aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/g3doc/api_docs/python/sparse_ops.md
blob: 433a5cd4eb95dfce9fb209dfe4f5d06b82deea01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
<!-- This file is machine generated: DO NOT EDIT! -->

# Sparse Tensors

Note: Functions taking `Tensor` arguments can also take anything accepted by
[`tf.convert_to_tensor`](framework.md#convert_to_tensor).

[TOC]

## Sparse Tensor Representation

TensorFlow supports a `SparseTensor` representation for data that is sparse
in multiple dimensions. Contrast this representation with `IndexedSlices`,
which is efficient for representing tensors that are sparse in their first
dimension, and dense along all other dimensions.

- - -

### `class tf.SparseTensor` {#SparseTensor}

Represents a sparse tensor.

TensorFlow represents a sparse tensor as three separate dense tensors:
`indices`, `values`, and `shape`.  In Python, the three tensors are
collected into a `SparseTensor` class for ease of use.  If you have separate
`indices`, `values`, and `shape` tensors, wrap them in a `SparseTensor`
object before passing to the ops below.

Concretely, the sparse tensor `SparseTensor(indices, values, shape)`
comprises the following components, where `N` and `ndims` are the number
of values and number of dimensions in the `SparseTensor`, respectively:

* `indices`: A 2-D int64 tensor of shape `[N, ndims]`, which specifies
  the indices of the elements in the sparse tensor that contain nonzero
  values (elements are zero-indexed). For example, `indices=[[1,3], [2,4]]`
  specifies that the elements with indexes of [1,3] and [2,4] have
  nonzero values.

* `values`: A 1-D tensor of any type and shape `[N]`, which supplies the
  values for each element in `indices`. For example, given
  `indices=[[1,3], [2,4]]`, the parameter `values=[18, 3.6]` specifies
  that element [1,3] of the sparse tensor has a value of 18, and element
  [2,4] of the tensor has a value of 3.6.

* `shape`: A 1-D int64 tensor of shape `[ndims]`, which specifies the shape
  of the sparse tensor. Takes a list indicating the number of elements in
  each dimension. For example, `shape=[3,6]` specifies a two-dimensional 3x6
  tensor, `shape=[2,3,4]` specifies a three-dimensional 2x3x4 tensor, and
  `shape=[9]` specifies a one-dimensional tensor with 9 elements.

The corresponding dense tensor satisfies:

```python
dense.shape = shape
dense[tuple(indices[i])] = values[i]
```

By convention, `indices` should be sorted in row-major order (or equivalently
lexicographic order on the tuples `indices[i]`). This is not enforced when
`SparseTensor` objects are constructed, but most ops assume correct ordering.
If the ordering of sparse tensor `st` is wrong, a fixed version can be
obtained by calling `tf.sparse_reorder(st)`.

Example: The sparse tensor

```python
SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], shape=[3, 4])
```

represents the dense tensor

```python
[[1, 0, 0, 0]
 [0, 0, 2, 0]
 [0, 0, 0, 0]]
```

- - -

#### `tf.SparseTensor.__init__(indices, values, shape)` {#SparseTensor.__init__}

Creates a `SparseTensor`.

##### Args:


*  <b>`indices`</b>: A 2-D int64 tensor of shape `[N, ndims]`.
*  <b>`values`</b>: A 1-D tensor of any type and shape `[N]`.
*  <b>`shape`</b>: A 1-D int64 tensor of shape `[ndims]`.

##### Returns:

  A `SparseTensor`


- - -

#### `tf.SparseTensor.get_shape()` {#SparseTensor.get_shape}

Get the `TensorShape` that represents the shape of the dense tensor.

##### Returns:

  A `TensorShape` object.


- - -

#### `tf.SparseTensor.indices` {#SparseTensor.indices}

The indices of non-zero values in the represented dense tensor.

##### Returns:

  A 2-D Tensor of int64 with shape `[N, ndims]`, where `N` is the
    number of non-zero values in the tensor, and `ndims` is the rank.


- - -

#### `tf.SparseTensor.values` {#SparseTensor.values}

The non-zero values in the represented dense tensor.

##### Returns:

  A 1-D Tensor of any data type.


- - -

#### `tf.SparseTensor.shape` {#SparseTensor.shape}

A 1-D Tensor of int64 representing the shape of the dense tensor.


- - -

#### `tf.SparseTensor.dtype` {#SparseTensor.dtype}

The `DType` of elements in this tensor.


- - -

#### `tf.SparseTensor.op` {#SparseTensor.op}

The `Operation` that produces `values` as an output.


- - -

#### `tf.SparseTensor.graph` {#SparseTensor.graph}

The `Graph` that contains the index, value, and shape tensors.



#### Other Methods
- - -

#### `tf.SparseTensor.__div__(sp_x, y)` {#SparseTensor.__div__}

Component-wise divides a SparseTensor by a dense Tensor.

*Limitation*: this Op only broadcasts the dense side to the sparse side, but not
the other direction.

##### Args:


*  <b>`sp_indices`</b>: A `Tensor` of type `int64`.
    2-D.  `N x R` matrix with the indices of non-empty values in a
    SparseTensor, possibly not in canonical ordering.
*  <b>`sp_values`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    1-D.  `N` non-empty values corresponding to `sp_indices`.
*  <b>`sp_shape`</b>: A `Tensor` of type `int64`.
    1-D.  Shape of the input SparseTensor.
*  <b>`dense`</b>: A `Tensor`. Must have the same type as `sp_values`.
    `R`-D.  The dense Tensor operand.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `sp_values`.
  1-D.  The `N` values that are operated on.


- - -

#### `tf.SparseTensor.__mul__(sp_x, y)` {#SparseTensor.__mul__}

Component-wise multiplies a SparseTensor by a dense Tensor.

The output locations corresponding to the implicitly zero elements in the sparse
tensor will be zero (i.e., will not take up storage space), regardless of the
contents of the dense tensor (even if it's +/-INF and that INF*0 == NaN).

*Limitation*: this Op only broadcasts the dense side to the sparse side, but not
the other direction.

##### Args:


*  <b>`sp_indices`</b>: A `Tensor` of type `int64`.
    2-D.  `N x R` matrix with the indices of non-empty values in a
    SparseTensor, possibly not in canonical ordering.
*  <b>`sp_values`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    1-D.  `N` non-empty values corresponding to `sp_indices`.
*  <b>`sp_shape`</b>: A `Tensor` of type `int64`.
    1-D.  Shape of the input SparseTensor.
*  <b>`dense`</b>: A `Tensor`. Must have the same type as `sp_values`.
    `R`-D.  The dense Tensor operand.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `sp_values`.
  1-D.  The `N` values that are operated on.


- - -

#### `tf.SparseTensor.__str__()` {#SparseTensor.__str__}




- - -

#### `tf.SparseTensor.__truediv__(sp_x, y)` {#SparseTensor.__truediv__}

Internal helper function for 'sp_t / dense_t'.


- - -

#### `tf.SparseTensor.eval(feed_dict=None, session=None)` {#SparseTensor.eval}

Evaluates this sparse tensor in a `Session`.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

*N.B.* Before invoking `SparseTensor.eval()`, its graph must have been
launched in a session, and either a default session must be
available, or `session` must be specified explicitly.

##### Args:


*  <b>`feed_dict`</b>: A dictionary that maps `Tensor` objects to feed values.
    See [`Session.run()`](../../api_docs/python/client.md#Session.run) for a
    description of the valid feed values.
*  <b>`session`</b>: (Optional.) The `Session` to be used to evaluate this sparse
    tensor. If none, the default session will be used.

##### Returns:

  A `SparseTensorValue` object.


- - -

#### `tf.SparseTensor.from_value(cls, sparse_tensor_value)` {#SparseTensor.from_value}





- - -

### `class tf.SparseTensorValue` {#SparseTensorValue}

SparseTensorValue(indices, values, shape)
- - -

#### `tf.SparseTensorValue.__getnewargs__()` {#SparseTensorValue.__getnewargs__}

Return self as a plain tuple.  Used by copy and pickle.


- - -

#### `tf.SparseTensorValue.__getstate__()` {#SparseTensorValue.__getstate__}

Exclude the OrderedDict from pickling


- - -

#### `tf.SparseTensorValue.__new__(_cls, indices, values, shape)` {#SparseTensorValue.__new__}

Create new instance of SparseTensorValue(indices, values, shape)


- - -

#### `tf.SparseTensorValue.__repr__()` {#SparseTensorValue.__repr__}

Return a nicely formatted representation string


- - -

#### `tf.SparseTensorValue.indices` {#SparseTensorValue.indices}

Alias for field number 0


- - -

#### `tf.SparseTensorValue.shape` {#SparseTensorValue.shape}

Alias for field number 2


- - -

#### `tf.SparseTensorValue.values` {#SparseTensorValue.values}

Alias for field number 1




## Conversion

- - -

### `tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value=0, validate_indices=True, name=None)` {#sparse_to_dense}

Converts a sparse representation into a dense tensor.

Builds an array `dense` with shape `output_shape` such that

```python
# If sparse_indices is scalar
dense[i] = (i == sparse_indices ? sparse_values : default_value)

# If sparse_indices is a vector, then for each i
dense[sparse_indices[i]] = sparse_values[i]

# If sparse_indices is an n by d matrix, then for each i in [0, n)
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
```

All other values in `dense` are set to `default_value`.  If `sparse_values`
is a scalar, all sparse indices are set to this single value.

Indices should be sorted in lexicographic order, and indices must not
contain any repeats. If `validate_indices` is True, these properties
are checked during execution.

##### Args:


*  <b>`sparse_indices`</b>: A 0-D, 1-D, or 2-D `Tensor` of type `int32` or `int64`.
    `sparse_indices[i]` contains the complete index where `sparse_values[i]`
    will be placed.
*  <b>`output_shape`</b>: A 1-D `Tensor` of the same type as `sparse_indices`.  Shape
    of the dense output tensor.
*  <b>`sparse_values`</b>: A 0-D or 1-D `Tensor`.  Values corresponding to each row of
    `sparse_indices`, or a scalar value to be used for all sparse indices.
*  <b>`default_value`</b>: A 0-D `Tensor` of the same type as `sparse_values`.  Value
    to set for indices not specified in `sparse_indices`.  Defaults to zero.
*  <b>`validate_indices`</b>: A boolean value.  If True, indices are checked to make
    sure they are sorted in lexicographic order and that there are no repeats.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  Dense `Tensor` of shape `output_shape`.  Has the same type as
  `sparse_values`.


- - -

### `tf.sparse_tensor_to_dense(sp_input, default_value=0, validate_indices=True, name=None)` {#sparse_tensor_to_dense}

Converts a `SparseTensor` into a dense tensor.

This op is a convenience wrapper around `sparse_to_dense` for `SparseTensor`s.

For example, if `sp_input` has shape `[3, 5]` and non-empty string values:

    [0, 1]: a
    [0, 3]: b
    [2, 0]: c

and `default_value` is `x`, then the output will be a dense `[3, 5]`
string tensor with values:

    [[x a x b x]
     [x x x x x]
     [c x x x x]]

Indices must be without repeats.  This is only
tested if validate_indices is True.

##### Args:


*  <b>`sp_input`</b>: The input `SparseTensor`.
*  <b>`default_value`</b>: Scalar value to set for indices not specified in
    `sp_input`.  Defaults to zero.
*  <b>`validate_indices`</b>: A boolean value.  If `True`, indices are checked to make
    sure they are sorted in lexicographic order and that there are no repeats.
*  <b>`name`</b>: A name prefix for the returned tensors (optional).

##### Returns:

  A dense tensor with shape `sp_input.shape` and values specified by
  the non-empty values in `sp_input`. Indices not in `sp_input` are assigned
  `default_value`.

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.


- - -

### `tf.sparse_to_indicator(sp_input, vocab_size, name=None)` {#sparse_to_indicator}

Converts a `SparseTensor` of ids into a dense bool indicator tensor.

The last dimension of `sp_input.indices` is discarded and replaced with
the values of `sp_input`.  If `sp_input.shape = [D0, D1, ..., Dn, K]`, then
`output.shape = [D0, D1, ..., Dn, vocab_size]`, where

    output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True

and False elsewhere in `output`.

For example, if `sp_input.shape = [2, 3, 4]` with non-empty values:

    [0, 0, 0]: 0
    [0, 1, 0]: 10
    [1, 0, 3]: 103
    [1, 1, 2]: 150
    [1, 1, 3]: 149
    [1, 1, 4]: 150
    [1, 2, 1]: 121

and `vocab_size = 200`, then the output will be a `[2, 3, 200]` dense bool
tensor with False everywhere except at positions

    (0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 149), (1, 1, 150),
    (1, 2, 121).

Note that repeats are allowed in the input SparseTensor.
This op is useful for converting `SparseTensor`s into dense formats for
compatibility with ops that expect dense tensors.

The input `SparseTensor` must be in row-major order.

##### Args:


*  <b>`sp_input`</b>: A `SparseTensor` with `values` property of type `int32` or
    `int64`.
*  <b>`vocab_size`</b>: A scalar int64 Tensor (or Python int) containing the new size
    of the last dimension, `all(0 <= sp_input.values < vocab_size)`.
*  <b>`name`</b>: A name prefix for the returned tensors (optional)

##### Returns:

  A dense bool indicator tensor representing the indices with specified value.

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.


- - -

### `tf.sparse_merge(sp_ids, sp_values, vocab_size, name=None, already_sorted=False)` {#sparse_merge}

Combines a batch of feature ids and values into a single `SparseTensor`.

The most common use case for this function occurs when feature ids and
their corresponding values are stored in `Example` protos on disk.
`parse_example` will return a batch of ids and a batch of values, and this
function joins them into a single logical `SparseTensor` for use in
functions such as `sparse_tensor_dense_matmul`, `sparse_to_dense`, etc.

The `SparseTensor` returned by this function has the following properties:

  - `indices` is equivalent to `sp_ids.indices` with the last
    dimension discarded and replaced with `sp_ids.values`.
  - `values` is simply `sp_values.values`.
  - If `sp_ids.shape = [D0, D1, ..., Dn, K]`, then
    `output.shape = [D0, D1, ..., Dn, vocab_size]`.

For example, consider the following feature vectors:

```python
  vector1 = [-3, 0, 0, 0, 0, 0]
  vector2 = [ 0, 1, 0, 4, 1, 0]
  vector3 = [ 5, 0, 0, 9, 0, 0]
```

These might be stored sparsely in the following Example protos by storing
only the feature ids (column number if the vectors are treated as a matrix)
of the non-zero elements and the corresponding values:

```python
  examples = [Example(features={
                  "ids": Feature(int64_list=Int64List(value=[0])),
                  "values": Feature(float_list=FloatList(value=[-3]))}),
              Example(features={
                  "ids": Feature(int64_list=Int64List(value=[1, 4, 3])),
                  "values": Feature(float_list=FloatList(value=[1, 1, 4]))}),
              Example(features={
                  "ids": Feature(int64_list=Int64List(value=[0, 3])),
                  "values": Feature(float_list=FloatList(value=[5, 9]))})]
```

The result of calling parse_example on these examples will produce a
dictionary with entries for "ids" and "values". Passing those two objects
to this function along with vocab_size=6, will produce a `SparseTensor` that
sparsely represents all three instances. Namely, the `indices` property will
contain the coordinates of the non-zero entries in the feature matrix (the
first dimension is the row number in the matrix, i.e., the index within the
batch, and the second dimension is the column number, i.e., the feature id);
`values` will contain the actual values. `shape` will be the shape of the
original matrix, i.e., (3, 6). For our example above, the output will be
equal to:

```python
  SparseTensor(indices=[[0, 0], [1, 1], [1, 3], [1, 4], [2, 0], [2, 3]],
               values=[-3, 1, 4, 1, 5, 9],
               shape=[3, 6])
```

##### Args:


*  <b>`sp_ids`</b>: A `SparseTensor` with `values` property of type `int32`
    or `int64`.
*  <b>`sp_values`</b>: A`SparseTensor` of any type.
*  <b>`vocab_size`</b>: A scalar `int64` Tensor (or Python int) containing the new size
    of the last dimension, `all(0 <= sp_ids.values < vocab_size)`.
*  <b>`name`</b>: A name prefix for the returned tensors (optional)
*  <b>`already_sorted`</b>: A boolean to specify whether the per-batch values in
   `sp_values` are already sorted. If so skip sorting, False by default
   (optional).

##### Returns:

  A `SparseTensor` compactly representing a batch of feature ids and values,
  useful for passing to functions that expect such a `SparseTensor`.

##### Raises:


*  <b>`TypeError`</b>: If `sp_ids` or `sp_values` are not a `SparseTensor`.



## Manipulation

- - -

### `tf.sparse_concat(axis, sp_inputs, name=None, expand_nonconcat_dim=False, concat_dim=None)` {#sparse_concat}

Concatenates a list of `SparseTensor` along the specified dimension.

Concatenation is with respect to the dense versions of each sparse input.
It is assumed that each inputs is a `SparseTensor` whose elements are ordered
along increasing dimension number.

If expand_nonconcat_dim is False, all inputs' shapes must match, except for
the concat dimension. If expand_nonconcat_dim is True, then inputs' shapes are
allowed to vary among all inputs.

The `indices`, `values`, and `shapes` lists must have the same length.

If expand_nonconcat_dim is False, then the output shape is identical to the
inputs', except along the concat dimension, where it is the sum of the inputs'
sizes along that dimension.

If expand_nonconcat_dim is True, then the output shape along the non-concat
dimensions will be expand to be the largest among all inputs, and it is the
sum of the inputs sizes along the concat dimension.

The output elements will be resorted to preserve the sort order along
increasing dimension number.

This op runs in `O(M log M)` time, where `M` is the total number of non-empty
values across all inputs. This is due to the need for an internal sort in
order to concatenate efficiently across an arbitrary dimension.

For example, if `axis = 1` and the inputs are

    sp_inputs[0]: shape = [2, 3]
    [0, 2]: "a"
    [1, 0]: "b"
    [1, 1]: "c"

    sp_inputs[1]: shape = [2, 4]
    [0, 1]: "d"
    [0, 2]: "e"

then the output will be

    shape = [2, 7]
    [0, 2]: "a"
    [0, 4]: "d"
    [0, 5]: "e"
    [1, 0]: "b"
    [1, 1]: "c"

Graphically this is equivalent to doing

    [    a] concat [  d e  ] = [    a   d e  ]
    [b c  ]        [       ]   [b c          ]

Another example, if 'axis = 1' and the inputs are

    sp_inputs[0]: shape = [3, 3]
    [0, 2]: "a"
    [1, 0]: "b"
    [2, 1]: "c"

    sp_inputs[1]: shape = [2, 4]
    [0, 1]: "d"
    [0, 2]: "e"

if expand_nonconcat_dim = False, this will result in an error. But if
expand_nonconcat_dim = True, this will result in:

    shape = [3, 7]
    [0, 2]: "a"
    [0, 4]: "d"
    [0, 5]: "e"
    [1, 0]: "b"
    [2, 1]: "c"

Graphically this is equivalent to doing

    [    a] concat [  d e  ] = [    a   d e  ]
    [b    ]        [       ]   [b            ]
    [  c  ]                    [  c          ]


##### Args:


*  <b>`axis`</b>: Dimension to concatenate along. Must be in range [-rank, rank),
    where rank is the number of dimensions in each input `SparseTensor`.
*  <b>`sp_inputs`</b>: List of `SparseTensor` to concatenate.
*  <b>`name`</b>: A name prefix for the returned tensors (optional).
*  <b>`expand_nonconcat_dim`</b>: Whether to allow the expansion in the non-concat
    dimensions. Defaulted to False.
*  <b>`concat_dim`</b>: The old (deprecated) name for axis.

##### Returns:

  A `SparseTensor` with the concatenated output.

##### Raises:


*  <b>`TypeError`</b>: If `sp_inputs` is not a list of `SparseTensor`.


- - -

### `tf.sparse_reorder(sp_input, name=None)` {#sparse_reorder}

Reorders a `SparseTensor` into the canonical, row-major ordering.

Note that by convention, all sparse ops preserve the canonical ordering
along increasing dimension number. The only time ordering can be violated
is during manual manipulation of the indices and values to add entries.

Reordering does not affect the shape of the `SparseTensor`.

For example, if `sp_input` has shape `[4, 5]` and `indices` / `values`:

    [0, 3]: b
    [0, 1]: a
    [3, 1]: d
    [2, 0]: c

then the output will be a `SparseTensor` of shape `[4, 5]` and
`indices` / `values`:

    [0, 1]: a
    [0, 3]: b
    [2, 0]: c
    [3, 1]: d

##### Args:


*  <b>`sp_input`</b>: The input `SparseTensor`.
*  <b>`name`</b>: A name prefix for the returned tensors (optional)

##### Returns:

  A `SparseTensor` with the same shape and non-empty values, but in
  canonical ordering.

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.


- - -

### `tf.sparse_reshape(sp_input, shape, name=None)` {#sparse_reshape}

Reshapes a `SparseTensor` to represent values in a new dense shape.

This operation has the same semantics as `reshape` on the represented dense
tensor.  The indices of non-empty values in `sp_input` are recomputed based
on the new dense shape, and a new `SparseTensor` is returned containing the
new indices and new shape.  The order of non-empty values in `sp_input` is
unchanged.

If one component of `shape` is the special value -1, the size of that
dimension is computed so that the total dense size remains constant.  At
most one component of `shape` can be -1.  The number of dense elements
implied by `shape` must be the same as the number of dense elements
originally represented by `sp_input`.

For example, if `sp_input` has shape `[2, 3, 6]` and `indices` / `values`:

    [0, 0, 0]: a
    [0, 0, 1]: b
    [0, 1, 0]: c
    [1, 0, 0]: d
    [1, 2, 3]: e

and `shape` is `[9, -1]`, then the output will be a `SparseTensor` of
shape `[9, 4]` and `indices` / `values`:

    [0, 0]: a
    [0, 1]: b
    [1, 2]: c
    [4, 2]: d
    [8, 1]: e

##### Args:


*  <b>`sp_input`</b>: The input `SparseTensor`.
*  <b>`shape`</b>: A 1-D (vector) int64 `Tensor` specifying the new dense shape of the
    represented `SparseTensor`.
*  <b>`name`</b>: A name prefix for the returned tensors (optional)

##### Returns:

  A `SparseTensor` with the same non-empty values but with indices calculated
  by the new dense shape.

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.


- - -

### `tf.sparse_split(axis, num_split, sp_input, name=None, split_dim=None)` {#sparse_split}

Split a `SparseTensor` into `num_split` tensors along `axis`.

If the `sp_input.shape[axis]` is not an integer multiple of `num_split`
each slice starting from 0:`shape[axis] % num_split` gets extra one
dimension. For example, if `axis = 1` and `num_split = 2` and the
input is:

    input_tensor = shape = [2, 7]
    [    a   d e  ]
    [b c          ]

Graphically the output tensors are:

    output_tensor[0] =
    [    a ]
    [b c   ]

    output_tensor[1] =
    [ d e  ]
    [      ]

##### Args:


*  <b>`axis`</b>: A 0-D `int32` `Tensor`. The dimension along which to split.
*  <b>`num_split`</b>: A Python integer. The number of ways to split.
*  <b>`sp_input`</b>: The `SparseTensor` to split.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`split_dim`</b>: Deprecated old name for axis.

##### Returns:

  `num_split` `SparseTensor` objects resulting from splitting `value`.

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.
*  <b>`ValueError`</b>: If the deprecated `split_dim` and `axis` are both non None.


- - -

### `tf.sparse_retain(sp_input, to_retain)` {#sparse_retain}

Retains specified non-empty values within a `SparseTensor`.

For example, if `sp_input` has shape `[4, 5]` and 4 non-empty string values:

    [0, 1]: a
    [0, 3]: b
    [2, 0]: c
    [3, 1]: d

and `to_retain = [True, False, False, True]`, then the output will
be a `SparseTensor` of shape `[4, 5]` with 2 non-empty values:

    [0, 1]: a
    [3, 1]: d

##### Args:


*  <b>`sp_input`</b>: The input `SparseTensor` with `N` non-empty elements.
*  <b>`to_retain`</b>: A bool vector of length `N` with `M` true values.

##### Returns:

  A `SparseTensor` with the same shape as the input and `M` non-empty
  elements corresponding to the true positions in `to_retain`.

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.


- - -

### `tf.sparse_reset_shape(sp_input, new_shape=None)` {#sparse_reset_shape}

Resets the shape of a `SparseTensor` with indices and values unchanged.

If `new_shape` is None, returns a copy of `sp_input` with its shape reset
to the tight bounding box of `sp_input`.

If `new_shape` is provided, then it must be larger or equal in all dimensions
compared to the shape of `sp_input`. When this condition is met, the returned
SparseTensor will have its shape reset to `new_shape` and its indices and
values unchanged from that of `sp_input.`

For example:

  Consider a `sp_input` with shape [2, 3, 5]:

    [0, 0, 1]: a
    [0, 1, 0]: b
    [0, 2, 2]: c
    [1, 0, 3]: d

  - It is an error to set `new_shape` as [3, 7] since this represents a
    rank-2 tensor while `sp_input` is rank-3. This is either a ValueError
    during graph construction (if both shapes are known) or an OpError during
    run time.

  - Setting `new_shape` as [2, 3, 6] will be fine as this shape is larger or
    equal in every dimension compared to the original shape [2, 3, 5].

  - On the other hand, setting new_shape as [2, 3, 4] is also an error: The
    third dimension is smaller than the original shape [2, 3, 5] (and an
    `InvalidArgumentError` will be raised).

  - If `new_shape` is None, the returned SparseTensor will have a shape
    [2, 3, 4], which is the tight bounding box of `sp_input`.

##### Args:


*  <b>`sp_input`</b>: The input `SparseTensor`.
*  <b>`new_shape`</b>: None or a vector representing the new shape for the returned
    `SparseTensor`.

##### Returns:

  A `SparseTensor` indices and values unchanged from `input_sp`. Its shape is
    `new_shape` if that is set. Otherwise it is  the tight bounding box of
     `input_sp`

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.
*  <b>`ValueError`</b>: If `new_shape` represents a tensor with a different rank from
    that of `sp_input` (if shapes are known when graph is constructed).
*  <b>`OpError`</b>: 
    - If `new_shape` has dimension sizes that are too small.
    - If shapes are not known during graph construction time, and during run
      time it is found out that the ranks do not match.


- - -

### `tf.sparse_fill_empty_rows(sp_input, default_value, name=None)` {#sparse_fill_empty_rows}

Fills empty rows in the input 2-D `SparseTensor` with a default value.

This op adds entries with the specified `default_value` at index
`[row, 0]` for any row in the input that does not already have a value.

For example, suppose `sp_input` has shape `[5, 6]` and non-empty values:

    [0, 1]: a
    [0, 3]: b
    [2, 0]: c
    [3, 1]: d

Rows 1 and 4 are empty, so the output will be of shape `[5, 6]` with values:

    [0, 1]: a
    [0, 3]: b
    [1, 0]: default_value
    [2, 0]: c
    [3, 1]: d
    [4, 0]: default_value

Note that the input may have empty columns at the end, with no effect on
this op.

The output `SparseTensor` will be in row-major order and will have the
same shape as the input.

This op also returns an indicator vector such that

    empty_row_indicator[i] = True iff row i was an empty row.

##### Args:


*  <b>`sp_input`</b>: A `SparseTensor` with shape `[N, M]`.
*  <b>`default_value`</b>: The value to fill for empty rows, with the same type as
    `sp_input.`
*  <b>`name`</b>: A name prefix for the returned tensors (optional)

##### Returns:


*  <b>`sp_ordered_output`</b>: A `SparseTensor` with shape `[N, M]`, and with all empty
    rows filled in with `default_value`.
*  <b>`empty_row_indicator`</b>: A bool vector of length `N` indicating whether each
    input row was empty.

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.


- - -

### `tf.sparse_transpose(sp_input, perm=None, name=None)` {#sparse_transpose}

Transposes a `SparseTensor`

The returned tensor's dimension i will correspond to the input dimension
`perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example, if `sp_input` has shape `[4, 5]` and `indices` / `values`:

    [0, 3]: b
    [0, 1]: a
    [3, 1]: d
    [2, 0]: c

then the output will be a `SparseTensor` of shape `[5, 4]` and
`indices` / `values`:

    [0, 2]: c
    [1, 0]: a
    [1, 3]: d
    [3, 0]: b

##### Args:


*  <b>`sp_input`</b>: The input `SparseTensor`.
*  <b>`perm`</b>: A permutation of the dimensions of `sp_input`.
*  <b>`name`</b>: A name prefix for the returned tensors (optional)

##### Returns:

  A transposed `SparseTensor`.

##### Raises:


*  <b>`TypeError`</b>: If `sp_input` is not a `SparseTensor`.



## Reduction
- - -

### `tf.sparse_reduce_sum(sp_input, axis=None, keep_dims=False, reduction_axes=None)` {#sparse_reduce_sum}

Computes the sum of elements across dimensions of a SparseTensor.

This Op takes a SparseTensor and is the sparse counterpart to
`tf.reduce_sum()`.  In particular, this Op also returns a dense `Tensor`
instead of a sparse one.

Reduces `sp_input` along the dimensions given in `reduction_axes`.  Unless
`keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in
`reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained
with length 1.

If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
with a single element is returned.  Additionally, the axes can be negative,
similar to the indexing rules in Python.

For example:

```python
# 'x' represents [[1, ?, 1]
#                 [?, 1, ?]]
# where ? is implicitly-zero.
tf.sparse_reduce_sum(x) ==> 3
tf.sparse_reduce_sum(x, 0) ==> [1, 1, 1]
tf.sparse_reduce_sum(x, 1) ==> [2, 1]  # Can also use -1 as the axis.
tf.sparse_reduce_sum(x, 1, keep_dims=True) ==> [[2], [1]]
tf.sparse_reduce_sum(x, [0, 1]) ==> 3
```

##### Args:


*  <b>`sp_input`</b>: The SparseTensor to reduce. Should have numeric type.
*  <b>`axis`</b>: The dimensions to reduce; list or scalar. If `None` (the
    default), reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retain reduced dimensions with length 1.
*  <b>`reduction_axes`</b>: Deprecated name of axis.

##### Returns:

  The reduced Tensor.


- - -

### `tf.sparse_reduce_sum_sparse(sp_input, axis=None, keep_dims=False, reduction_axes=None)` {#sparse_reduce_sum_sparse}

Computes the sum of elements across dimensions of a SparseTensor.

This Op takes a SparseTensor and is the sparse counterpart to
`tf.reduce_sum()`.  In contrast to SparseReduceSum, this Op returns a
SparseTensor.

Reduces `sp_input` along the dimensions given in `reduction_axes`.  Unless
`keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in
`reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained
with length 1.

If `reduction_axes` has no entries, all dimensions are reduced, and a tensor
with a single element is returned.  Additionally, the axes can be negative,
which are interpreted according to the indexing rules in Python.

##### Args:


*  <b>`sp_input`</b>: The SparseTensor to reduce. Should have numeric type.
*  <b>`axis`</b>: The dimensions to reduce; list or scalar. If `None` (the
    default), reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retain reduced dimensions with length 1.
*  <b>`reduction_axes`</b>: Deprecated name of axis

##### Returns:

  The reduced SparseTensor.



## Math Operations
- - -

### `tf.sparse_add(a, b, thresh=0)` {#sparse_add}

Adds two tensors, at least one of each is a `SparseTensor`.

If one `SparseTensor` and one `Tensor` are passed in, returns a `Tensor`.  If
both arguments are `SparseTensor`s, this returns a `SparseTensor`.  The order
of arguments does not matter.  Use vanilla `tf.add()` for adding two dense
`Tensor`s.

The indices of any input `SparseTensor` are assumed ordered in standard
lexicographic order.  If this is not the case, before this step run
`SparseReorder` to restore index ordering.

If both arguments are sparse, we perform "clipping" as follows.  By default,
if two values sum to zero at some index, the output `SparseTensor` would still
include that particular location in its index, storing a zero in the
corresponding value slot.  To override this, callers can specify `thresh`,
indicating that if the sum has a magnitude strictly smaller than `thresh`, its
corresponding value and index would then not be included.  In particular,
`thresh == 0.0` (default) means everything is kept and actual thresholding
happens only for a positive value.

For example, suppose the logical sum of two sparse operands is (densified):

    [       2]
    [.1     0]
    [ 6   -.2]

Then,

    * `thresh == 0` (the default): all 5 index/value pairs will be returned.
    * `thresh == 0.11`: only .1 and 0  will vanish, and the remaining three
        index/value pairs will be returned.
    * `thresh == 0.21`: .1, 0, and -.2 will vanish.

##### Args:


*  <b>`a`</b>: The first operand; `SparseTensor` or `Tensor`.
*  <b>`b`</b>: The second operand; `SparseTensor` or `Tensor`.  At least one operand
    must be sparse.
*  <b>`thresh`</b>: A 0-D `Tensor`.  The magnitude threshold that determines if an
  output value/index pair takes space.  Its dtype should match that of the
  values if they are real; if the latter are complex64/complex128, then the
  dtype should be float32/float64, correspondingly.

##### Returns:

  A `SparseTensor` or a `Tensor`, representing the sum.

##### Raises:


*  <b>`TypeError`</b>: If both `a` and `b` are `Tensor`s.  Use `tf.add()` instead.


- - -

### `tf.sparse_softmax(sp_input, name=None)` {#sparse_softmax}

Applies softmax to a batched N-D `SparseTensor`.

The inputs represent an N-D SparseTensor  with logical shape `[..., B, C]`
(where `N >= 2`), and with indices sorted in the canonical lexicographic
order.

This op is equivalent to applying the normal `tf.nn.softmax()` to each
innermost logical submatrix with shape `[B, C]`, but with the catch that *the
implicitly zero elements do not participate*.  Specifically, the algorithm is
equivalent to:

  (1) Applies `tf.nn.softmax()` to a densified view of each innermost
      submatrix with shape `[B, C]`, along the size-C dimension;
  (2) Masks out the original implicitly-zero locations;
  (3) Renormalizes the remaining elements.

Hence, the `SparseTensor` result has exactly the same non-zero indices and
shape.

Example:

```python
# First batch:
# [?   e.]
# [1.  ? ]
# Second batch:
# [e   ? ]
# [e   e ]
shape = [2, 2, 2]  # 3-D SparseTensor
values = np.asarray([[[0., np.e], [1., 0.]], [[np.e, 0.], [np.e, np.e]]])
indices = np.vstack(np.where(values)).astype(np.int64).T

result = tf.sparse_softmax(tf.SparseTensor(indices, values, shape))
# ...returning a 3-D SparseTensor, equivalent to:
# [?   1.]     [1    ?]
# [1.  ? ] and [.5  .5]
# where ? means implicitly zero.
```

##### Args:


*  <b>`sp_input`</b>: N-D `SparseTensor`, where `N >= 2`.
*  <b>`name`</b>: optional name of the operation.

##### Returns:


*  <b>`output`</b>: N-D `SparseTensor` representing the results.


- - -

### `tf.sparse_tensor_dense_matmul(sp_a, b, adjoint_a=False, adjoint_b=False, name=None)` {#sparse_tensor_dense_matmul}

Multiply SparseTensor (of rank 2) "A" by dense matrix "B".

No validity checking is performed on the indices of A.  However, the following
input format is recommended for optimal behavior:

if adjoint_a == false:
  A should be sorted in lexicographically increasing order.  Use
  sparse_reorder if you're not sure.
if adjoint_a == true:
  A should be sorted in order of increasing dimension 1 (i.e., "column major"
  order instead of "row major" order).

Deciding when to use sparse_tensor_dense_matmul vs. matmul(sp_a=True):

There are a number of questions to ask in the decision process, including:

* Will the SparseTensor A fit in memory if densified?
* Is the column count of the product large (>> 1)?
* Is the density of A larger than approximately 15%?

If the answer to several of these questions is yes, consider
converting the `SparseTensor` to a dense one and using `tf.matmul` with
`sp_a=True`.

This operation tends to perform well when A is more sparse, if the column size
of the product is small (e.g. matrix-vector multiplication), if sp_a.shape
takes on large values.

Below is a rough speed comparison between sparse_tensor_dense_matmul,
labelled 'sparse', and matmul(sp_a=True), labelled 'dense'.  For purposes of
the comparison, the time spent converting from a SparseTensor to a dense
Tensor is not included, so it is overly conservative with respect to
the time ratio.

Benchmark system:
CPU: Intel Ivybridge with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:12MB
GPU: NVidia Tesla k40c

Compiled with:
-c opt --config=cuda --copt=-mavx

```tensorflow/python/sparse_tensor_dense_matmul_op_test --benchmarks
A sparse [m, k] with % nonzero values between 1% and 80%
B dense [k, n]

% nnz  n   gpu   m     k     dt(dense)     dt(sparse)   dt(sparse)/dt(dense)
0.01   1   True  100   100   0.000221166   0.00010154   0.459112
0.01   1   True  100   1000  0.00033858    0.000109275  0.322745
0.01   1   True  1000  100   0.000310557   9.85661e-05  0.317385
0.01   1   True  1000  1000  0.0008721     0.000100875  0.115669
0.01   1   False 100   100   0.000208085   0.000107603  0.51711
0.01   1   False 100   1000  0.000327112   9.51118e-05  0.290762
0.01   1   False 1000  100   0.000308222   0.00010345   0.335635
0.01   1   False 1000  1000  0.000865721   0.000101397  0.117124
0.01   10  True  100   100   0.000218522   0.000105537  0.482958
0.01   10  True  100   1000  0.000340882   0.000111641  0.327506
0.01   10  True  1000  100   0.000315472   0.000117376  0.372064
0.01   10  True  1000  1000  0.000905493   0.000123263  0.136128
0.01   10  False 100   100   0.000221529   9.82571e-05  0.44354
0.01   10  False 100   1000  0.000330552   0.000112615  0.340687
0.01   10  False 1000  100   0.000341277   0.000114097  0.334324
0.01   10  False 1000  1000  0.000819944   0.000120982  0.147549
0.01   25  True  100   100   0.000207806   0.000105977  0.509981
0.01   25  True  100   1000  0.000322879   0.00012921   0.400181
0.01   25  True  1000  100   0.00038262    0.00014158   0.370035
0.01   25  True  1000  1000  0.000865438   0.000202083  0.233504
0.01   25  False 100   100   0.000209401   0.000104696  0.499979
0.01   25  False 100   1000  0.000321161   0.000130737  0.407076
0.01   25  False 1000  100   0.000377012   0.000136801  0.362856
0.01   25  False 1000  1000  0.000861125   0.00020272   0.235413
0.2    1   True  100   100   0.000206952   9.69219e-05  0.46833
0.2    1   True  100   1000  0.000348674   0.000147475  0.422959
0.2    1   True  1000  100   0.000336908   0.00010122   0.300439
0.2    1   True  1000  1000  0.001022      0.000203274  0.198898
0.2    1   False 100   100   0.000207532   9.5412e-05   0.459746
0.2    1   False 100   1000  0.000356127   0.000146824  0.41228
0.2    1   False 1000  100   0.000322664   0.000100918  0.312764
0.2    1   False 1000  1000  0.000998987   0.000203442  0.203648
0.2    10  True  100   100   0.000211692   0.000109903  0.519165
0.2    10  True  100   1000  0.000372819   0.000164321  0.440753
0.2    10  True  1000  100   0.000338651   0.000144806  0.427596
0.2    10  True  1000  1000  0.00108312    0.000758876  0.70064
0.2    10  False 100   100   0.000215727   0.000110502  0.512231
0.2    10  False 100   1000  0.000375419   0.0001613    0.429653
0.2    10  False 1000  100   0.000336999   0.000145628  0.432132
0.2    10  False 1000  1000  0.00110502    0.000762043  0.689618
0.2    25  True  100   100   0.000218705   0.000129913  0.594009
0.2    25  True  100   1000  0.000394794   0.00029428   0.745402
0.2    25  True  1000  100   0.000404483   0.0002693    0.665788
0.2    25  True  1000  1000  0.0012002     0.00194494   1.62052
0.2    25  False 100   100   0.000221494   0.0001306    0.589632
0.2    25  False 100   1000  0.000396436   0.000297204  0.74969
0.2    25  False 1000  100   0.000409346   0.000270068  0.659754
0.2    25  False 1000  1000  0.00121051    0.00193737   1.60046
0.5    1   True  100   100   0.000214981   9.82111e-05  0.456836
0.5    1   True  100   1000  0.000415328   0.000223073  0.537101
0.5    1   True  1000  100   0.000358324   0.00011269   0.314492
0.5    1   True  1000  1000  0.00137612    0.000437401  0.317851
0.5    1   False 100   100   0.000224196   0.000101423  0.452386
0.5    1   False 100   1000  0.000400987   0.000223286  0.556841
0.5    1   False 1000  100   0.000368825   0.00011224   0.304318
0.5    1   False 1000  1000  0.00136036    0.000429369  0.31563
0.5    10  True  100   100   0.000222125   0.000112308  0.505608
0.5    10  True  100   1000  0.000461088   0.00032357   0.701753
0.5    10  True  1000  100   0.000394624   0.000225497  0.571422
0.5    10  True  1000  1000  0.00158027    0.00190898   1.20801
0.5    10  False 100   100   0.000232083   0.000114978  0.495418
0.5    10  False 100   1000  0.000454574   0.000324632  0.714146
0.5    10  False 1000  100   0.000379097   0.000227768  0.600817
0.5    10  False 1000  1000  0.00160292    0.00190168   1.18638
0.5    25  True  100   100   0.00023429    0.000151703  0.647501
0.5    25  True  100   1000  0.000497462   0.000598873  1.20386
0.5    25  True  1000  100   0.000460778   0.000557038  1.20891
0.5    25  True  1000  1000  0.00170036    0.00467336   2.74845
0.5    25  False 100   100   0.000228981   0.000155334  0.678371
0.5    25  False 100   1000  0.000496139   0.000620789  1.25124
0.5    25  False 1000  100   0.00045473    0.000551528  1.21287
0.5    25  False 1000  1000  0.00171793    0.00467152   2.71927
0.8    1   True  100   100   0.000222037   0.000105301  0.47425
0.8    1   True  100   1000  0.000410804   0.000329327  0.801664
0.8    1   True  1000  100   0.000349735   0.000131225  0.375212
0.8    1   True  1000  1000  0.00139219    0.000677065  0.48633
0.8    1   False 100   100   0.000214079   0.000107486  0.502085
0.8    1   False 100   1000  0.000413746   0.000323244  0.781261
0.8    1   False 1000  100   0.000348983   0.000131983  0.378193
0.8    1   False 1000  1000  0.00136296    0.000685325  0.50282
0.8    10  True  100   100   0.000229159   0.00011825   0.516017
0.8    10  True  100   1000  0.000498845   0.000532618  1.0677
0.8    10  True  1000  100   0.000383126   0.00029935   0.781336
0.8    10  True  1000  1000  0.00162866    0.00307312   1.88689
0.8    10  False 100   100   0.000230783   0.000124958  0.541452
0.8    10  False 100   1000  0.000493393   0.000550654  1.11606
0.8    10  False 1000  100   0.000377167   0.000298581  0.791642
0.8    10  False 1000  1000  0.00165795    0.00305103   1.84024
0.8    25  True  100   100   0.000233496   0.000175241  0.75051
0.8    25  True  100   1000  0.00055654    0.00102658   1.84458
0.8    25  True  1000  100   0.000463814   0.000783267  1.68875
0.8    25  True  1000  1000  0.00186905    0.00755344   4.04132
0.8    25  False 100   100   0.000240243   0.000175047  0.728625
0.8    25  False 100   1000  0.000578102   0.00104499   1.80763
0.8    25  False 1000  100   0.000485113   0.000776849  1.60138
0.8    25  False 1000  1000  0.00211448    0.00752736   3.55992
```

##### Args:


*  <b>`sp_a`</b>: SparseTensor A, of rank 2.
*  <b>`b`</b>: A dense Matrix with the same dtype as sp_a.
*  <b>`adjoint_a`</b>: Use the adjoint of A in the matrix multiply.  If A is complex,
    this is transpose(conj(A)).  Otherwise it's transpose(A).
*  <b>`adjoint_b`</b>: Use the adjoint of B in the matrix multiply.  If B is complex,
    this is transpose(conj(B)).  Otherwise it's transpose(B).
*  <b>`name`</b>: A name prefix for the returned tensors (optional)

##### Returns:

  A dense matrix (pseudo-code in dense np.matrix notation):
    A = A.H if adjoint_a else A
    B = B.H if adjoint_b else B
    return A*B


- - -

### `tf.sparse_maximum(sp_a, sp_b, name=None)` {#sparse_maximum}

Returns the element-wise max of two SparseTensors.

Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
Example:

```python
sp_zero = sparse_tensor.SparseTensor([[0]], [0], [7])
sp_one = sparse_tensor.SparseTensor([[1]], [1], [7])
res = tf.sparse_maximum(sp_zero, sp_one).eval()
# "res" should be equal to SparseTensor([[0], [1]], [0, 1], [7]).
```

##### Args:


*  <b>`sp_a`</b>: a `SparseTensor` operand whose dtype is real, and indices
    lexicographically ordered.
*  <b>`sp_b`</b>: the other `SparseTensor` operand with the same requirements (and the
    same shape).
*  <b>`name`</b>: optional name of the operation.

##### Returns:


*  <b>`output`</b>: the output SparseTensor.


- - -

### `tf.sparse_minimum(sp_a, sp_b, name=None)` {#sparse_minimum}

Returns the element-wise min of two SparseTensors.

Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
Example:

```python
sp_zero = sparse_tensor.SparseTensor([[0]], [0], [7])
sp_one = sparse_tensor.SparseTensor([[1]], [1], [7])
res = tf.sparse_minimum(sp_zero, sp_one).eval()
# "res" should be equal to SparseTensor([[0], [1]], [0, 0], [7]).
```

##### Args:


*  <b>`sp_a`</b>: a `SparseTensor` operand whose dtype is real, and indices
    lexicographically ordered.
*  <b>`sp_b`</b>: the other `SparseTensor` operand with the same requirements (and the
    same shape).
*  <b>`name`</b>: optional name of the operation.

##### Returns:


*  <b>`output`</b>: the output SparseTensor.