden version of the generated function will be in the
`gen_user_ops` package and start with an underscore ("`_`").  For example:

```python
def my_fact():
    """Example of overriding the generated code for an Op."""
    return gen_user_ops._fact()
```

### The C++ Op wrapper <div class="md-anchor" id="AUTOGENERATED-the-c---op-wrapper">{#AUTOGENERATED-the-c---op-wrapper}</div>

C++ op wrappers are created automatically for all ops placed in the
[`tensorflow/core/user_ops`][user_ops] directory, when you build Tensorflow. For
example, ops in `tensorflow/core/user_ops/zero_out.cc` will generate wrappers in
`bazel-genfiles/tensorflow/cc/ops/user_ops.{h,cc}`.

All generated wrappers for user ops are automatically
imported into [`tensorflow/cc/ops/standard_ops.h`][standard_ops-cc] with the
statement

```c++
#include "tensorflow/cc/ops/user_ops.h"
```

## Verify it works <div class="md-anchor" id="AUTOGENERATED-verify-it-works">{#AUTOGENERATED-verify-it-works}</div>

A good way to verify that you've successfully implemented your Op is to write a
test for it. Create the file
`tensorflow/python/kernel_tests/zero_out_op_test.py` with the contents:
[TODO]:# (put tests somewhere else and make sure it works)

```python
import tensorflow as tf


class ZeroOutTest(tf.test.TestCase):
  def testZeroOut(self):
    with self.test_session():
      result = tf.user_ops.zero_out([5, 4, 3, 2, 1])
      self.assertAllEqual(result.eval(), [5, 0, 0, 0, 0])
```

Then run your test:

```sh
$ bazel test tensorflow/python:zero_out_op_test
```

## Validation <div class="md-anchor" id="validation">{#validation}</div>

The example above assumed that the Op applied to a tensor of any shape.  What
if it only applied to vectors?  That means adding a check to the above OpKernel
implementation.

```c++
  void Compute(OpKernelContext* context) override {
    // Grab the input tensor
    const Tensor& input_tensor = context->input(0);

    OP_REQUIRES(context, TensorShapeUtils::IsVector(input_tensor.shape()),
                errors::InvalidArgument("ZeroOut expects a 1-D vector."));
    // ...
  }
```

This asserts that the input is a vector, and returns having set the
`InvalidArgument` status if it isn't.  The
[OP_REQUIRES macro][validation-macros] takes three arguments:

*   The `context`, which can either be an `OpKernelContext` or
    `OpKernelConstruction` pointer (see
    [`tensorflow/core/framework/op_kernel.h`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/op_kernel.h)),
    for its `SetStatus()` method.
*   The condition.  For example, there are functions for validating the shape
    of a tensor in [`tensorflow/core/public/tensor_shape.h`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/public/tensor_shape.h) 
*   The error itself, which is represented by a `Status` object, see
    [`tensorflow/core/public/status.h`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/public/status.h). A
    `Status` has both a type (frequently `InvalidArgument`, but see the list of
    types) and a message.  Functions for constructing an error may be found in
    [`tensorflow/core/lib/core/errors.h`][validation-macros].

Alternatively, if you want to test whether a `Status` object returned from some
function is an error, and if so return it, use
[`OP_REQUIRES_OK`][validation-macros].  Both of these macros return from the
function on error.

## Op registration <div class="md-anchor" id="AUTOGENERATED-op-registration">{#AUTOGENERATED-op-registration}</div>

### Attrs <div class="md-anchor" id="AUTOGENERATED-attrs">{#AUTOGENERATED-attrs}</div>

Ops can have attrs, whose values are set when the Op is added to a graph. These
are used to configure the Op, and their values can be accessed both within the
kernel implementation and in the types of inputs and outputs in the Op
registration. Prefer using an input instead of an attr when possible, since
inputs are more flexible.  They can change every step, be set using a feed, etc.
Attrs are used for things that can't be done with inputs: any configuration
that affects the signature (number or type of inputs or outputs) or that
can't change from step-to-step.

You define an attr when you register the Op, by specifying its name and type
using the `Attr` method, which expects a spec of the form:

```
<name>: <attr-type-expr>
```

where `<name>` begins with a letter and can be composed of alphanumeric
characters and underscores, and `<attr-type-expr>` is a type expression of the
form [described below](#attr-types)

For example, if you'd like the `ZeroOut` Op to preserve a user-specified index,
instead of only the 0th element, you can register the Op like so:

<code class="lang-c++"><pre>
REGISTER\_OP("ZeroOut")
    <b>.Attr("preserve_index: int")</b>
    .Input("to_zero: int32")
    .Output("zeroed: int32");
</pre></code>

Your kernel can then access this attr in its constructor via the `context`
parameter:

<code class="lang-c++"><pre>
class ZeroOutOp : public OpKernel {
 public:
  explicit ZeroOutOp(OpKernelConstruction\* context) : OpKernel(context) {<b>
    // Get the index of the value to preserve
    OP_REQUIRES_OK(context->GetAttr("preserve\_index", &preserve\_index\_));
  </b>}
  void Compute(OpKernelContext\* context) override {
    // ...
  }
 <b>private:
  int preserve\_index\_;</b>
}
</pre></code>

which can then be used in the `Compute` method:

<code class="lang-c++"><pre>
  void Compute(OpKernelContext\* context) override {
    // ...
    // Set all the elements of the output tensor to 0
    const int N = input.size();
    for (int i=0; i < N; i++) {
      output\_flat(i) = 0;
    }<br>
    <b>// Preserve the requested input value
    output\_flat(preserve\_index\_) = input(preserve\_index\_);</b>
  }
</pre></code>

[TODO]:# (check the code in this section in and test it)

> To preserve [backwards compatibility](#backwards-compatibility), you should
> specify a [default value](#default-values-constraints) when adding an attr to
> an existing op:
>
> <code class="lang-c++"><pre>
> REGISTER\_OP("ZeroOut")
>     <b>.Attr("preserve\_index: int = 0")</b>
>     .Input("to_zero: int32")
>     .Output("zeroed: int32");
> </pre></code>

### Attr types <div class="md-anchor" id="AUTOGENERATED-attr-types">{#AUTOGENERATED-attr-types}</div>

The following types are supported in an attr:

* `string`: Any sequence of bytes (not required to be UTF8).
* `int`: A signed integer.
* `float`: A floating point number.
* `bool`: True or false.
* `type`: One of the (non-ref) values of [`DataType`][DataTypeString].
* `shape`: A [`TensorShapeProto`][TensorShapeProto].
* `tensor`: A [`TensorProto`][TensorProto].
* `list(<type>)`: A list of `<type>`, where `<type>` is one of the above types.
  Note that `list(list(<type>))` is invalid.

See also: [op_def_builder.cc:FinalizeAttr][FinalizeAttr] for a definitive list.

#### Default values & constraints

Attrs may have default values, and some types of attrs can have constraints. To
define an attr with constraints, you can use the following `<attr-type-expr>`s:

* `{'<string1>', '<string2>'}`: The value must be a string that has either the
  value `<string1>` or `<string2>`.  The name of the type, `string`, is implied
  when you use this syntax.  This emulates an enum:

  ```c++
  REGISTER_OP("EnumExample")
      .Attr("e: {'apple', 'orange'}");
  ```

* `{<type1>, <type2>}`: The value is of type `type`, and must be one of
  `<type1>` or `<type2>`, where `<type1>` and `<type2>` are supported
  [tensor types](../../resources/dims_types.md#data-types).  You don't specify
  that the type of the attr is `type`. This is implied when you have a list of
  types in `{...}`.  For example, in this case the attr `t` is a type that must
  be an `int32`, a `float`, or a `bool`:

  ```c++
  REGISTER_OP("RestrictedTypeExample")
      .Attr("t: {int32, float, bool}");
  ```

* There are shortcuts for common type constraints:
    * `numbertype`: Type `type` restricted to the numeric (non-string and
      non-bool) types.
    * `realnumbertype`: Like `numbertype` without complex types.
    * `quantizedtype`: Like `numbertype` but just the quantized number types.

    The specific lists of types allowed by these are defined by the functions
    (like `NumberTypes()`) in
    [`tensorflow/core/framework/types.h`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/types.h).
    In this example the attr `t` must be one of the numeric types:

    ```c++
    REGISTER_OP("NumberType")
        .Attr("t: numbertype");
    ```

    For this op:

    ```python
    tf.number_type(t=tf.int32)  # Valid
    tf.number_type(t=tf.bool)   # Invalid
    ```

* `int >= <n>`: The value must be an int whose value is greater than or equal to
  `<n>`, where `<n>` is a natural number.

  For example, the following Op registration specifies that the attr `a` must
  have a value that is at least `2`:

  ```c++
  REGISTER_OP("MinIntExample")
      .Attr("a: int >= 2");
  ```

* `list(<type>) >= <n>`: A list of type `<type>` whose length is greater than
  or equal to `<n>`.

  For example, the following Op registration specifies that the attr `a` is a
  list of types (either `int32` or `float`), and that there must be at least 3
  of them:

  ```c++
  REGISTER_OP("TypeListExample")
      .Attr("a: list({int32, float}) >= 3");
  ```

To set a default value for an attr (making it optional in the generated code),
add `= <default>` to the end, as in:

```c++
REGISTER_OP("AttrDefaultExample")
    .Attr("i: int = 0");
```

The supported syntax of the default value is what would be used in the proto
representation of the resulting GraphDef definition.

Here are examples for how to specify a default for all types:

```c++
REGISTER_OP("AttrDefaultExampleForAllTypes")
   .Attr("s: string = 'foo'")
   .Attr("i: int = 0")
   .Attr("f: float = 1.0")
   .Attr("b: bool = true")
   .Attr("ty: type = DT_INT32")
   .Attr("sh: shape = { dim { size: 1 } dim { size: 2 } }")
   .Attr("te: tensor = { dtype: DT_INT32 int_val: 5 }")
   .Attr("l_empty: list(int) = []")
   .Attr("l_int: list(int) = [2, 3, 5, 7]");
```

Note in particular that the values of type `type` use [the `DT_*` names
for the types](../../resources/dims_types.md#data-types).

### Polymorphism <div class="md-anchor" id="polymorphism">{#polymorphism}</div>
#### Type Polymorphism {#type-polymorphism}

For ops that can take different types as input or produce different output
types, you can specify [an attr](#attrs) in
[an input or output type](#inputs-outputs) in the Op registration.  Typically
you would then register an `OpKernel` for each supported type.

For instance, if you'd like the `ZeroOut` Op to work on `float`s
in addition to `int32`s, your Op registration might look like:

<code class="lang-c++"><pre>
REGISTER\_OP("ZeroOut")
    <b>.Attr("T: {float, int32}")</b>
    .Input("to_zero: <b>T</b>")
    .Output("zeroed: <b>T</b>");
</pre></code>

Your Op registration now specifies that the input's type must be `float`, or
`int32`, and that its output will be the same type, since both have type `T`.

> A note on naming:{#naming} Inputs, outputs, and attrs generally should be
> given snake_case names.  The one exception is attrs that are used as the type
> of an input or in the type of an input. Those attrs can be inferred when the
> op is added to the graph and so don't appear in the op's function.  For
> example, this last definition of ZeroOut will generate a Python function that
> looks like:
>
> ```python
> def zero_out(to_zero, name=None):
>   """...
>   Args:
>     to_zero: A `Tensor`. Must be one of the following types:
>         `float32`, `int32`.
>     name: A name for the operation (optional).
>
>   Returns:
>     A `Tensor`. Has the same type as `x`.
>   """
> ```
>
> If `to_zero` is passed an `int32` tensor, then `T` is automatically set to
> `int32` (well, actually `DT_INT32`). Those inferred attrs are given
> Capitalized or CamelCase names.
>
> Compare this with an op that has a type attr that determines the output
> type:
>
> ```c++
> REGISTER_OP("StringToNumber")
>     .Input("string_tensor: string")
>     .Output("output: out_type")
>     .Attr("out_type: {float, int32}");
>     .Doc(R"doc(
> Converts each string in the input Tensor to the specified numeric type.
> )doc");
> ```
>
> In this case, the user has to specify the output type, as in the generated
> Python:
>
> ```python
> def string_to_number(string_tensor, out_type=None, name=None):
>   """Converts each string in the input Tensor to the specified numeric type.
>
>   Args:
>     string_tensor: A `Tensor` of type `string`.
>     out_type: An optional `tf.DType` from: `tf.float32, tf.int32`.
>       Defaults to `tf.float32`.
>     name: A name for the operation (optional).
>
>   Returns:
>     A `Tensor` of type `out_type`.
>   """
> ```

<code class="lang-c++"><pre>
\#include "tensorflow/core/framework/op_kernel.h"<br/>
class ZeroOut<b>Int32</b>Op : public OpKernel {
  // as before
};<br/>
class ZeroOut<b>Float</b>Op : public OpKernel {
 public:
  explicit ZeroOut<b>Float</b>Op(OpKernelConstruction\* context)
      : OpKernel(context) {}<br/>
  void Compute(OpKernelContext\* context) override {
    // Grab the input tensor
    const Tensor& input\_tensor = context-&gt;input(0);
    auto input = input\_tensor.flat&lt;<b>float</b>&gt;();<br/>
    // Create an output tensor
    Tensor* output = NULL;
    OP\_REQUIRES\_OK(context,
                   context-&gt;allocate\_output(0, input_tensor.shape(), &output));
    auto output\_flat = output-&gt;template flat&lt;<b>float</b>&gt;();<br/>
    // Set all the elements of the output tensor to 0
    const int N = input.size();
    for (int i = 0; i &lt; N; i++) {
      output\_flat(i) = 0;
    }<br/>
    // Preserve the first input value
    if (N &gt; 0) output\_flat(0) = input(0);
  }
};<br/><b>
// Note that TypeConstraint&lt;int32&gt;("T") means that attr "T" (defined
// in the Op registration above) must be "int32" to use this template
// instantiation.</b>
REGISTER\_KERNEL\_BUILDER(
    Name("ZeroOut")
    .Device(DEVICE\_CPU)
    <b>.TypeConstraint&lt;int32&gt;("T"),</b>
    ZeroOutOp<b>Int32</b>);
<b>REGISTER\_KERNEL\_BUILDER(
    Name("ZeroOut")
    .Device(DEVICE\_CPU)
    .TypeConstraint&lt;float&gt;("T"),
    ZeroOutFloatOp);
</b></pre></code>

> To preserve [backwards compatibility](#backwards-compatibility), you should
> specify a [default value](#default-values-constraints) when adding an attr to
> an existing op:
>
> <code class="lang-c++"><pre>
> REGISTER\_OP("ZeroOut")
>   <b>.Attr("T: {float, int32} = DT_INT32")</b>
>   .Input("to_zero: T")
>   .Output("zeroed: T")
> </pre></code>

Lets say you wanted to add more types, say `double`:

<code class="lang-c++"><pre>
REGISTER\_OP("ZeroOut")
    <b>.Attr("T: {float, <b>double,</b> int32}")</b>
    .Input("to_zero: <b>T</b>")
    .Output("zeroed: <b>T</b>");
</pre></code>

Instead of writing another `OpKernel` with redundant code as above, often you
will be able to use a C++ template instead.  You will still have one kernel
registration (`REGISTER\_KERNEL\_BUILDER` call) per overload.

<code class="lang-c++"><pre>
<b>template &lt;typename T&gt;</b>
class ZeroOutOp : public OpKernel {
 public:
  explicit ZeroOutOp(OpKernelConstruction\* context) : OpKernel(context) {}<br/>
  void Compute(OpKernelContext\* context) override {
    // Grab the input tensor
    const Tensor& input\_tensor = context-&gt;input(0);
    auto input = input\_tensor.flat<b>&lt;T&gt;</b>();<br/>
    // Create an output tensor
    Tensor* output = NULL;
    OP\_REQUIRES\_OK(context,
                   context-&gt;allocate\_output(0, input_tensor.shape(), &output));
    auto output\_flat = output-&gt;template flat<b>&lt;T&gt;</b>();<br/>
    // Set all the elements of the output tensor to 0
    const int N = input.size();
    for (int i = 0; i &lt; N; i++) {
      output\_flat(i) = 0;
    }<br/>
    // Preserve the first input value
    if (N &gt; 0) output\_flat(0) = input(0);
  }
};<br/>
// Note that TypeConstraint&lt;int32&gt;("T") means that attr "T" (defined
// in the Op registration above) must be "int32" to use this template
// instantiation.</b>
REGISTER\_KERNEL\_BUILDER(
    Name("ZeroOut")
    .Device(DEVICE\_CPU)
    .TypeConstraint&lt;int32&gt;("T"),
    <b>ZeroOutOp&lt;int32&gt;</b>);
REGISTER\_KERNEL\_BUILDER(
    Name("ZeroOut")
    .Device(DEVICE\_CPU)
    .TypeConstraint&lt;float&gt;("T"),
    <b>ZeroOutOp&lt;float&gt;</b>);
<b>REGISTER\_KERNEL\_BUILDER(
    Name("ZeroOut")
    .Device(DEVICE\_CPU)
    .TypeConstraint&lt;double&gt;("T"),
    ZeroOutOp&lt;double&gt;);
</b></pre></code>

If you have more than a couple overloads, you can put the registration in a
macro.

```c++
#include "tensorflow/core/framework/op_kernel.h"

#define REGISTER_KERNEL(type)                                       \
  REGISTER_KERNEL_BUILDER(                                          \
      Name("ZeroOut").Device(DEVICE_CPU).TypeConstraint<type>("T"), \
      ZeroOutOp<type>)

REGISTER_KERNEL(int32);
REGISTER_KERNEL(float);
REGISTER_KERNEL(double);

#undef REGISTER_KERNEL
```

Depending on the list of types you are registering the kernel for, you may be
able to use a macro provided by
[`tensorflow/core/framework/register_types.h`][register_types]:

```c++
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"

REGISTER_OP("ZeroOut")
    .Attr("T: realnumbertypes")
    .Input("to_zero: T")
    .Output("zeroed: T");

template <typename T>
class ZeroOutOp : public OpKernel { ... };

#define REGISTER_KERNEL(type)                                       \
  REGISTER_KERNEL_BUILDER(                                          \
      Name("ZeroOut").Device(DEVICE_CPU).TypeConstraint<type>("T"), \
      ZeroOutOp<type>)

TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL);

#undef REGISTER_KERNEL
```

#### List Inputs and Outputs {#list-input-output}

In addition to being able to accept or produce different types, ops can consume
or produce a variable number of tensors.

In the next example, the attr `T` holds a *list* of types, and is used as the
type of both the input `in` and the output `out`.  The input and output are
lists of tensors of that type (and the number and types of tensors in the output
are the same as the input, since both have type `T`).

```c++
REGISTER_OP("PolymorphicListExample")
    .Attr("T: list(type)")
    .Input("in: T")
    .Output("out: T");
```

You can also place restrictions on what types can be specified in the list. In
this next case, the input is a list of `float` and `double` tensors. The Op
accepts, for example, input types `(float, double, float)` and in that case the
output type would also be `(float, double, float)`.

```c++
REGISTER_OP("ListTypeRestrictionExample")
    .Attr("T: list({float, double})")
    .Input("in: T")
    .Output("out: T");
```

If you want all the tensors in a list to be of the same type, you might do
something like:

```c++
REGISTER_OP("IntListInputExample")
    .Attr("N: int")
    .Input("in: N * int32")
    .Output("out: int32");
```

This accepts a list of `int32` tensors, and uses an `int` attr `N` to
specify the length of the list.

This can be made [type polymorphic](#type-polymorphism) as well.  In the next
example, the input is a list of tensors (with length `"N"`) of the same (but
unspecified) type (`"T"`), and the output is a single tensor of matching type:

```c++
REGISTER_OP("SameListInputExample")
    .Attr("N: int")
    .Attr("T: type")
    .Input("in: N * T")
    .Output("out: T");
```

By default, tensor lists have a minimum length of 1. You can change that default
using
[a `">="` constraint on the corresponding attr](#default-values-constraints).
In this next example, the input is a list of at least 2 `int32` tensors:

```c++
REGISTER_OP("MinLengthIntListExample")
    .Attr("N: int >= 2")
    .Input("in: N * int32")
    .Output("out: int32");
```

The same syntax works with `"list(type)"` attrs:

```c++
REGISTER_OP("MinimumLengthPolymorphicListExample")
    .Attr("T: list(type) >= 3")
    .Input("in: T")
    .Output("out: T");
```

### Inputs and Outputs <div class="md-anchor" id="AUTOGENERATED-inputs-and-outputs">{#AUTOGENERATED-inputs-and-outputs}</div>

To summarize the above, an Op registration can have multiple inputs and outputs:

```c++
REGISTER_OP("MultipleInsAndOuts")
    .Input("y: int32")
    .Input("z: float")
    .Output("a: string")
    .Output("b: int32");
```

Each input or output spec is of the form:

```
<name>: <io-type-expr>
```

where `<name>` begins with a letter and can be composed of alphanumeric
characters and underscores. `<io-type-expr>` is one of the following type
expressions:

* `<type>`, where `<type>` is a supported input type (e.g. `float`, `int32`,
  `string`). This specifies a single tensor of the given type.

  See
  [the list of supported Tensor types](../../resources/dims_types.md#data-types).

  ```c++
  REGISTER_OP("BuiltInTypesExample")
      .Input("integers: int32")
      .Input("complex_numbers: scomplex64");
  ```

* `<attr-type>`, where `<attr-type>` is the name of an [Attr](#attrs) with type
  `type` or `list(type)` (with a possible type restriction). This syntax allows
  for [polymorphic ops](#polymorphism).

  ```c++
  REGISTER_OP("PolymorphicSingleInput")
      .Attr("T: type")
      .Input("in: T);

  REGISTER_OP("RestrictedPolymorphicSingleInput")
      .Attr("T: {int32, int64}")
      .Input("in: T);
  ```

  Referencing an attr of type `list(type)` allows you to accept a sequence of
  tensors.

  ```c++
  REGISTER_OP("ArbitraryTensorSequenceExample")
      .Attr("T: list(type)")
      .Input("in: T")
      .Output("out: T");

  REGISTER_OP("RestrictedTensorSequenceExample")
      .Attr("T: list({int32, int64})")
      .Input("in: T")
      .Output("out: T");
  ```

  Note that the number and types of tensors in the output `out` is the same as
  in the input `in`, since both are of type `T`.

* For a sequence of tensors with the same type: `<number> * <type>`, where
  `<number>` is the name of an [Attr](#attrs) with type `int`.  The `<type>` can
  either be
  [a specific type like `int32` or `float`](../../resources/dims_types.md#data-types),
  or the name of an attr with type `type`.  As an example of the first, this
  Op accepts a list of `int32` tensors:

  ```c++
  REGISTER_OP("Int32SequenceExample")
      .Attr("NumTensors: int")
      .Input("in: NumTensors * int32")
  ```

  Whereas this Op accepts a list of tensors of any type, as long as they are all
  the same:

  ```c++
  REGISTER_OP("SameTypeSequenceExample")
      .Attr("NumTensors: int")
      .Attr("T: type")
      .Input("in: NumTensors * T")
  ```

* For a reference to a tensor: `Ref(<type>)`, where `<type>` is one of the
  previous types.

> A note on naming: Any attr used in the type of an input will be inferred.  By
> convention those inferred attrs use capital names (like `T` or `N`).
> Otherwise inputs, outputs, and attrs have names like function parameters
> (e.g. `num_outputs`).  For more details, see the
> [earlier note on naming](#naming).

For more details, see
[`tensorflow/core/framework/op_def_builder.h`][op_def_builder].

### Backwards compatibility <div class="md-anchor" id="AUTOGENERATED-backwards-compatibility">{#AUTOGENERATED-backwards-compatibility}</div>

In general, changes to specifications must be backwards-compatible: changing the
specification of an Op must not break prior serialized GraphDefs constructed
from older specfications.

There are several ways to preserve backwards-compatibility.

1. Any new attrs added to an operation must have default values defined, and
   with that default value the Op must have the original behavior. To change an
   operation from not polymorphic to polymorphic, you *must* give a default
   value to the new type attr to preserve the original signature by default. For
   example, if your operation was:

   ```c++
   REGISTER_OP("MyGeneralUnaryOp")
       .Input("in: float")
       .Output("out: float");
   ```

   you can make it polymorphic in a backwards-compatible way using:

   ```c++
   REGISTER_OP("MyGeneralUnaryOp")
       .Input("in: T")
       .Output("out: T")
       .Attr("T: numerictype = float");
   ```

1. You can safely make a constraint on an attr less restrictive.  For example,
   you can change from `{int32, int64}` to `{int32, int64, float}` or from
   `{"apple", "orange"}` to `{"apple", "banana", "orange"}`.

1. Namespace any new Ops you create, by prefixing the Op names with something
   unique to your project. This avoids having your Op colliding with any Ops
   that might be included in future versions of Tensorflow.

1. Plan ahead! Try to anticipate future uses for the Op. Some signature changes
   can't be done in a compatible way (for example, adding an input, or making a
   single input into a list).

If you cannot make your change to an operation backwards compatible, then
create a new operation with a new name with the new semantics.

## GPU Support <div class="md-anchor" id="mult-archs">{#mult-archs}</div>

You can implement different OpKernels and register one for CPU and another for
GPU, just like you can [register kernels for different types](#polymorphism).
There are several examples of kernels with GPU support in
[tensorflow/core/kernels/](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/kernels/).
Notice some kernels have a CPU version in a `.cc` file, a GPU version in a file
ending in `_gpu.cu.cc`, and some code shared in common in a `.h` file.

For example, the [`pad` op](../../api_docs/python/array_ops.md#pad) has
everything but the GPU kernel in [`tensorflow/core/kernels/pad_op.cc`][pad_op].
The GPU kernel is in
[`tensorflow/core/kernels/pad_op_gpu.cu.cc`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/kernels/pad_op_gpu.cu.cc),
and the shared code is a templated class defined in
[`tensorflow/core/kernels/pad_op.h`](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/kernels/pad_op.h).
One thing to note, even when the GPU kernel version of `pad` is used, it still
needs its `"paddings"` input in CPU memory.  To mark that inputs or outputs are
kept on the CPU, add a `HostMemory()` call to the kernel registration, e.g.:

```c++
#define REGISTER_GPU_KERNEL(T)                         \
  REGISTER_KERNEL_BUILDER(Name("Pad")                  \
                              .Device(DEVICE_GPU)      \
                              .TypeConstraint<T>("T")  \
                              .HostMemory("paddings"), \
                          PadOp<GPUDevice, T>)
```

## Implement the gradient in Python <div class="md-anchor" id="AUTOGENERATED-implement-the-gradient-in-python">{#AUTOGENERATED-implement-the-gradient-in-python}</div>

[TODO]:# (Write this!)

## Implement a shape function in Python <div class="md-anchor" id="AUTOGENERATED-implement-a-shape-function-in-python">{#AUTOGENERATED-implement-a-shape-function-in-python}</div>

The TensorFlow Python API has a feature called "shape inference" that provides
information about the shapes of tensors without having to execute the
graph. Shape inference is supported by "shape functions" that are registered for
each op type, and perform two roles: asserting that the shapes of the inputs are
compatible, and specifying the shapes for the outputs. A shape function is a
Python function that takes an
[`Operation`](../../api_docs/python/framework.md#Operation) as input, and
returns a list of
[`TensorShape`](../../api_docs/python/framework.md#TensorShape) objects (one per
output of the op). To register a shape function, apply the
[`tf.RegisterShape` decorator](../../api_docs/python/framework.md#RegisterShape)
to a shape function. For example, the
[ZeroOut op defined above](#define_interface) would have a shape function like
the following:

```python
@tf.RegisterShape("ZeroOut"):
def _zero_out_shape(op):
  """Shape function for the ZeroOut op.

  This is the unconstrained version of ZeroOut, which produces an output
  with the same shape as its input.
  """
  return [op.inputs[0].get_shape()]
```

A shape function can also constrain the shape of an input. For the version of
[ZeroOut with a vector shape constraint](#validation), the shape function
would be as follows:

```python
@tf.RegisterShape("ZeroOut"):
def _zero_out_shape(op):
  """Shape function for the ZeroOut op.

  This is the constrained version of ZeroOut, which requires the input to
  have rank 1 (a vector).
  """
  input_shape = op.inputs[0].get_shape().with_rank(1)
  return [input_shape]
```

If your op is [polymorphic with multiple inputs](#polymorphism), use the
properties of the operation to determine the number of shapes to check:

```
@tf.RegisterShape("IntListInputExample")
def _int_list_input_example_shape(op):
  """Shape function for the "IntListInputExample" op.

  All inputs and the output are matrices of the same size.
  """
  output_shape = tf.TensorShape(None)
  for input in op.inputs:
    output_shape = output_shape.merge_with(input.get_shape().with_rank(2))
  return [output_shape]
```

Since shape inference is an optional feature, and the shapes of tensors may vary
dynamically, shape functions must be robust to incomplete shape information for
any of the inputs. The [`merge_with()`](../../api_docs/python/framework.md)
method allows the caller to assert that two shapes are the same, even if either
or both of them do not have complete information. Shape functions are defined
for all of the
[standard Python ops](https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/python/ops/),
and provide many different usage examples.

[core-array_ops]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/ops/array_ops.cc
[python-user_ops]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/python/user_ops/user_ops.py
[tf-kernels]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/kernels/
[user_ops]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/user_ops/
[pad_op]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/kernels/pad_op.cc
[standard_ops-py]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/python/ops/standard_ops.py
[standard_ops-cc]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/cc/ops/standard_ops.h
[python-BUILD]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/python/BUILD
[validation-macros]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/lib/core/errors.h
[op_def_builder]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/op_def_builder.h
[register_types]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/register_types.h
[FinalizeAttr]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/op_def_builder.cc#FinalizeAttr
[DataTypeString]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/types.cc#DataTypeString
[python-BUILD]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/python/BUILD
[types-proto]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/types.proto
[TensorShapeProto]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/tensor_shape.proto
[TensorProto]:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/tensor.proto