aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/g3doc/api_docs/python/nn.md
blob: 06305b097bae0e3584c85a98b91605e55eeeb464 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
<!-- This file is machine generated: DO NOT EDIT! -->

# Neural Network

Note: Functions taking `Tensor` arguments can also take anything accepted by
[`tf.convert_to_tensor`](framework.md#convert_to_tensor).

[TOC]

## Activation Functions

The activation ops provide different types of nonlinearities for use in neural
networks.  These include smooth nonlinearities (`sigmoid`, `tanh`, `elu`,
`softplus`, and `softsign`), continuous but not everywhere differentiable
functions (`relu`, `relu6`, and `relu_x`), and random regularization
(`dropout`).

All activation ops apply componentwise, and produce a tensor of the same
shape as the input tensor.

- - -

### `tf.nn.relu(features, name=None)` {#relu}

Computes rectified linear: `max(features, 0)`.

##### Args:


*  <b>`features`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `features`.


- - -

### `tf.nn.relu6(features, name=None)` {#relu6}

Computes Rectified Linear 6: `min(max(features, 0), 6)`.

##### Args:


*  <b>`features`</b>: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
    `int16`, or `int8`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` with the same type as `features`.


- - -

### `tf.nn.elu(features, name=None)` {#elu}

Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise.

See [Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
](http://arxiv.org/abs/1511.07289)

##### Args:


*  <b>`features`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `features`.


- - -

### `tf.nn.softplus(features, name=None)` {#softplus}

Computes softplus: `log(exp(features) + 1)`.

##### Args:


*  <b>`features`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `features`.


- - -

### `tf.nn.softsign(features, name=None)` {#softsign}

Computes softsign: `features / (abs(features) + 1)`.

##### Args:


*  <b>`features`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `features`.


- - -

### `tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)` {#dropout}

Computes dropout.

With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`.  The scaling is so that the expected
sum is unchanged.

By default, each element is kept or dropped independently.  If `noise_shape`
is specified, it must be
[broadcastable](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)
to the shape of `x`, and only dimensions with `noise_shape[i] == shape(x)[i]`
will make independent decisions.  For example, if `shape(x) = [k, l, m, n]`
and `noise_shape = [k, 1, 1, n]`, each batch and channel component will be
kept independently and each row and column will be kept or not kept together.

##### Args:


*  <b>`x`</b>: A tensor.
*  <b>`keep_prob`</b>: A scalar `Tensor` with the same type as x. The probability
    that each element is kept.
*  <b>`noise_shape`</b>: A 1-D `Tensor` of type `int32`, representing the
    shape for randomly generated keep/drop flags.
*  <b>`seed`</b>: A Python integer. Used to create random seeds. See
    [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed)
    for behavior.
*  <b>`name`</b>: A name for this operation (optional).

##### Returns:

  A Tensor of the same shape of `x`.

##### Raises:


*  <b>`ValueError`</b>: If `keep_prob` is not in `(0, 1]`.


- - -

### `tf.nn.bias_add(value, bias, data_format=None, name=None)` {#bias_add}

Adds `bias` to `value`.

This is (mostly) a special case of `tf.add` where `bias` is restricted to 1-D.
Broadcasting is supported, so `value` may have any number of dimensions.
Unlike `tf.add`, the type of `bias` is allowed to differ from `value` in the
case where both types are quantized.

##### Args:


*  <b>`value`</b>: A `Tensor` with type `float`, `double`, `int64`, `int32`, `uint8`,
    `int16`, `int8`, or `complex64`.
*  <b>`bias`</b>: A 1-D `Tensor` with size matching the last dimension of `value`.
    Must be the same type as `value` unless `value` is a quantized type,
    in which case a different quantized type may be used.
*  <b>`data_format`</b>: A string. 'NHWC' and 'NCHW' are supported.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` with the same type as `value`.


- - -

### `tf.sigmoid(x, name=None)` {#sigmoid}

Computes sigmoid of `x` element-wise.

Specifically, `y = 1 / (1 + exp(-x))`.

##### Args:


*  <b>`x`</b>: A Tensor with type `float`, `double`, `int32`, `complex64`, `int64`,
    or `qint32`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A Tensor with the same type as `x` if `x.dtype != qint32`
    otherwise the return type is `quint8`.


- - -

### `tf.tanh(x, name=None)` {#tanh}

Computes hyperbolic tangent of `x` element-wise.

##### Args:


*  <b>`x`</b>: A Tensor with type `float`, `double`, `int32`, `complex64`, `int64`,
    or `qint32`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A Tensor with the same type as `x` if `x.dtype != qint32` otherwise
    the return type is `quint8`.



## Convolution

The convolution ops sweep a 2-D filter over a batch of images, applying the
filter to each window of each image of the appropriate size.  The different
ops trade off between generic vs. specific filters:

* `conv2d`: Arbitrary filters that can mix channels together.
* `depthwise_conv2d`: Filters that operate on each channel independently.
* `separable_conv2d`: A depthwise spatial filter followed by a pointwise filter.

Note that although these ops are called "convolution", they are strictly
speaking "cross-correlation" since the filter is combined with an input window
without reversing the filter.  For details, see [the properties of
cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation#Properties).

The filter is applied to image patches of the same size as the filter and
strided according to the `strides` argument.  `strides = [1, 1, 1, 1]` applies
the filter to a patch at every offset, `strides = [1, 2, 2, 1]` applies the
filter to every other image patch in each dimension, etc.

Ignoring channels for the moment, and assume that the 4-D `input` has shape
`[batch, in_height, in_width, ...]` and the 4-D `filter` has shape
`[filter_height, filter_width, ...]`, then the spatial semantics of the
convolution ops are as follows: first, according to the padding scheme chosen
as `'SAME'` or `'VALID'`, the output size and the padding pixels are computed.
For the `'SAME'` padding, the output height and width are computed as:

    out_height = ceil(float(in_height) / float(strides[1]))
    out_width  = ceil(float(in_width) / float(strides[2]))

and the padding on the top and left are computed as:

    pad_along_height = ((out_height - 1) * strides[1] +
                        filter_height - in_height)
    pad_along_width = ((out_width - 1) * strides[2] +
                       filter_width - in_width)
    pad_top = pad_along_height / 2
    pad_left = pad_along_width / 2

Note that the division by 2 means that there might be cases when the padding on
both sides (top vs bottom, right vs left) are off by one. In this case, the
bottom and right sides always get the one additional padded pixel. For example,
when `pad_along_height` is 5, we pad 2 pixels at the top and 3 pixels at the
bottom. Note that this is different from existing libraries such as cuDNN and
Caffe, which explicitly specify the number of padded pixels and always pad the
same number of pixels on both sides.

For the `'VALID`' padding, the output height and width are computed as:

    out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
    out_width  = ceil(float(in_width - filter_width + 1) / float(strides[2]))

and the padding values are always zero. The output is then computed as

    output[b, i, j, :] =
        sum_{di, dj} input[b, strides[1] * i + di - pad_top,
                           strides[2] * j + dj - pad_left, ...] *
                     filter[di, dj, ...]

where any value outside the original input image region are considered zero (
i.e. we pad zero values around the border of the image).

Since `input` is 4-D, each `input[b, i, j, :]` is a vector.  For `conv2d`, these
vectors are multiplied by the `filter[di, dj, :, :]` matrices to produce new
vectors.  For `depthwise_conv_2d`, each scalar component `input[b, i, j, k]`
is multiplied by a vector `filter[di, dj, k]`, and all the vectors are
concatenated.

- - -

### `tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)` {#conv2d}

Computes a 2-D convolution given 4-D `input` and `filter` tensors.

Given an input tensor of shape `[batch, in_height, in_width, in_channels]`
and a filter / kernel tensor of shape
`[filter_height, filter_width, in_channels, out_channels]`, this op
performs the following:

1. Flattens the filter to a 2-D matrix with shape
   `[filter_height * filter_width * in_channels, output_channels]`.
2. Extracts image patches from the input tensor to form a *virtual*
   tensor of shape `[batch, out_height, out_width,
   filter_height * filter_width * in_channels]`.
3. For each patch, right-multiplies the filter matrix and the image patch
   vector.

In detail, with the default NHWC format,

    output[b, i, j, k] =
        sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
                        filter[di, dj, q, k]

Must have `strides[0] = strides[3] = 1`.  For the most common case of the same
horizontal and vertices strides, `strides = [1, stride, stride, 1]`.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
*  <b>`filter`</b>: A `Tensor`. Must have the same type as `input`.
*  <b>`strides`</b>: A list of `ints`.
    1-D of length 4.  The stride of the sliding window for each dimension
    of `input`. Must be in the same order as the dimension specified with format.
*  <b>`padding`</b>: A `string` from: `"SAME", "VALID"`.
    The type of padding algorithm to use.
*  <b>`use_cudnn_on_gpu`</b>: An optional `bool`. Defaults to `True`.
*  <b>`data_format`</b>: An optional `string` from: `"NHWC", "NCHW"`. Defaults to `"NHWC"`.
    Specify the data format of the input and output data. With the
    default format "NHWC", the data is stored in the order of:
        [batch, in_height, in_width, in_channels].
    Alternatively, the format could be "NCHW", the data storage order of:
        [batch, in_channels, in_height, in_width].
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`.


- - -

### `tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None)` {#depthwise_conv2d}

Depthwise 2-D convolution.

Given an input tensor of shape `[batch, in_height, in_width, in_channels]`
and a filter tensor of shape
`[filter_height, filter_width, in_channels, channel_multiplier]`
containing `in_channels` convolutional filters of depth 1, `depthwise_conv2d`
applies a different filter to each input channel (expanding from 1 channel
to `channel_multiplier` channels for each), then concatenates the results
together.  The output has `in_channels * channel_multiplier` channels.

In detail,

    output[b, i, j, k * channel_multiplier + q] =
        sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] *
                     filter[di, dj, k, q]

Must have `strides[0] = strides[3] = 1`.  For the most common case of the
same horizontal and vertical strides, `strides = [1, stride, stride, 1]`.

##### Args:


*  <b>`input`</b>: 4-D with shape `[batch, in_height, in_width, in_channels]`.
*  <b>`filter`</b>: 4-D with shape
    `[filter_height, filter_width, in_channels, channel_multiplier]`.
*  <b>`strides`</b>: 1-D of size 4.  The stride of the sliding window for each
    dimension of `input`.
*  <b>`padding`</b>: A string, either `'VALID'` or `'SAME'`.  The padding algorithm.
*  <b>`name`</b>: A name for this operation (optional).

##### Returns:

  A 4-D `Tensor` of shape
  `[batch, out_height, out_width, in_channels * channel_multiplier].`


- - -

### `tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None)` {#separable_conv2d}

2-D convolution with separable filters.

Performs a depthwise convolution that acts separately on channels followed by
a pointwise convolution that mixes channels.  Note that this is separability
between dimensions `[1, 2]` and `3`, not spatial separability between
dimensions `1` and `2`.

In detail,

    output[b, i, j, k] = sum_{di, dj, q, r]
        input[b, strides[1] * i + di, strides[2] * j + dj, q] *
        depthwise_filter[di, dj, q, r] *
        pointwise_filter[0, 0, q * channel_multiplier + r, k]

`strides` controls the strides for the depthwise convolution only, since
the pointwise convolution has implicit strides of `[1, 1, 1, 1]`.  Must have
`strides[0] = strides[3] = 1`.  For the most common case of the same
horizontal and vertical strides, `strides = [1, stride, stride, 1]`.

##### Args:


*  <b>`input`</b>: 4-D `Tensor` with shape `[batch, in_height, in_width, in_channels]`.
*  <b>`depthwise_filter`</b>: 4-D `Tensor` with shape
    `[filter_height, filter_width, in_channels, channel_multiplier]`.
    Contains `in_channels` convolutional filters of depth 1.
*  <b>`pointwise_filter`</b>: 4-D `Tensor` with shape
    `[1, 1, channel_multiplier * in_channels, out_channels]`.  Pointwise
    filter to mix channels after `depthwise_filter` has convolved spatially.
*  <b>`strides`</b>: 1-D of size 4.  The strides for the depthwise convolution for
    each dimension of `input`.
*  <b>`padding`</b>: A string, either `'VALID'` or `'SAME'`.  The padding algorithm.
*  <b>`name`</b>: A name for this operation (optional).

##### Returns:

  A 4-D `Tensor` of shape `[batch, out_height, out_width, out_channels]`.

##### Raises:


*  <b>`ValueError`</b>: If channel_multiplier * in_channels > out_channels,
    which means that the separable convolution is overparameterized.


- - -

### `tf.nn.atrous_conv2d(value, filters, rate, padding, name=None)` {#atrous_conv2d}

Atrous convolution (a.k.a. convolution with holes or dilated convolution).

Computes a 2-D atrous convolution, also known as convolution with holes or
dilated convolution, given 4-D `value` and `filters` tensors. If the `rate`
parameter is equal to one, it performs regular 2-D convolution. If the `rate`
parameter is greater than one, it performs convolution with holes, sampling
the input values every `rate` pixels in the `height` and `width` dimensions.
This is equivalent to convolving the input with a set of upsampled filters,
produced by inserting `rate - 1` zeros between two consecutive values of the
filters along the `height` and `width` dimensions, hence the name atrous
convolution or convolution with holes (the French word trous means holes in
English).

More specifically:

    output[b, i, j, k] = sum_{di, dj, q} filters[di, dj, q, k] *
          value[b, i + rate * di, j + rate * dj, q]

Atrous convolution allows us to explicitly control how densely to compute
feature responses in fully convolutional networks. Used in conjunction with
bilinear interpolation, it offers an alternative to `conv2d_transpose` in
dense prediction tasks such as semantic image segmentation, optical flow
computation, or depth estimation. It also allows us to effectively enlarge
the field of view of filters without increasing the number of parameters or
the amount of computation.

For a description of atrous convolution and how it can be used for dense
feature extraction, please see: [Semantic Image Segmentation with Deep
Convolutional Nets and Fully Connected CRFs](http://arxiv.org/abs/1412.7062).
The same operation is investigated further in [Multi-Scale Context Aggregation
by Dilated Convolutions](http://arxiv.org/abs/1511.07122). Previous works
that effectively use atrous convolution in different ways are, among others,
[OverFeat: Integrated Recognition, Localization and Detection using
Convolutional Networks](http://arxiv.org/abs/1312.6229) and [Fast Image
Scanning with Deep Max-Pooling Convolutional Neural Networks]
(http://arxiv.org/abs/1302.1700). Atrous convolution is also closely related
to the so-called noble identities in multi-rate signal processing.

There are many different ways to implement atrous convolution (see the refs
above). The implementation here reduces

    atrous_conv2d(value, filters, rate, padding=padding)

to the following three operations:

    paddings = ...
    net = space_to_batch(value, paddings, block_size=rate)
    net = conv2d(net, filters, strides=[1, 1, 1, 1], padding="VALID")
    crops = ...
    net = batch_to_space(net, crops, block_size=rate)

Advanced usage. Note the following optimization: A sequence of `atrous_conv2d`
operations with identical `rate` parameters, 'SAME' `padding`, and filters
with odd heights/ widths:

    net = atrous_conv2d(net, filters1, rate, padding="SAME")
    net = atrous_conv2d(net, filters2, rate, padding="SAME")
    ...
    net = atrous_conv2d(net, filtersK, rate, padding="SAME")

can be equivalently performed cheaper in terms of computation and memory as:

    pad = ...  # padding so that the input dims are multiples of rate
    net = space_to_batch(net, paddings=pad, block_size=rate)
    net = conv2d(net, filters1, strides=[1, 1, 1, 1], padding="SAME")
    net = conv2d(net, filters2, strides=[1, 1, 1, 1], padding="SAME")
    ...
    net = conv2d(net, filtersK, strides=[1, 1, 1, 1], padding="SAME")
    net = batch_to_space(net, crops=pad, block_size=rate)

because a pair of consecutive `space_to_batch` and `batch_to_space` ops with
the same `block_size` cancel out when their respective `paddings` and `crops`
inputs are identical.

##### Args:


*  <b>`value`</b>: A 4-D `Tensor` of type `float`. It needs to be in the default "NHWC"
    format. Its shape is `[batch, in_height, in_width, in_channels]`.
*  <b>`filters`</b>: A 4-D `Tensor` with the same type as `value` and shape
    `[filter_height, filter_width, in_channels, out_channels]`. `filters`'
    `in_channels` dimension must match that of `value`. Atrous convolution is
    equivalent to standard convolution with upsampled filters with effective
    height `filter_height + (filter_height - 1) * (rate - 1)` and effective
    width `filter_width + (filter_width - 1) * (rate - 1)`, produced by
    inserting `rate - 1` zeros along consecutive elements across the
    `filters`' spatial dimensions.
*  <b>`rate`</b>: A positive int32. The stride with which we sample input values across
    the `height` and `width` dimensions. Equivalently, the rate by which we
    upsample the filter values by inserting zeros across the `height` and
    `width` dimensions. In the literature, the same parameter is sometimes
    called `input stride` or `dilation`.
*  <b>`padding`</b>: A string, either `'VALID'` or `'SAME'`. The padding algorithm.
*  <b>`name`</b>: Optional name for the returned tensor.

##### Returns:

  A `Tensor` with the same type as `value`.

##### Raises:


*  <b>`ValueError`</b>: If input/output depth does not match `filters`' shape, or if
    padding is other than `'VALID'` or `'SAME'`.


- - -

### `tf.nn.conv2d_transpose(value, filter, output_shape, strides, padding='SAME', name=None)` {#conv2d_transpose}

The transpose of `conv2d`.

This operation is sometimes called "deconvolution" after [Deconvolutional
Networks](http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf), but is
actually the transpose (gradient) of `conv2d` rather than an actual
deconvolution.

##### Args:


*  <b>`value`</b>: A 4-D `Tensor` of type `float` and shape
    `[batch, height, width, in_channels]`.
*  <b>`filter`</b>: A 4-D `Tensor` with the same type as `value` and shape
    `[height, width, output_channels, in_channels]`.  `filter`'s
    `in_channels` dimension must match that of `value`.
*  <b>`output_shape`</b>: A 1-D `Tensor` representing the output shape of the
    deconvolution op.
*  <b>`strides`</b>: A list of ints. The stride of the sliding window for each
    dimension of the input tensor.
*  <b>`padding`</b>: A string, either `'VALID'` or `'SAME'`. The padding algorithm.
*  <b>`name`</b>: Optional name for the returned tensor.

##### Returns:

  A `Tensor` with the same type as `value`.

##### Raises:


*  <b>`ValueError`</b>: If input/output depth does not match `filter`'s shape, or if
    padding is other than `'VALID'` or `'SAME'`.


- - -

### `tf.nn.conv3d(input, filter, strides, padding, name=None)` {#conv3d}

Computes a 3-D convolution given 5-D `input` and `filter` tensors.

In signal processing, cross-correlation is a measure of similarity of
two waveforms as a function of a time-lag applied to one of them. This
is also known as a sliding dot product or sliding inner-product.

Our Conv3D implements a form of cross-correlation.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    Shape `[batch, in_depth, in_height, in_width, in_channels]`.
*  <b>`filter`</b>: A `Tensor`. Must have the same type as `input`.
    Shape `[filter_depth, filter_height, filter_width, in_channels, out_channels]`.
    `in_channels` must match between `input` and `filter`.
*  <b>`strides`</b>: A list of `ints` that has length `>= 5`.
    1-D tensor of length 5. The stride of the sliding window for each
    dimension of `input`. Must have `strides[0] = strides[4] = 1`.
*  <b>`padding`</b>: A `string` from: `"SAME", "VALID"`.
    The type of padding algorithm to use.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`.



## Pooling

The pooling ops sweep a rectangular window over the input tensor, computing a
reduction operation for each window (average, max, or max with argmax).  Each
pooling op uses rectangular windows of size `ksize` separated by offset
`strides`.  For example, if `strides` is all ones every window is used, if
`strides` is all twos every other window is used in each dimension, etc.

In detail, the output is

    output[i] = reduce(value[strides * i:strides * i + ksize])

where the indices also take into consideration the padding values. Please refer
to the `Convolution` section for details about the padding calculation.

- - -

### `tf.nn.avg_pool(value, ksize, strides, padding, data_format='NHWC', name=None)` {#avg_pool}

Performs the average pooling on the input.

Each entry in `output` is the mean of the corresponding size `ksize`
window in `value`.

##### Args:


*  <b>`value`</b>: A 4-D `Tensor` of shape `[batch, height, width, channels]` and type
    `float32`, `float64`, `qint8`, `quint8`, or `qint32`.
*  <b>`ksize`</b>: A list of ints that has length >= 4.
    The size of the window for each dimension of the input tensor.
*  <b>`strides`</b>: A list of ints that has length >= 4.
    The stride of the sliding window for each dimension of the
    input tensor.
*  <b>`padding`</b>: A string, either `'VALID'` or `'SAME'`. The padding algorithm.
*  <b>`data_format`</b>: A string. 'NHWC' and 'NCHW' are supported.
*  <b>`name`</b>: Optional name for the operation.

##### Returns:

  A `Tensor` with the same type as `value`.  The average pooled output tensor.


- - -

### `tf.nn.max_pool(value, ksize, strides, padding, data_format='NHWC', name=None)` {#max_pool}

Performs the max pooling on the input.

##### Args:


*  <b>`value`</b>: A 4-D `Tensor` with shape `[batch, height, width, channels]` and
    type `tf.float32`.
*  <b>`ksize`</b>: A list of ints that has length >= 4.  The size of the window for
    each dimension of the input tensor.
*  <b>`strides`</b>: A list of ints that has length >= 4.  The stride of the sliding
    window for each dimension of the input tensor.
*  <b>`padding`</b>: A string, either `'VALID'` or `'SAME'`. The padding algorithm.
*  <b>`data_format`</b>: A string. 'NHWC' and 'NCHW' are supported.
*  <b>`name`</b>: Optional name for the operation.

##### Returns:

  A `Tensor` with type `tf.float32`.  The max pooled output tensor.


- - -

### `tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None)` {#max_pool_with_argmax}

Performs max pooling on the input and outputs both max values and indices.

The indices in `argmax` are flattened, so that a maximum value at position
`[b, y, x, c]` becomes flattened index
`((b * height + y) * width + x) * channels + c`.

##### Args:


*  <b>`input`</b>: A `Tensor` of type `float32`.
    4-D with shape `[batch, height, width, channels]`.  Input to pool over.
*  <b>`ksize`</b>: A list of `ints` that has length `>= 4`.
    The size of the window for each dimension of the input tensor.
*  <b>`strides`</b>: A list of `ints` that has length `>= 4`.
    The stride of the sliding window for each dimension of the
    input tensor.
*  <b>`padding`</b>: A `string` from: `"SAME", "VALID"`.
    The type of padding algorithm to use.
*  <b>`Targmax`</b>: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A tuple of `Tensor` objects (output, argmax).

*  <b>`output`</b>: A `Tensor` of type `float32`. The max pooled output tensor.
*  <b>`argmax`</b>: A `Tensor` of type `Targmax`. 4-D.  The flattened indices of the max values chosen for each output.


- - -

### `tf.nn.avg_pool3d(input, ksize, strides, padding, name=None)` {#avg_pool3d}

Performs 3D average pooling on the input.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    Shape `[batch, depth, rows, cols, channels]` tensor to pool over.
*  <b>`ksize`</b>: A list of `ints` that has length `>= 5`.
    1-D tensor of length 5. The size of the window for each dimension of
    the input tensor. Must have `ksize[0] = ksize[1] = 1`.
*  <b>`strides`</b>: A list of `ints` that has length `>= 5`.
    1-D tensor of length 5. The stride of the sliding window for each
    dimension of `input`. Must have `strides[0] = strides[4] = 1`.
*  <b>`padding`</b>: A `string` from: `"SAME", "VALID"`.
    The type of padding algorithm to use.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`.
  The average pooled output tensor.


- - -

### `tf.nn.max_pool3d(input, ksize, strides, padding, name=None)` {#max_pool3d}

Performs 3D max pooling on the input.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    Shape `[batch, depth, rows, cols, channels]` tensor to pool over.
*  <b>`ksize`</b>: A list of `ints` that has length `>= 5`.
    1-D tensor of length 5. The size of the window for each dimension of
    the input tensor. Must have `ksize[0] = ksize[1] = 1`.
*  <b>`strides`</b>: A list of `ints` that has length `>= 5`.
    1-D tensor of length 5. The stride of the sliding window for each
    dimension of `input`. Must have `strides[0] = strides[4] = 1`.
*  <b>`padding`</b>: A `string` from: `"SAME", "VALID"`.
    The type of padding algorithm to use.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`. The max pooled output tensor.



## Normalization

Normalization is useful to prevent neurons from saturating when inputs may
have varying scale, and to aid generalization.

- - -

### `tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)` {#l2_normalize}

Normalizes along dimension `dim` using an L2 norm.

For a 1-D tensor with `dim = 0`, computes

    output = x / sqrt(max(sum(x**2), epsilon))

For `x` with more dimensions, independently normalizes each 1-D slice along
dimension `dim`.

##### Args:


*  <b>`x`</b>: A `Tensor`.
*  <b>`dim`</b>: Dimension along which to normalize.
*  <b>`epsilon`</b>: A lower bound value for the norm. Will use `sqrt(epsilon)` as the
    divisor if `norm < sqrt(epsilon)`.
*  <b>`name`</b>: A name for this operation (optional).

##### Returns:

  A `Tensor` with the same shape as `x`.


- - -

### `tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None)` {#local_response_normalization}

Local Response Normalization.

The 4-D `input` tensor is treated as a 3-D array of 1-D vectors (along the last
dimension), and each vector is normalized independently.  Within a given vector,
each component is divided by the weighted, squared sum of inputs within
`depth_radius`.  In detail,

    sqr_sum[a, b, c, d] =
        sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
    output = input / (bias + alpha * sqr_sum) ** beta

For details, see [Krizhevsky et al., ImageNet classification with deep
convolutional neural networks (NIPS 2012)]
(http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks).

##### Args:


*  <b>`input`</b>: A `Tensor` of type `float32`. 4-D.
*  <b>`depth_radius`</b>: An optional `int`. Defaults to `5`.
    0-D.  Half-width of the 1-D normalization window.
*  <b>`bias`</b>: An optional `float`. Defaults to `1`.
    An offset (usually positive to avoid dividing by 0).
*  <b>`alpha`</b>: An optional `float`. Defaults to `1`.
    A scale factor, usually positive.
*  <b>`beta`</b>: An optional `float`. Defaults to `0.5`. An exponent.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `float32`.


- - -

### `tf.nn.sufficient_statistics(x, axes, shift=None, keep_dims=False, name=None)` {#sufficient_statistics}

Calculate the sufficient statistics for the mean and variance of `x`.

These sufficient statistics are computed using the one pass algorithm on
an input that's optionally shifted. See:
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data

##### Args:


*  <b>`x`</b>: A `Tensor`.
*  <b>`axes`</b>: Array of ints. Axes along which to compute mean and variance.
*  <b>`shift`</b>: A `Tensor` containing the value by which to shift the data for
    numerical stability, or `None` if no shift is to be performed. A shift
    close to the true mean provides the most numerically stable results.
*  <b>`keep_dims`</b>: produce statistics with the same dimensionality as the input.
*  <b>`name`</b>: Name used to scope the operations that compute the sufficient stats.

##### Returns:

  Four `Tensor` objects of the same type as `x`:
  * the count (number of elements to average over).
  * the (possibly shifted) sum of the elements in the array.
  * the (possibly shifted) sum of squares of the elements in the array.
  * the shift by which the mean must be corrected or None if `shift` is None.


- - -

### `tf.nn.normalize_moments(counts, mean_ss, variance_ss, shift, name=None)` {#normalize_moments}

Calculate the mean and variance of based on the sufficient statistics.

##### Args:


*  <b>`counts`</b>: A `Tensor` containing a the total count of the data (one value).
*  <b>`mean_ss`</b>: A `Tensor` containing the mean sufficient statistics: the (possibly
    shifted) sum of the elements to average over.
*  <b>`variance_ss`</b>: A `Tensor` containing the variance sufficient statistics: the
    (possibly shifted) squared sum of the data to compute the variance over.
*  <b>`shift`</b>: A `Tensor` containing the value by which the data is shifted for
    numerical stability, or `None` if no shift was performed.
*  <b>`name`</b>: Name used to scope the operations that compute the moments.

##### Returns:

  Two `Tensor` objects: `mean` and `variance`.


- - -

### `tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False)` {#moments}

Calculate the mean and variance of `x`.

The mean and variance are calculated by aggregating the contents of `x`
across `axes`.  If `x` is 1-D and `axes = [0]` this is just the mean
and variance of a vector.

When using these moments for batch normalization (see
`tf.nn.batch_normalization`):
  * for so-called "global normalization", used with convolutional filters with
    shape `[batch, height, width, depth]`, pass `axes=[0, 1, 2]`.
  * for simple batch normalization pass `axes=[0]` (batch only).

##### Args:


*  <b>`x`</b>: A `Tensor`.
*  <b>`axes`</b>: array of ints.  Axes along which to compute mean and
    variance.
*  <b>`shift`</b>: A `Tensor` containing the value by which to shift the data for
    numerical stability, or `None` if no shift is to be performed. A shift
    close to the true mean provides the most numerically stable results.
*  <b>`keep_dims`</b>: produce moments with the same dimensionality as the input.
*  <b>`name`</b>: Name used to scope the operations that compute the moments.

##### Returns:

  Two `Tensor` objects: `mean` and `variance`.



## Losses

The loss ops measure error between two tensors, or between a tensor and zero.
These can be used for measuring accuracy of a network in a regression task
or for regularization purposes (weight decay).

- - -

### `tf.nn.l2_loss(t, name=None)` {#l2_loss}

L2 Loss.

Computes half the L2 norm of a tensor without the `sqrt`:

    output = sum(t ** 2) / 2

##### Args:


*  <b>`t`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
    Typically 2-D, but may have any dimensions.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `t`. 0-D.



## Classification

TensorFlow provides several operations that help you perform classification.

- - -

### `tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None)` {#sigmoid_cross_entropy_with_logits}

Computes sigmoid cross entropy given `logits`.

Measures the probability error in discrete classification tasks in which each
class is independent and not mutually exclusive.  For instance, one could
perform multilabel classification where a picture can contain both an elephant
and a dog at the same time.

For brevity, let `x = logits`, `z = targets`.  The logistic loss is

      z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
    = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
    = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
    = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
    = (1 - z) * x + log(1 + exp(-x))
    = x - x * z + log(1 + exp(-x))

For x < 0, to avoid overflow in exp(-x), we reformulate the above

      x - x * z + log(1 + exp(-x))
    = log(exp(x)) - x * z + log(1 + exp(-x))
    = - x * z + log(1 + exp(x))

Hence, to ensure stability and avoid overflow, the implementation uses this
equivalent formulation

    max(x, 0) - x * z + log(1 + exp(-abs(x)))

`logits` and `targets` must have the same type and shape.

##### Args:


*  <b>`logits`</b>: A `Tensor` of type `float32` or `float64`.
*  <b>`targets`</b>: A `Tensor` of the same type and shape as `logits`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of the same shape as `logits` with the componentwise
  logistic losses.

##### Raises:


*  <b>`ValueError`</b>: If `logits` and `targets` do not have the same shape.


- - -

### `tf.nn.softmax(logits, name=None)` {#softmax}

Computes softmax activations.

For each batch `i` and class `j` we have

    softmax[i, j] = exp(logits[i, j]) / sum(exp(logits[i]))

##### Args:


*  <b>`logits`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
    2-D with shape `[batch_size, num_classes]`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `logits`. Same shape as `logits`.


- - -

### `tf.nn.log_softmax(logits, name=None)` {#log_softmax}

Computes log softmax activations.

For each batch `i` and class `j` we have

    logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))

##### Args:


*  <b>`logits`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
    2-D with shape `[batch_size, num_classes]`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `logits`. Same shape as `logits`.


- - -

### `tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)` {#softmax_cross_entropy_with_logits}

Computes softmax cross entropy between `logits` and `labels`.

Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class).  For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.

**NOTE:**  While the classes are mutually exclusive, their probabilities
need not be.  All that is required is that each row of `labels` is
a valid probability distribution.  If they are not, the computation of the
gradient will be incorrect.

If using exclusive `labels` (wherein one and only
one class is true at a time), see `sparse_softmax_cross_entropy_with_logits`.

**WARNING:** This op expects unscaled logits, since it performs a `softmax`
on `logits` internally for efficiency.  Do not call this op with the
output of `softmax`, as it will produce incorrect results.

`logits` and `labels` must have the same shape `[batch_size, num_classes]`
and the same dtype (either `float32` or `float64`).

##### Args:


*  <b>`logits`</b>: Unscaled log probabilities.
*  <b>`labels`</b>: Each row `labels[i]` must be a valid probability distribution.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
  softmax cross entropy loss.


- - -

### `tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels, name=None)` {#sparse_softmax_cross_entropy_with_logits}

Computes sparse softmax cross entropy between `logits` and `labels`.

Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class).  For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.

**NOTE:**  For this operation, the probability of a given label is considered
exclusive.  That is, soft classes are not allowed, and the `labels` vector
must provide a single specific index for the true class for each row of
`logits` (each minibatch entry).  For soft softmax classification with
a probability distribution for each entry, see
`softmax_cross_entropy_with_logits`.

**WARNING:** This op expects unscaled logits, since it performs a softmax
on `logits` internally for efficiency.  Do not call this op with the
output of `softmax`, as it will produce incorrect results.

`logits` must have the shape `[batch_size, num_classes]`
and dtype `float32` or `float64`.

`labels` must have the shape `[batch_size]` and dtype `int32` or `int64`.

##### Args:


*  <b>`logits`</b>: Unscaled log probabilities.
*  <b>`labels`</b>: Each entry `labels[i]` must be an index in `[0, num_classes)`. Other
    values will result in a loss of 0, but incorrect gradient computations.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
  softmax cross entropy loss.


- - -

### `tf.nn.weighted_cross_entropy_with_logits(logits, targets, pos_weight, name=None)` {#weighted_cross_entropy_with_logits}

Computes a weighted cross entropy.

This is like `sigmoid_cross_entropy_with_logits()` except that `pos_weight`,
allows one to trade off recall and precision by up- or down-weighting the
cost of a positive error relative to a negative error.

The usual cross-entropy cost is defined as:

  targets * -log(sigmoid(logits)) + (1 - targets) * -log(1 - sigmoid(logits))

The argument `pos_weight` is used as a multiplier for the positive targets:

  targets * -log(sigmoid(logits)) * pos_weight +
      (1 - targets) * -log(1 - sigmoid(logits))

For brevity, let `x = logits`, `z = targets`, `q = pos_weight`.
The loss is:

      qz * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
    = qz * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x)))
    = qz * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x)))
    = qz * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x))
    = (1 - z) * x + (qz +  1 - z) * log(1 + exp(-x))
    = (1 - z) * x + (1 + (q - 1) * z) * log(1 + exp(-x))

Setting `l = (1 + (q - 1) * z)`, to ensure stability and avoid overflow,
the implementation uses

    (1 - z) * x + l * (log(1 + exp(-abs(x))) + max(-x, 0))

`logits` and `targets` must have the same type and shape.

##### Args:


*  <b>`logits`</b>: A `Tensor` of type `float32` or `float64`.
*  <b>`targets`</b>: A `Tensor` of the same type and shape as `logits`.
*  <b>`pos_weight`</b>: A coefficient to use on the positive examples.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of the same shape as `logits` with the componentwise
  weightedlogistic losses.

##### Raises:


*  <b>`ValueError`</b>: If `logits` and `targets` do not have the same shape.



## Embeddings

TensorFlow provides library support for looking up values in embedding
tensors.

- - -

### `tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True)` {#embedding_lookup}

Looks up `ids` in a list of embedding tensors.

This function is used to perform parallel lookups on the list of
tensors in `params`.  It is a generalization of
[`tf.gather()`](../../api_docs/python/array_ops.md#gather), where `params` is
interpreted as a partition of a larger embedding tensor.

If `len(params) > 1`, each element `id` of `ids` is partitioned between
the elements of `params` according to the `partition_strategy`.
In all strategies, if the id space does not evenly divide the number of
partitions, each of the first `(max_id + 1) % len(params)` partitions will
be assigned one more id.

If `partition_strategy` is `"mod"`, we assign each id to partition
`p = id % len(params)`. For instance,
13 ids are split across 5 partitions as:
`[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]`

If `partition_strategy` is `"div"`, we assign ids to partitions in a
contiguous manner. In this case, 13 ids are split across 5 partitions as:
`[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]`

The results of the lookup are concatenated into a dense
tensor. The returned tensor has shape `shape(ids) + shape(params)[1:]`.

##### Args:


*  <b>`params`</b>: A list of tensors with the same type and which can be concatenated
    along dimension 0. Each `Tensor` must be appropriately sized for the given
    `partition_strategy`.
*  <b>`ids`</b>: A `Tensor` with type `int32` or `int64` containing the ids to be looked
    up in `params`.
*  <b>`partition_strategy`</b>: A string specifying the partitioning strategy, relevant
    if `len(params) > 1`. Currently `"div"` and `"mod"` are supported. Default
    is `"mod"`.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`validate_indices`</b>: Whether or not to validate gather indices.

##### Returns:

  A `Tensor` with the same type as the tensors in `params`.

##### Raises:


*  <b>`ValueError`</b>: If `params` is empty.


- - -

### `tf.nn.embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy='mod', name=None, combiner='mean')` {#embedding_lookup_sparse}

Computes embeddings for the given ids and weights.

This op assumes that there is at least one id for each row in the dense tensor
represented by sp_ids (i.e. there are no rows with empty features), and that
all the indices of sp_ids are in canonical row-major order.

It also assumes that all id values lie in the range [0, p0), where p0
is the sum of the size of params along dimension 0.

##### Args:


*  <b>`params`</b>: A single tensor representing the complete embedding tensor,
    or a list of P tensors all of same shape except for the first dimension,
    representing sharded embedding tensors.
*  <b>`sp_ids`</b>: N x M SparseTensor of int64 ids (typically from FeatureValueToId),
    where N is typically batch size and M is arbitrary.
*  <b>`sp_weights`</b>: either a SparseTensor of float / double weights, or None to
    indicate all weights should be taken to be 1. If specified, sp_weights
    must have exactly the same shape and indices as sp_ids.
*  <b>`partition_strategy`</b>: A string specifying the partitioning strategy, relevant
    if `len(params) > 1`. Currently `"div"` and `"mod"` are supported. Default
    is `"mod"`. See `tf.nn.embedding_lookup` for more details.
*  <b>`name`</b>: Optional name for the op.
*  <b>`combiner`</b>: A string specifying the reduction op. Currently "mean", "sqrtn"
    and "sum" are supported.
    "sum" computes the weighted sum of the embedding results for each row.
    "mean" is the weighted sum divided by the total weight.
    "sqrtn" is the weighted sum divided by the square root of the sum of the
    squares of the weights.

##### Returns:

  A dense tensor representing the combined embeddings for the
  sparse ids. For each row in the dense tensor represented by sp_ids, the op
  looks up the embeddings for all ids in that row, multiplies them by the
  corresponding weight, and combines these embeddings as specified.

  In other words, if
    shape(combined params) = [p0, p1, ..., pm]
  and
    shape(sp_ids) = shape(sp_weights) = [d0, d1, ..., dn]
  then
    shape(output) = [d0, d1, ..., dn-1, p1, ..., pm].

  For instance, if params is a 10x20 matrix, and sp_ids / sp_weights are

    [0, 0]: id 1, weight 2.0
    [0, 1]: id 3, weight 0.5
    [1, 0]: id 0, weight 1.0
    [2, 3]: id 1, weight 3.0

  with combiner="mean", then the output will be a 3x20 matrix where
    output[0, :] = (params[1, :] * 2.0 + params[3, :] * 0.5) / (2.0 + 0.5)
    output[1, :] = params[0, :] * 1.0
    output[2, :] = params[1, :] * 3.0

##### Raises:


*  <b>`TypeError`</b>: If sp_ids is not a SparseTensor, or if sp_weights is neither
    None nor SparseTensor.
*  <b>`ValueError`</b>: If combiner is not one of {"mean", "sqrtn", "sum"}.



## Evaluation

The evaluation ops are useful for measuring the performance of a network.
Since they are nondifferentiable, they are typically used at evaluation time.

- - -

### `tf.nn.top_k(input, k=1, sorted=True, name=None)` {#top_k}

Finds values and indices of the `k` largest entries for the last dimension.

If the input is a vector (rank-1), finds the `k` largest entries in the vector
and outputs their values and indices as vectors.  Thus `values[j]` is the
`j`-th largest entry in `input`, and its index is `indices[j]`.

For matrices (resp. higher rank input), computes the top `k` entries in each
row (resp. vector along the last dimension).  Thus,

    values.shape = indices.shape = input.shape[:-1] + [k]

If two elements are equal, the lower-index element appears first.

##### Args:


*  <b>`input`</b>: 1-D or higher `Tensor` with last dimension at least `k`.
*  <b>`k`</b>: 0-D `int32` `Tensor`.  Number of top elements to look for along the last
    dimension (along each row for matrices).
*  <b>`sorted`</b>: If true the resulting `k` elements will be sorted by the values in
    descending order.
*  <b>`name`</b>: Optional name for the operation.

##### Returns:


*  <b>`values`</b>: The `k` largest elements along each last dimensional slice.
*  <b>`indices`</b>: The indices of `values` within the last dimension of `input`.


- - -

### `tf.nn.in_top_k(predictions, targets, k, name=None)` {#in_top_k}

Says whether the targets are in the top `K` predictions.

This outputs a `batch_size` bool array, an entry `out[i]` is `true` if the
prediction for the target class is among the top `k` predictions among
all predictions for example `i`. Note that the behavior of `InTopK` differs
from the `TopK` op in its handling of ties; if multiple classes have the
same prediction value and straddle the top-`k` boundary, all of those
classes are considered to be in the top `k`.

More formally, let

  \\(predictions_i\\) be the predictions for all classes for example `i`,
  \\(targets_i\\) be the target class for example `i`,
  \\(out_i\\) be the output for example `i`,

$$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$

##### Args:


*  <b>`predictions`</b>: A `Tensor` of type `float32`.
    A `batch_size` x `classes` tensor.
*  <b>`targets`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A `batch_size` vector of class ids.
*  <b>`k`</b>: An `int`. Number of top elements to look at for computing precision.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `bool`. Computed Precision at `k` as a `bool Tensor`.



## Candidate Sampling

Do you want to train a multiclass or multilabel model with thousands
or millions of output classes (for example, a language model with a
large vocabulary)?  Training with a full Softmax is slow in this case,
since all of the classes are evaluated for every training example.
Candidate Sampling training algorithms can speed up your step times by
only considering a small randomly-chosen subset of contrastive classes
(called candidates) for each batch of training examples.

See our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

### Sampled Loss Functions

TensorFlow provides the following sampled loss functions for faster training.

- - -

### `tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=False, partition_strategy='mod', name='nce_loss')` {#nce_loss}

Computes and returns the noise-contrastive estimation training loss.

See [Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models]
(http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf).
Also see our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

Note: In the case where `num_true` > 1, we assign to each target class
the target probability 1 / `num_true` so that the target probabilities
sum to 1 per-example.

Note: It would be useful to allow a variable number of target classes per
example.  We hope to provide this functionality in a future release.
For now, if you have a variable number of target classes, you can pad them
out to a constant number by either repeating them or by padding
with an otherwise unused class.

##### Args:


*  <b>`weights`</b>: A `Tensor` of shape `[num_classes, dim]`, or a list of `Tensor`
      objects whose concatenation along dimension 0 has shape
      [num_classes, dim].  The (possibly-partitioned) class embeddings.
*  <b>`biases`</b>: A `Tensor` of shape `[num_classes]`.  The class biases.
*  <b>`inputs`</b>: A `Tensor` of shape `[batch_size, dim]`.  The forward
      activations of the input network.
*  <b>`labels`</b>: A `Tensor` of type `int64` and shape `[batch_size,
      num_true]`. The target classes.
*  <b>`num_sampled`</b>: An `int`.  The number of classes to randomly sample per batch.
*  <b>`num_classes`</b>: An `int`. The number of possible classes.
*  <b>`num_true`</b>: An `int`.  The number of target classes per training example.
*  <b>`sampled_values`</b>: a tuple of (`sampled_candidates`, `true_expected_count`,
      `sampled_expected_count`) returned by a `*_candidate_sampler` function.
      (if None, we default to `log_uniform_candidate_sampler`)
*  <b>`remove_accidental_hits`</b>: A `bool`.  Whether to remove "accidental hits"
      where a sampled class equals one of the target classes.  If set to
      `True`, this is a "Sampled Logistic" loss instead of NCE, and we are
      learning to generate log-odds instead of log probabilities.  See
      our [Candidate Sampling Algorithms Reference]
      (../../extras/candidate_sampling.pdf).
      Default is False.
*  <b>`partition_strategy`</b>: A string specifying the partitioning strategy, relevant
      if `len(weights) > 1`. Currently `"div"` and `"mod"` are supported.
      Default is `"mod"`. See `tf.nn.embedding_lookup` for more details.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `batch_size` 1-D tensor of per-example NCE losses.


- - -

### `tf.nn.sampled_softmax_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, partition_strategy='mod', name='sampled_softmax_loss')` {#sampled_softmax_loss}

Computes and returns the sampled softmax training loss.

This is a faster way to train a softmax classifier over a huge number of
classes.

This operation is for training only.  It is generally an underestimate of
the full softmax loss.

At inference time, you can compute full softmax probabilities with the
expression `tf.nn.softmax(tf.matmul(inputs, tf.transpose(weights)) + biases)`.

See our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

Also see Section 3 of [Jean et al., 2014](http://arxiv.org/abs/1412.2007)
([pdf](http://arxiv.org/pdf/1412.2007.pdf)) for the math.

##### Args:


*  <b>`weights`</b>: A `Tensor` of shape `[num_classes, dim]`, or a list of `Tensor`
      objects whose concatenation along dimension 0 has shape
      [num_classes, dim].  The (possibly-sharded) class embeddings.
*  <b>`biases`</b>: A `Tensor` of shape `[num_classes]`.  The class biases.
*  <b>`inputs`</b>: A `Tensor` of shape `[batch_size, dim]`.  The forward
      activations of the input network.
*  <b>`labels`</b>: A `Tensor` of type `int64` and shape `[batch_size,
      num_true]`. The target classes.  Note that this format differs from
      the `labels` argument of `nn.softmax_cross_entropy_with_logits`.
*  <b>`num_sampled`</b>: An `int`.  The number of classes to randomly sample per batch.
*  <b>`num_classes`</b>: An `int`. The number of possible classes.
*  <b>`num_true`</b>: An `int`.  The number of target classes per training example.
*  <b>`sampled_values`</b>: a tuple of (`sampled_candidates`, `true_expected_count`,
      `sampled_expected_count`) returned by a `*_candidate_sampler` function.
      (if None, we default to `log_uniform_candidate_sampler`)
*  <b>`remove_accidental_hits`</b>: A `bool`.  whether to remove "accidental hits"
      where a sampled class equals one of the target classes.  Default is
      True.
*  <b>`partition_strategy`</b>: A string specifying the partitioning strategy, relevant
      if `len(weights) > 1`. Currently `"div"` and `"mod"` are supported.
      Default is `"mod"`. See `tf.nn.embedding_lookup` for more details.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `batch_size` 1-D tensor of per-example sampled softmax losses.



### Candidate Samplers

TensorFlow provides the following samplers for randomly sampling candidate
classes when using one of the sampled loss functions above.

- - -

### `tf.nn.uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)` {#uniform_candidate_sampler}

Samples a set of classes using a uniform base distribution.

This operation randomly samples a tensor of sampled classes
(`sampled_candidates`) from the range of integers `[0, range_max)`.

The elements of `sampled_candidates` are drawn without replacement
(if `unique=True`) or with replacement (if `unique=False`) from
the base distribution.

The base distribution for this operation is the uniform distribution
over the range of integers `[0, range_max)`.

In addition, this operation returns tensors `true_expected_count`
and `sampled_expected_count` representing the number of times each
of the target classes (`true_classes`) and the sampled
classes (`sampled_candidates`) is expected to occur in an average
tensor of sampled classes.  These values correspond to `Q(y|x)`
defined in [this
document](http://www.tensorflow.org/extras/candidate_sampling.pdf).
If `unique=True`, then these are post-rejection probabilities and we
compute them approximately.

##### Args:


*  <b>`true_classes`</b>: A `Tensor` of type `int64` and shape `[batch_size,
    num_true]`. The target classes.
*  <b>`num_true`</b>: An `int`.  The number of target classes per training example.
*  <b>`num_sampled`</b>: An `int`.  The number of classes to randomly sample per batch.
*  <b>`unique`</b>: A `bool`. Determines whether all sampled classes in a batch are
    unique.
*  <b>`range_max`</b>: An `int`. The number of possible classes.
*  <b>`seed`</b>: An `int`. An operation-specific seed. Default is 0.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:


*  <b>`sampled_candidates`</b>: A tensor of type `int64` and shape `[num_sampled]`.
    The sampled classes.
*  <b>`true_expected_count`</b>: A tensor of type `float`.  Same shape as
    `true_classes`. The expected counts under the sampling distribution
    of each of `true_classes`.
*  <b>`sampled_expected_count`</b>: A tensor of type `float`. Same shape as
    `sampled_candidates`. The expected counts under the sampling distribution
    of each of `sampled_candidates`.


- - -

### `tf.nn.log_uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)` {#log_uniform_candidate_sampler}

Samples a set of classes using a log-uniform (Zipfian) base distribution.

This operation randomly samples a tensor of sampled classes
(`sampled_candidates`) from the range of integers `[0, range_max)`.

The elements of `sampled_candidates` are drawn without replacement
(if `unique=True`) or with replacement (if `unique=False`) from
the base distribution.

The base distribution for this operation is an approximately log-uniform
or Zipfian distribution:

`P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)`

This sampler is useful when the target classes approximately follow such
a distribution - for example, if the classes represent words in a lexicon
sorted in decreasing order of frequency. If your classes are not ordered by
decreasing frequency, do not use this op.

In addition, this operation returns tensors `true_expected_count`
and `sampled_expected_count` representing the number of times each
of the target classes (`true_classes`) and the sampled
classes (`sampled_candidates`) is expected to occur in an average
tensor of sampled classes.  These values correspond to `Q(y|x)`
defined in [this
document](http://www.tensorflow.org/extras/candidate_sampling.pdf).
If `unique=True`, then these are post-rejection probabilities and we
compute them approximately.

##### Args:


*  <b>`true_classes`</b>: A `Tensor` of type `int64` and shape `[batch_size,
    num_true]`. The target classes.
*  <b>`num_true`</b>: An `int`.  The number of target classes per training example.
*  <b>`num_sampled`</b>: An `int`.  The number of classes to randomly sample per batch.
*  <b>`unique`</b>: A `bool`. Determines whether all sampled classes in a batch are
    unique.
*  <b>`range_max`</b>: An `int`. The number of possible classes.
*  <b>`seed`</b>: An `int`. An operation-specific seed. Default is 0.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:


*  <b>`sampled_candidates`</b>: A tensor of type `int64` and shape `[num_sampled]`.
    The sampled classes.
*  <b>`true_expected_count`</b>: A tensor of type `float`.  Same shape as
    `true_classes`. The expected counts under the sampling distribution
    of each of `true_classes`.
*  <b>`sampled_expected_count`</b>: A tensor of type `float`. Same shape as
    `sampled_candidates`. The expected counts under the sampling distribution
    of each of `sampled_candidates`.


- - -

### `tf.nn.learned_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None)` {#learned_unigram_candidate_sampler}

Samples a set of classes from a distribution learned during training.

This operation randomly samples a tensor of sampled classes
(`sampled_candidates`) from the range of integers `[0, range_max)`.

The elements of `sampled_candidates` are drawn without replacement
(if `unique=True`) or with replacement (if `unique=False`) from
the base distribution.

The base distribution for this operation is constructed on the fly
during training.  It is a unigram distribution over the target
classes seen so far during training.  Every integer in `[0, range_max)`
begins with a weight of 1, and is incremented by 1 each time it is
seen as a target class.  The base distribution is not saved to checkpoints,
so it is reset when the model is reloaded.

In addition, this operation returns tensors `true_expected_count`
and `sampled_expected_count` representing the number of times each
of the target classes (`true_classes`) and the sampled
classes (`sampled_candidates`) is expected to occur in an average
tensor of sampled classes.  These values correspond to `Q(y|x)`
defined in [this
document](http://www.tensorflow.org/extras/candidate_sampling.pdf).
If `unique=True`, then these are post-rejection probabilities and we
compute them approximately.

##### Args:


*  <b>`true_classes`</b>: A `Tensor` of type `int64` and shape `[batch_size,
    num_true]`. The target classes.
*  <b>`num_true`</b>: An `int`.  The number of target classes per training example.
*  <b>`num_sampled`</b>: An `int`.  The number of classes to randomly sample per batch.
*  <b>`unique`</b>: A `bool`. Determines whether all sampled classes in a batch are
    unique.
*  <b>`range_max`</b>: An `int`. The number of possible classes.
*  <b>`seed`</b>: An `int`. An operation-specific seed. Default is 0.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:


*  <b>`sampled_candidates`</b>: A tensor of type `int64` and shape `[num_sampled]`.
    The sampled classes.
*  <b>`true_expected_count`</b>: A tensor of type `float`.  Same shape as
    `true_classes`. The expected counts under the sampling distribution
    of each of `true_classes`.
*  <b>`sampled_expected_count`</b>: A tensor of type `float`. Same shape as
    `sampled_candidates`. The expected counts under the sampling distribution
    of each of `sampled_candidates`.


- - -

### `tf.nn.fixed_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, vocab_file='', distortion=1.0, num_reserved_ids=0, num_shards=1, shard=0, unigrams=(), seed=None, name=None)` {#fixed_unigram_candidate_sampler}

Samples a set of classes using the provided (fixed) base distribution.

This operation randomly samples a tensor of sampled classes
(`sampled_candidates`) from the range of integers `[0, range_max)`.

The elements of `sampled_candidates` are drawn without replacement
(if `unique=True`) or with replacement (if `unique=False`) from
the base distribution.

The base distribution is read from a file or passed in as an
in-memory array. There is also an option to skew the distribution by
applying a distortion power to the weights.

In addition, this operation returns tensors `true_expected_count`
and `sampled_expected_count` representing the number of times each
of the target classes (`true_classes`) and the sampled
classes (`sampled_candidates`) is expected to occur in an average
tensor of sampled classes.  These values correspond to `Q(y|x)`
defined in [this
document](http://www.tensorflow.org/extras/candidate_sampling.pdf).
If `unique=True`, then these are post-rejection probabilities and we
compute them approximately.

##### Args:


*  <b>`true_classes`</b>: A `Tensor` of type `int64` and shape `[batch_size,
    num_true]`. The target classes.
*  <b>`num_true`</b>: An `int`.  The number of target classes per training example.
*  <b>`num_sampled`</b>: An `int`.  The number of classes to randomly sample per batch.
*  <b>`unique`</b>: A `bool`. Determines whether all sampled classes in a batch are
    unique.
*  <b>`range_max`</b>: An `int`. The number of possible classes.
*  <b>`vocab_file`</b>: Each valid line in this file (which should have a CSV-like
    format) corresponds to a valid word ID. IDs are in sequential order,
    starting from num_reserved_ids. The last entry in each line is expected
    to be a value corresponding to the count or relative probability. Exactly
    one of `vocab_file` and `unigrams` needs to be passed to this operation.
*  <b>`distortion`</b>: The distortion is used to skew the unigram probability
    distribution.  Each weight is first raised to the distortion's power
    before adding to the internal unigram distribution. As a result,
    `distortion = 1.0` gives regular unigram sampling (as defined by the vocab
    file), and `distortion = 0.0` gives a uniform distribution.
*  <b>`num_reserved_ids`</b>: Optionally some reserved IDs can be added in the range
    `[0, num_reserved_ids]` by the users. One use case is that a special
    unknown word token is used as ID 0. These IDs will have a sampling
    probability of 0.
*  <b>`num_shards`</b>: A sampler can be used to sample from a subset of the original
    range in order to speed up the whole computation through parallelism. This
    parameter (together with `shard`) indicates the number of partitions that
    are being used in the overall computation.
*  <b>`shard`</b>: A sampler can be used to sample from a subset of the original range
    in order to speed up the whole computation through parallelism. This
    parameter (together with `num_shards`) indicates the particular partition
    number of the operation, when partitioning is being used.
*  <b>`unigrams`</b>: A list of unigram counts or probabilities, one per ID in
    sequential order. Exactly one of `vocab_file` and `unigrams` should be
    passed to this operation.
*  <b>`seed`</b>: An `int`. An operation-specific seed. Default is 0.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:


*  <b>`sampled_candidates`</b>: A tensor of type `int64` and shape `[num_sampled]`.
    The sampled classes.
*  <b>`true_expected_count`</b>: A tensor of type `float`.  Same shape as
    `true_classes`. The expected counts under the sampling distribution
    of each of `true_classes`.
*  <b>`sampled_expected_count`</b>: A tensor of type `float`. Same shape as
    `sampled_candidates`. The expected counts under the sampling distribution
    of each of `sampled_candidates`.



### Miscellaneous candidate sampling utilities

- - -

### `tf.nn.compute_accidental_hits(true_classes, sampled_candidates, num_true, seed=None, name=None)` {#compute_accidental_hits}

Compute the position ids in `sampled_candidates` matching `true_classes`.

In Candidate Sampling, this operation facilitates virtually removing
sampled classes which happen to match target classes.  This is done
in Sampled Softmax and Sampled Logistic.

See our [Candidate Sampling Algorithms
Reference](http://www.tensorflow.org/extras/candidate_sampling.pdf).

We presuppose that the `sampled_candidates` are unique.

We call it an 'accidental hit' when one of the target classes
matches one of the sampled classes.  This operation reports
accidental hits as triples `(index, id, weight)`, where `index`
represents the row number in `true_classes`, `id` represents the
position in `sampled_candidates`, and weight is `-FLOAT_MAX`.

The result of this op should be passed through a `sparse_to_dense`
operation, then added to the logits of the sampled classes. This
removes the contradictory effect of accidentally sampling the true
target classes as noise classes for the same example.

##### Args:


*  <b>`true_classes`</b>: A `Tensor` of type `int64` and shape `[batch_size,
    num_true]`. The target classes.
*  <b>`sampled_candidates`</b>: A tensor of type `int64` and shape `[num_sampled]`.
    The sampled_candidates output of CandidateSampler.
*  <b>`num_true`</b>: An `int`.  The number of target classes per training example.
*  <b>`seed`</b>: An `int`. An operation-specific seed. Default is 0.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:


*  <b>`indices`</b>: A `Tensor` of type `int32` and shape `[num_accidental_hits]`.
    Values indicate rows in `true_classes`.
*  <b>`ids`</b>: A `Tensor` of type `int64` and shape `[num_accidental_hits]`.
    Values indicate positions in `sampled_candidates`.
*  <b>`weights`</b>: A `Tensor` of type `float` and shape `[num_accidental_hits]`.
    Each value is `-FLOAT_MAX`.



## Other Functions and Classes
- - -

### `tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None)` {#batch_normalization}

Batch normalization.

As described in http://arxiv.org/abs/1502.03167.
Normalizes a tensor by `mean` and `variance`, and applies (optionally) a
`scale` \\(\gamma\\) to it, as well as an `offset` \\(\beta\\):

\\(\frac{\gamma(x-\mu)}{\sigma}+\beta\\)

`mean`, `variance`, `offset` and `scale` are all expected to be of one of two
shapes:
  * In all generality, they can have the same number of dimensions as the
    input `x`, with identical sizes as `x` for the dimensions that are not
    normalized over (the 'depth' dimension(s)), and dimension 1 for the
    others which are being normalized over.
    `mean` and `variance` in this case would typically be the outputs of
    `tf.nn.moments(..., keep_dims=True)` during training, or running averages
    thereof during inference.
  * In the common case where the 'depth' dimension is the last dimension in
    the input tensor `x`, they may be one dimensional tensors of the same
    size as the 'depth' dimension.
    This is the case for example for the common `[batch, depth]` layout of
    fully-connected layers, and `[batch, height, width, depth]` for
    convolutions.
    `mean` and `variance` in this case would typically be the outputs of
    `tf.nn.moments(..., keep_dims=False)` during training, or running averages
    thereof during inference.

##### Args:


*  <b>`x`</b>: Input `Tensor` of arbitrary dimensionality.
*  <b>`mean`</b>: A mean `Tensor`.
*  <b>`variance`</b>: A variance `Tensor`.
*  <b>`offset`</b>: An offset `Tensor`, often denoted \\(\beta\\) in equations, or
    None. If present, will be added to the normalized tensor.
*  <b>`scale`</b>: A scale `Tensor`, often denoted \\(\gamma\\) in equations, or
    `None`. If present, the scale is applied to the normalized tensor.
*  <b>`variance_epsilon`</b>: A small float number to avoid dividing by 0.
*  <b>`name`</b>: A name for this operation (optional).

##### Returns:

  the normalized, scaled, offset tensor.


- - -

### `tf.nn.depthwise_conv2d_native(input, filter, strides, padding, name=None)` {#depthwise_conv2d_native}

Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors.

Given an input tensor of shape `[batch, in_height, in_width, in_channels]`
and a filter / kernel tensor of shape
`[filter_height, filter_width, in_channels, channel_multiplier]`, containing
`in_channels` convolutional filters of depth 1, `depthwise_conv2d` applies
a different filter to each input channel (expanding from 1 channel to
`channel_multiplier` channels for each), then concatenates the results
together. Thus, the output has `in_channels * channel_multiplier` channels.

for k in 0..in_channels-1
  for q in 0..channel_multiplier-1
    output[b, i, j, k * channel_multiplier + q] =
      sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] *
                        filter[di, dj, k, q]

Must have `strides[0] = strides[3] = 1`.  For the most common case of the same
horizontal and vertices strides, `strides = [1, stride, stride, 1]`.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`filter`</b>: A `Tensor`. Must have the same type as `input`.
*  <b>`strides`</b>: A list of `ints`.
    1-D of length 4.  The stride of the sliding window for each dimension
    of `input`.
*  <b>`padding`</b>: A `string` from: `"SAME", "VALID"`.
    The type of padding algorithm to use.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`.