aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/g3doc/api_docs/python/math_ops.md
blob: 8a4a117907665fe68fd58a48ce12bd2875635fc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
<!-- This file is machine generated: DO NOT EDIT! -->

# Math

Note: Functions taking `Tensor` arguments can also take anything accepted by
[`tf.convert_to_tensor`](framework.md#convert_to_tensor).

[TOC]

Note: Elementwise binary operations in TensorFlow follow [numpy-style
broadcasting](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).

## Arithmetic Operators

TensorFlow provides several operations that you can use to add basic arithmetic
operators to your graph.

- - -

### `tf.add(x, y, name=None)` {#add}

Returns x + y element-wise.

*NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `complex128`, `string`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.subtract(x, y, name=None)` {#subtract}

Returns x - y element-wise.

*NOTE*: `tf.subtract` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.multiply(x, y, name=None)` {#multiply}

Returns x * y element-wise.

*NOTE*: ``tf.multiply`` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.scalar_mul(scalar, x)` {#scalar_mul}

Multiplies a scalar times a `Tensor` or `IndexedSlices` object.

Intended for use in gradient code which might deal with `IndexedSlices`
objects, which are easy to multiply by a scalar but more expensive to
multiply with arbitrary tensors.

##### Args:


*  <b>`scalar`</b>: A 0-D scalar `Tensor`. Must have known shape.
*  <b>`x`</b>: A `Tensor` or `IndexedSlices` to be scaled.

##### Returns:

  `scalar * x` of the same type (`Tensor` or `IndexedSlices`) as `x`.

##### Raises:


*  <b>`ValueError`</b>: if scalar is not a 0-D `scalar`.


- - -

### `tf.div(x, y, name=None)` {#div}

Divides x / y elementwise (using Python 2 division operator semantics).

NOTE: Prefer using the Tensor division operator or tf.divide which obey Python
division operator semantics.

This function divides `x` and `y`, forcing Python 2.7 semantics. That is,
if one of `x` or `y` is a float, then the result will be a float.
Otherwise, the output will be an integer type. Flooring semantics are used
for integer division.

##### Args:


*  <b>`x`</b>: `Tensor` numerator of real numeric type.
*  <b>`y`</b>: `Tensor` denominator of real numeric type.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  `x / y` returns the quotient of x and y.


- - -

### `tf.divide(x, y, name=None)` {#divide}

Computes Python style division of `x` by `y`.


- - -

### `tf.truediv(x, y, name=None)` {#truediv}

Divides x / y elementwise (using Python 3 division operator semantics).

NOTE: Prefer using the Tensor operator or tf.divide which obey Python
division operator semantics.

This function forces Python 3 division operator semantics where all integer
arguments are cast to floating types first.   This op is generated by normal
`x / y` division in Python 3 and in Python 2.7 with
`from __future__ import division`.  If you want integer division that rounds
down, use `x // y` or `tf.floordiv`.

`x` and `y` must have the same numeric type.  If the inputs are floating
point, the output will have the same type.  If the inputs are integral, the
inputs are cast to `float32` for `int8` and `int16` and `float64` for `int32`
and `int64` (matching the behavior of Numpy).

##### Args:


*  <b>`x`</b>: `Tensor` numerator of numeric type.
*  <b>`y`</b>: `Tensor` denominator of numeric type.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  `x / y` evaluated in floating point.

##### Raises:


*  <b>`TypeError`</b>: If `x` and `y` have different dtypes.


- - -

### `tf.floordiv(x, y, name=None)` {#floordiv}

Divides `x / y` elementwise, rounding toward the most negative integer.

The same as `tf.div(x,y)` for integers, but uses `tf.floor(tf.div(x,y))` for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point).  This op is generated by
`x // y` floor division in Python 3 and in Python 2.7 with
`from __future__ import division`.

Note that for efficiency, `floordiv` uses C semantics for negative numbers
(unlike Python and Numpy).

`x` and `y` must have the same type, and the result will have the same type
as well.

##### Args:


*  <b>`x`</b>: `Tensor` numerator of real numeric type.
*  <b>`y`</b>: `Tensor` denominator of real numeric type.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  `x / y` rounded down (except possibly towards zero for negative integers).

##### Raises:


*  <b>`TypeError`</b>: If the inputs are complex.


- - -

### `tf.realdiv(x, y, name=None)` {#realdiv}

Returns x / y element-wise for real types.

If `x` and `y` are reals, this will return the floating-point division.

*NOTE*: `Div` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.truncatediv(x, y, name=None)` {#truncatediv}

Returns x / y element-wise for integer types.

Truncation designates that negative numbers will round fractional quantities
toward zero. I.e. -7 / 5 = 1. This matches C semantics but it is different
than Python semantics. See `FloorDiv` for a division function that matches
Python Semantics.

*NOTE*: `TruncateDiv` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.floor_div(x, y, name=None)` {#floor_div}

Returns x // y element-wise.

*NOTE*: `FloorDiv` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `uint8`, `int8`, `uint16`, `int16`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.truncatemod(x, y, name=None)` {#truncatemod}

Returns element-wise remainder of division. This emulates C semantics where

true, this follows C semantics in that the result here is consistent
with a flooring divide. E.g. `floor(x / y) * y + mod(x, y) = x`.

*NOTE*: `Mod` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.floormod(x, y, name=None)` {#floormod}

Returns element-wise remainder of division. When `x < 0` xor `y < 0` is

true, this follows Python semantics in that the result here is consistent
with a flooring divide. E.g. `floor(x / y) * y + mod(x, y) = x`.

*NOTE*: `FloorMod` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.mod(x, y, name=None)` {#mod}

Returns element-wise remainder of division. When `x < 0` xor `y < 0` is

true, this follows Python semantics in that the result here is consistent
with a flooring divide. E.g. `floor(x / y) * y + mod(x, y) = x`.

*NOTE*: `FloorMod` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`, `float32`, `float64`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.cross(a, b, name=None)` {#cross}

Compute the pairwise cross product.

`a` and `b` must be the same shape; they can either be simple 3-element vectors,
or any shape where the innermost dimension is 3. In the latter case, each pair
of corresponding 3-element vectors is cross-multiplied independently.

##### Args:


*  <b>`a`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
    A tensor containing 3-element vectors.
*  <b>`b`</b>: A `Tensor`. Must have the same type as `a`.
    Another tensor, of same type and shape as `a`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `a`.
  Pairwise cross product of the vectors in `a` and `b`.



## Basic Math Functions

TensorFlow provides several operations that you can use to add basic
mathematical functions to your graph.

- - -

### `tf.add_n(inputs, name=None)` {#add_n}

Adds all input tensors element-wise.

##### Args:


*  <b>`inputs`</b>: A list of `Tensor` objects, each with same shape and type.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of same shape and type as the elements of `inputs`.

##### Raises:


*  <b>`ValueError`</b>: If `inputs` don't all have same shape and dtype or the shape
  cannot be inferred.


- - -

### `tf.abs(x, name=None)` {#abs}

Computes the absolute value of a tensor.

Given a tensor of real numbers `x`, this operation returns a tensor
containing the absolute value of each element in `x`. For example, if x is
an input element and y is an output element, this operation computes
\\(y = |x|\\).

##### Args:


*  <b>`x`</b>: A `Tensor` or `SparseTensor` of type `float32`, `float64`, `int32`, or
    `int64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` or `SparseTensor` the same size and type as `x` with absolute
    values.


- - -

### `tf.negative(x, name=None)` {#negative}

Computes numerical negative value element-wise.

I.e., \(y = -x\).

##### Args:


*  <b>`x`</b>: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
    `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.


- - -

### `tf.sign(x, name=None)` {#sign}

Returns an element-wise indication of the sign of a number.

`y = sign(x) = -1` if `x < 0`; 0 if `x == 0`; 1 if `x > 0`.

For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y = 0`.

##### Args:


*  <b>`x`</b>: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
    `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.


- - -

### `tf.reciprocal(x, name=None)` {#reciprocal}

Computes the reciprocal of x element-wise.

I.e., \\(y = 1 / x\\).

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.square(x, name=None)` {#square}

Computes square of x element-wise.

I.e., \(y = x * x = x^2\).

##### Args:


*  <b>`x`</b>: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
    `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` or `SparseTensor`. Has the same type as `x`.


- - -

### `tf.round(x, name=None)` {#round}

Rounds the values of a tensor to the nearest integer, element-wise.

Rounds half to even.  Also known as bankers rounding. If you want to round
according to the current system rounding mode use tf::cint.
For example:

```python
# 'a' is [0.9, 2.5, 2.3, 1.5, -4.5]
tf.round(a) ==> [ 1.0, 2.0, 2.0, 2.0, -4.0 ]
```

##### Args:


*  <b>`x`</b>: A `Tensor` of type `float32` or `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of same shape and type as `x`.


- - -

### `tf.sqrt(x, name=None)` {#sqrt}

Computes square root of x element-wise.

I.e., \(y = \sqrt{x} = x^{1/2}\).

##### Args:


*  <b>`x`</b>: A `Tensor` or `SparseTensor`. Must be one of the following types: `half`,
    `float32`, `float64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.


- - -

### `tf.rsqrt(x, name=None)` {#rsqrt}

Computes reciprocal of square root of x element-wise.

I.e., \\(y = 1 / \sqrt{x}\\).

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.pow(x, y, name=None)` {#pow}

Computes the power of one value to another.

Given a tensor `x` and a tensor `y`, this operation computes \\(x^y\\) for
corresponding elements in `x` and `y`. For example:

```
# tensor 'x' is [[2, 2], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
```

##### Args:


*  <b>`x`</b>: A `Tensor` of type `float32`, `float64`, `int32`, `int64`, `complex64`,
   or `complex128`.
*  <b>`y`</b>: A `Tensor` of type `float32`, `float64`, `int32`, `int64`, `complex64`,
   or `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`.


- - -

### `tf.exp(x, name=None)` {#exp}

Computes exponential of x element-wise.  \\(y = e^x\\).

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.expm1(x, name=None)` {#expm1}

Computes exponential of x - 1 element-wise.

I.e., \\(y = (\exp x) - 1\\).

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.log(x, name=None)` {#log}

Computes natural logarithm of x element-wise.

I.e., \\(y = \log_e x\\).

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.log1p(x, name=None)` {#log1p}

Computes natural logarithm of (1 + x) element-wise.

I.e., \\(y = \log_e (1 + x)\\).

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.ceil(x, name=None)` {#ceil}

Returns element-wise smallest integer in not less than x.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.floor(x, name=None)` {#floor}

Returns element-wise largest integer not greater than x.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.maximum(x, y, name=None)` {#maximum}

Returns the max of x and y (i.e. x > y ? x : y) element-wise.

*NOTE*: `Maximum` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.minimum(x, y, name=None)` {#minimum}

Returns the min of x and y (i.e. x < y ? x : y) element-wise.

*NOTE*: `Minimum` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.cos(x, name=None)` {#cos}

Computes cos of x element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.sin(x, name=None)` {#sin}

Computes sin of x element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.lbeta(x, name='lbeta')` {#lbeta}

Computes `ln(|Beta(x)|)`, reducing along the last dimension.

Given one-dimensional `z = [z_0,...,z_{K-1}]`, we define

```Beta(z) = \prod_j Gamma(z_j) / Gamma(\sum_j z_j)```

And for `n + 1` dimensional `x` with shape `[N1, ..., Nn, K]`, we define
`lbeta(x)[i1, ..., in] = Log(|Beta(x[i1, ..., in, :])|)`.  In other words,
the last dimension is treated as the `z` vector.

Note that if `z = [u, v]`, then
`Beta(z) = int_0^1 t^{u-1} (1 - t)^{v-1} dt`, which defines the traditional
bivariate beta function.

##### Args:


*  <b>`x`</b>: A rank `n + 1` `Tensor` with type `float`, or `double`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  The logarithm of `|Beta(x)|` reducing along the last dimension.

##### Raises:


*  <b>`ValueError`</b>: If `x` is empty with rank one or less.


- - -

### `tf.tan(x, name=None)` {#tan}

Computes tan of x element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.acos(x, name=None)` {#acos}

Computes acos of x element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.asin(x, name=None)` {#asin}

Computes asin of x element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.atan(x, name=None)` {#atan}

Computes atan of x element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.lgamma(x, name=None)` {#lgamma}

Computes the log of the absolute value of `Gamma(x)` element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.digamma(x, name=None)` {#digamma}

Computes Psi, the derivative of Lgamma (the log of the absolute value of

`Gamma(x)`), element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.erf(x, name=None)` {#erf}

Computes the Gauss error function of `x` element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor` of `SparseTensor`. Must be one of the following types: `half`,
    `float32`, `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` or `SparseTensor`, respectively. Has the same type as `x`.


- - -

### `tf.erfc(x, name=None)` {#erfc}

Computes the complementary error function of `x` element-wise.

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.squared_difference(x, y, name=None)` {#squared_difference}

Returns (x - y)(x - y) element-wise.

*NOTE*: `SquaredDifference` supports broadcasting. More about broadcasting
[here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `half`, `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.igamma(a, x, name=None)` {#igamma}

Compute the lower regularized incomplete Gamma function `Q(a, x)`.

The lower regularized incomplete Gamma function is defined as:

```
P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)
```
where
```
gamma(a, x) = int_{0}^{x} t^{a-1} exp(-t) dt
```
is the lower incomplete Gamma function.

Note, above `Q(a, x)` (`Igammac`) is the upper regularized complete
Gamma function.

##### Args:


*  <b>`a`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`x`</b>: A `Tensor`. Must have the same type as `a`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `a`.


- - -

### `tf.igammac(a, x, name=None)` {#igammac}

Compute the upper regularized incomplete Gamma function `Q(a, x)`.

The upper regularized incomplete Gamma function is defined as:

```
Q(a, x) = Gamma(a, x) / Gamma(a) = 1 - P(a, x)
```
where
```
Gamma(a, x) = int_{x}^{\infty} t^{a-1} exp(-t) dt
```
is the upper incomplete Gama function.

Note, above `P(a, x)` (`Igamma`) is the lower regularized complete
Gamma function.

##### Args:


*  <b>`a`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`x`</b>: A `Tensor`. Must have the same type as `a`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `a`.


- - -

### `tf.zeta(x, q, name=None)` {#zeta}

Compute the Hurwitz zeta function \\(\zeta(x, q)\\).

The Hurwitz zeta function is defined as:

```
\zeta(x, q) = \sum_{n=0}^{\infty} (q + n)^{-x}
```

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`q`</b>: A `Tensor`. Must have the same type as `x`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.polygamma(a, x, name=None)` {#polygamma}

Compute the polygamma function \\(\psi^{(n)}(x)\\).

The polygamma function is defined as:

```
\psi^{(n)}(x) = \frac{d^n}{dx^n} \psi(x)
```
where \\(\psi(x)\\) is the digamma function.

##### Args:


*  <b>`a`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`x`</b>: A `Tensor`. Must have the same type as `a`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `a`.


- - -

### `tf.betainc(a, b, x, name=None)` {#betainc}

Compute the regularized incomplete beta integral \\(I_x(a, b)\\).

The regularized incomplete beta integral is defined as:

```
I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}
```
where

```
B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt
```

is the incomplete beta function and \\(B(a, b)\\) is the *complete*
beta function.

##### Args:


*  <b>`a`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`b`</b>: A `Tensor`. Must have the same type as `a`.
*  <b>`x`</b>: A `Tensor`. Must have the same type as `a`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `a`.


- - -

### `tf.rint(x, name=None)` {#rint}

Returns element-wise integer closest to x.

If the result is midway between two representable values,
the even representable is chosen.
For example:

```
rint(-1.5) ==> -2.0
rint(0.5000001) ==> 1.0
rint([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) ==> [-2., -2., -0., 0., 2., 2., 2.]
```

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.



## Matrix Math Functions

TensorFlow provides several operations that you can use to add linear algebra
functions on matrices to your graph.

- - -

### `tf.diag(diagonal, name=None)` {#diag}

Returns a diagonal tensor with a given diagonal values.

Given a `diagonal`, this operation returns a tensor with the `diagonal` and
everything else padded with zeros. The diagonal is computed as follows:

Assume `diagonal` has dimensions [D1,..., Dk], then the output is a tensor of
rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where:

`output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik]` and 0 everywhere else.

For example:

```prettyprint
# 'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
                       [0, 2, 0, 0]
                       [0, 0, 3, 0]
                       [0, 0, 0, 4]]
```

##### Args:


*  <b>`diagonal`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
    Rank k tensor where k is at most 3.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `diagonal`.


- - -

### `tf.diag_part(input, name=None)` {#diag_part}

Returns the diagonal part of the tensor.

This operation returns a tensor with the `diagonal` part
of the `input`. The `diagonal` part is computed as follows:

Assume `input` has dimensions `[D1,..., Dk, D1,..., Dk]`, then the output is a
tensor of rank `k` with dimensions `[D1,..., Dk]` where:

`diagonal[i1,..., ik] = input[i1, ..., ik, i1,..., ik]`.

For example:

```prettyprint
# 'input' is [[1, 0, 0, 0]
              [0, 2, 0, 0]
              [0, 0, 3, 0]
              [0, 0, 0, 4]]

tf.diag_part(input) ==> [1, 2, 3, 4]
```

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `complex64`, `complex128`.
    Rank k tensor where k is 2, 4, or 6.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`. The extracted diagonal.


- - -

### `tf.trace(x, name=None)` {#trace}

Compute the trace of a tensor `x`.

`trace(x)` returns the sum along the main diagonal of each inner-most matrix
in x. If x is of rank `k` with shape `[I, J, K, ..., L, M, N]`, then output
is a tensor of rank `k-2` with dimensions `[I, J, K, ..., L]` where

`output[i, j, k, ..., l] = trace(x[i, j, i, ..., l, :, :])`

For example:

```python
# 'x' is [[1, 2],
#         [3, 4]]
tf.trace(x) ==> 5

# 'x' is [[1,2,3],
#         [4,5,6],
#         [7,8,9]]
tf.trace(x) ==> 15

# 'x' is [[[1,2,3],
#          [4,5,6],
#          [7,8,9]],
#         [[-1,-2,-3],
#          [-4,-5,-6],
#          [-7,-8,-9]]]
tf.trace(x) ==> [15,-15]
```

##### Args:


*  <b>`x`</b>: tensor.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  The trace of input tensor.


- - -

### `tf.transpose(a, perm=None, name='transpose')` {#transpose}

Transposes `a`. Permutes the dimensions according to `perm`.

The returned tensor's dimension i will correspond to the input dimension
`perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example:

```python
# 'x' is [[1 2 3]
#         [4 5 6]]
tf.transpose(x) ==> [[1 4]
                     [2 5]
                     [3 6]]

# Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
                                  [2 5]
                                  [3 6]]

# 'perm' is more useful for n-dimensional tensors, for n > 2
# 'x' is   [[[1  2  3]
#            [4  5  6]]
#           [[7  8  9]
#            [10 11 12]]]
# Take the transpose of the matrices in dimension-0
tf.transpose(x, perm=[0, 2, 1]) ==> [[[1  4]
                                      [2  5]
                                      [3  6]]

                                     [[7 10]
                                      [8 11]
                                      [9 12]]]
```

##### Args:


*  <b>`a`</b>: A `Tensor`.
*  <b>`perm`</b>: A permutation of the dimensions of `a`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A transposed `Tensor`.



- - -

### `tf.eye(num_rows, num_columns=None, batch_shape=None, dtype=tf.float32, name=None)` {#eye}

Construct an identity matrix, or a batch of matrices.

```python
# Construct one identity matrix.
tf.eye(2)
==> [[1., 0.],
     [0., 1.]]

# Construct a batch of 3 identity matricies, each 2 x 2.
# batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
batch_identity = tf.eye(2, batch_shape=[3])

# Construct one 2 x 3 "identity" matrix
tf.eye(2, num_columns=3)
==> [[ 1.,  0.,  0.],
     [ 0.,  1.,  0.]]
```

##### Args:


*  <b>`num_rows`</b>: Non-negative `int32` scalar `Tensor` giving the number of rows
    in each batch matrix.
*  <b>`num_columns`</b>: Optional non-negative `int32` scalar `Tensor` giving the number
    of columns in each batch matrix.  Defaults to `num_rows`.
*  <b>`batch_shape`</b>: `int32` `Tensor`.  If provided, returned `Tensor` will have
    leading batch dimensions of this shape.
*  <b>`dtype`</b>: The type of an element in the resulting `Tensor`
*  <b>`name`</b>: A name for this `Op`.  Defaults to "eye".

##### Returns:

  A `Tensor` of shape `batch_shape + [num_rows, num_columns]`


- - -

### `tf.matrix_diag(diagonal, name=None)` {#matrix_diag}

Returns a batched diagonal tensor with a given batched diagonal values.

Given a `diagonal`, this operation returns a tensor with the `diagonal` and
everything else padded with zeros. The diagonal is computed as follows:

Assume `diagonal` has `k` dimensions `[I, J, K, ..., N]`, then the output is a
tensor of rank `k+1` with dimensions [I, J, K, ..., N, N]` where:

`output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]`.

For example:

```prettyprint
# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]

and diagonal.shape = (2, 4)

tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
                                     [0, 2, 0, 0]
                                     [0, 0, 3, 0]
                                     [0, 0, 0, 4]],
                                    [[5, 0, 0, 0]
                                     [0, 6, 0, 0]
                                     [0, 0, 7, 0]
                                     [0, 0, 0, 8]]]

which has shape (2, 4, 4)
```

##### Args:


*  <b>`diagonal`</b>: A `Tensor`. Rank `k`, where `k >= 1`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `diagonal`.
  Rank `k+1`, with `output.shape = diagonal.shape + [diagonal.shape[-1]]`.


- - -

### `tf.matrix_diag_part(input, name=None)` {#matrix_diag_part}

Returns the batched diagonal part of a batched tensor.

This operation returns a tensor with the `diagonal` part
of the batched `input`. The `diagonal` part is computed as follows:

Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a
tensor of rank `k - 1` with dimensions `[I, J, K, ..., min(M, N)]` where:

`diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n]`.

The input must be at least a matrix.

For example:

```prettyprint
# 'input' is [[[1, 0, 0, 0]
               [0, 2, 0, 0]
               [0, 0, 3, 0]
               [0, 0, 0, 4]],
              [[5, 0, 0, 0]
               [0, 6, 0, 0]
               [0, 0, 7, 0]
               [0, 0, 0, 8]]]

and input.shape = (2, 4, 4)

tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]]

which has shape (2, 4)
```

##### Args:


*  <b>`input`</b>: A `Tensor`. Rank `k` tensor where `k >= 2`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`.
  The extracted diagonal(s) having shape
  `diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])]`.


- - -

### `tf.matrix_band_part(input, num_lower, num_upper, name=None)` {#matrix_band_part}

Copy a tensor setting everything outside a central band in each innermost matrix

to zero.

The `band` part is computed as follows:
Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a
tensor with the same shape where

`band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]`.

The indicator function

`in_band(m, n) = (num_lower < 0 || (m-n) <= num_lower)) &&
                 (num_upper < 0 || (n-m) <= num_upper)`.

For example:

```prettyprint
# if 'input' is [[ 0,  1,  2, 3]
                 [-1,  0,  1, 2]
                 [-2, -1,  0, 1]
                 [-3, -2, -1, 0]],

tf.matrix_band_part(input, 1, -1) ==> [[ 0,  1,  2, 3]
                                       [-1,  0,  1, 2]
                                       [ 0, -1,  0, 1]
                                       [ 0,  0, -1, 0]],

tf.matrix_band_part(input, 2, 1) ==> [[ 0,  1,  0, 0]
                                      [-1,  0,  1, 0]
                                      [-2, -1,  0, 1]
                                      [ 0, -2, -1, 0]]
```

Useful special cases:

```prettyprint
 tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
 tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
 tf.matrix_band_part(input, 0, 0) ==> Diagonal.
```

##### Args:


*  <b>`input`</b>: A `Tensor`. Rank `k` tensor.
*  <b>`num_lower`</b>: A `Tensor` of type `int64`.
    0-D tensor. Number of subdiagonals to keep. If negative, keep entire
    lower triangle.
*  <b>`num_upper`</b>: A `Tensor` of type `int64`.
    0-D tensor. Number of superdiagonals to keep. If negative, keep
    entire upper triangle.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`.
  Rank `k` tensor of the same shape as input. The extracted banded tensor.


- - -

### `tf.matrix_set_diag(input, diagonal, name=None)` {#matrix_set_diag}

Returns a batched matrix tensor with new batched diagonal values.

Given `input` and `diagonal`, this operation returns a tensor with the
same shape and values as `input`, except for the main diagonal of the
innermost matrices.  These will be overwritten by the values in `diagonal`.

The output is computed as follows:

Assume `input` has `k+1` dimensions `[I, J, K, ..., M, N]` and `diagonal` has
`k` dimensions `[I, J, K, ..., min(M, N)]`.  Then the output is a
tensor of rank `k+1` with dimensions `[I, J, K, ..., M, N]` where:

  * `output[i, j, k, ..., m, n] = diagonal[i, j, k, ..., n]` for `m == n`.
  * `output[i, j, k, ..., m, n] = input[i, j, k, ..., m, n]` for `m != n`.

##### Args:


*  <b>`input`</b>: A `Tensor`. Rank `k+1`, where `k >= 1`.
*  <b>`diagonal`</b>: A `Tensor`. Must have the same type as `input`.
    Rank `k`, where `k >= 1`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`.
  Rank `k+1`, with `output.shape = input.shape`.


- - -

### `tf.matrix_transpose(a, name='matrix_transpose')` {#matrix_transpose}

Transposes last two dimensions of tensor `a`.

For example:

```python
# Matrix with no batch dimension.
# 'x' is [[1 2 3]
#         [4 5 6]]
tf.matrix_transpose(x) ==> [[1 4]
                                 [2 5]
                                 [3 6]]

# Matrix with two batch dimensions.
# x.shape is [1, 2, 3, 4]
# tf.matrix_transpose(x) is shape [1, 2, 4, 3]
```

##### Args:


*  <b>`a`</b>: A `Tensor` with `rank >= 2`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A transposed batch matrix `Tensor`.

##### Raises:


*  <b>`ValueError`</b>: If `a` is determined statically to have `rank < 2`.



- - -

### `tf.matmul(a, b, transpose_a=False, transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=False, b_is_sparse=False, name=None)` {#matmul}

Multiplies matrix `a` by matrix `b`, producing `a` * `b`.

The inputs must be matrices (or tensors of rank > 2, representing batches of
matrices), with matching inner dimensions, possibly after transposition.

Both matrices must be of the same type. The supported types are:
`float16`, `float32`, `float64`, `int32`, `complex64`, `complex128`.

Either matrix can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to `True`. These are `False`
by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
`a_is_sparse` or `b_is_sparse` flag to `True`. These are `False` by default.
This optimization is only available for plain matrices (rank-2 tensors) with
datatypes `bfloat16` or `float32`.

For example:

```python
# 2-D tensor `a`
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]
                                                      [4. 5. 6.]]
# 2-D tensor `b`
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
                                                         [9. 10.]
                                                         [11. 12.]]
c = tf.matmul(a, b) => [[58 64]
                        [139 154]]


# 3-D tensor `a`
a = tf.constant(np.arange(1, 13, dtype=np.int32),
                shape=[2, 2, 3])                  => [[[ 1.  2.  3.]
                                                       [ 4.  5.  6.]],
                                                      [[ 7.  8.  9.]
                                                       [10. 11. 12.]]]

# 3-D tensor `b`
b = tf.constant(np.arange(13, 25, dtype=np.int32),
                shape=[2, 3, 2])                   => [[[13. 14.]
                                                        [15. 16.]
                                                        [17. 18.]],
                                                       [[19. 20.]
                                                        [21. 22.]
                                                        [23. 24.]]]
c = tf.matmul(a, b) => [[[ 94 100]
                         [229 244]],
                        [[508 532]
                         [697 730]]]
```

##### Args:


*  <b>`a`</b>: `Tensor` of type `float16`, `float32`, `float64`, `int32`, `complex64`,
    `complex128` and rank > 1.
*  <b>`b`</b>: `Tensor` with same type and rank as `a`.
*  <b>`transpose_a`</b>: If `True`, `a` is transposed before multiplication.
*  <b>`transpose_b`</b>: If `True`, `b` is transposed before multiplication.
*  <b>`adjoint_a`</b>: If `True`, `a` is conjugated and transposed before
    multiplication.
*  <b>`adjoint_b`</b>: If `True`, `b` is conjugated and transposed before
    multiplication.
*  <b>`a_is_sparse`</b>: If `True`, `a` is treated as a sparse matrix.
*  <b>`b_is_sparse`</b>: If `True`, `b` is treated as a sparse matrix.
*  <b>`name`</b>: Name for the operation (optional).

##### Returns:

  A `Tensor` of the same type as `a` and `b` where each inner-most matrix is
  the product of the corresponding matrices in `a` and `b`, e.g. if all
  transpose or adjoint attributes are `False`:

  `output`[..., i, j] = sum_k (`a`[..., i, k] * `b`[..., k, j]),
  for all indices i, j.


*  <b>`Note`</b>: This is matrix product, not element-wise product.


##### Raises:


*  <b>`ValueError`</b>: If transpose_a and adjoint_a, or transpose_b and adjoint_b
    are both set to True.



- - -

### `tf.norm(tensor, ord='euclidean', axis=None, keep_dims=False, name=None)` {#norm}

Computes the norm of vectors, matrices, and tensors.

This function can compute 3 different matrix norms (Frobenius, 1-norm, and
inf-norm) and up to 9218868437227405311 different vectors norms.

##### Args:


*  <b>`tensor`</b>: `Tensor` of types `float32`, `float64`, `complex64`, `complex128`
*  <b>`ord`</b>: Order of the norm. Supported values are 'fro', 'euclidean', `0`,
    `1, `2`, `np.inf` and any positive real number yielding the corresponding
    p-norm. Default is 'euclidean' which is equivalent to Frobenius norm if
    `tensor` is a matrix and equivalent to 2-norm for vectors.
    Some restrictions apply,
      a) The Frobenius norm `fro` is not defined for vectors,
      b) If axis is a 2-tuple (matrix-norm), only 'euclidean', 'fro', `1`,
         `np.inf` are supported.
    See the description of `axis` on how to compute norms for a batch of
    vectors or matrices stored in a tensor.
*  <b>`axis`</b>: If `axis` is `None` (the default), the input is considered a vector
    and a single vector norm is computed over the entire set of values in the
    tensor, i.e. `norm(tensor, ord=ord)` is equivalent to
    `norm(reshape(tensor, [-1]), ord=ord)`.
    If `axis` is a Python integer, the input is considered a batch of vectors,
    and `axis`t determines the axis in `tensor` over which to compute vector
    norms.
    If `axis` is a 2-tuple of Python integers it is considered a batch of
    matrices and `axis` determines the axes in `tensor` over which to compute
    a matrix norm.
    Negative indices are supported. Example: If you are passing a tensor that
    can be either a matrix or a batch of matrices at runtime, pass
    `axis=[-2,-1]` instead of `axis=None` to make sure that matrix norms are
    computed.
*  <b>`keep_dims`</b>: If True, the axis indicated in `axis` are kept with size 1.
    Otherwise, the dimensions in `axis` are removed from the output shape.
*  <b>`name`</b>: The name of the op.

##### Returns:


*  <b>`output`</b>: A `Tensor` of the same type as tensor, containing the vector or
    matrix norms. If `keep_dims` is True then the rank of output is equal to
    the rank of `tensor`. Otherwise, if `axis` is none the output is a scalar,
    if `axis` is an integer, the rank of `output` is one less than the rank
    of `tensor`, if `axis` is a 2-tuple the rank of `output` is two less
    than the rank of `tensor`.

##### Raises:


*  <b>`ValueError`</b>: If `ord` or `axis` is invalid.

@compatibility(numpy)
Mostly equivalent to numpy.linalg.norm.
Not supported: ord <= 0, 2-norm for matrices, nuclear norm.

##### Other differences:

  a) If axis is `None`, treats the the flattened `tensor` as a vector
   regardless of rank.
  b) Explicitly supports 'euclidean' norm as the default, including for
   higher order tensors.
@end_compatibility


- - -

### `tf.matrix_determinant(input, name=None)` {#matrix_determinant}

Computes the determinant of one ore more square matrices.

The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions
form square matrices. The output is a tensor containing the determinants
for all input submatrices `[..., :, :]`.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
    Shape is `[..., M, M]`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`. Shape is `[...]`.


- - -

### `tf.matrix_inverse(input, adjoint=None, name=None)` {#matrix_inverse}

Computes the inverse of one or more square invertible matrices or their

adjoints (conjugate transposes).

The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the inverse for all input submatrices `[..., :, :]`.

The op uses LU decomposition with partial pivoting to compute the inverses.

If a matrix is not invertible there is no guarantee what the op does. It
may detect the condition and raise an exception or it may simply return a
garbage result.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float64`, `float32`.
    Shape is `[..., M, M]`.
*  <b>`adjoint`</b>: An optional `bool`. Defaults to `False`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`. Shape is `[..., M, M]`.

  @compatibility(numpy)
  Equivalent to np.linalg.inv
  @end_compatibility


- - -

### `tf.cholesky(input, name=None)` {#cholesky}

Computes the Cholesky decomposition of one or more square matrices.

The input is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions
form square matrices, with the same constraints as the single matrix Cholesky
decomposition above. The output is a tensor of the same shape as the input
containing the Cholesky decompositions for all input submatrices `[..., :, :]`.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float64`, `float32`.
    Shape is `[..., M, M]`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `input`. Shape is `[..., M, M]`.


- - -

### `tf.cholesky_solve(chol, rhs, name=None)` {#cholesky_solve}

Solves systems of linear eqns `A X = RHS`, given Cholesky factorizations.

```python
# Solve 10 separate 2x2 linear systems:
A = ... # shape 10 x 2 x 2
RHS = ... # shape 10 x 2 x 1
chol = tf.cholesky(A)  # shape 10 x 2 x 2
X = tf.cholesky_solve(chol, RHS)  # shape 10 x 2 x 1
# tf.matmul(A, X) ~ RHS
X[3, :, 0]  # Solution to the linear system A[3, :, :] x = RHS[3, :, 0]

# Solve five linear systems (K = 5) for every member of the length 10 batch.
A = ... # shape 10 x 2 x 2
RHS = ... # shape 10 x 2 x 5
...
X[3, :, 2]  # Solution to the linear system A[3, :, :] x = RHS[3, :, 2]
```

##### Args:


*  <b>`chol`</b>: A `Tensor`.  Must be `float32` or `float64`, shape is `[..., M, M]`.
    Cholesky factorization of `A`, e.g. `chol = tf.cholesky(A)`.
    For that reason, only the lower triangular parts (including the diagonal)
    of the last two dimensions of `chol` are used.  The strictly upper part is
    assumed to be zero and not accessed.
*  <b>`rhs`</b>: A `Tensor`, same type as `chol`, shape is `[..., M, K]`.
*  <b>`name`</b>: A name to give this `Op`.  Defaults to `cholesky_solve`.

##### Returns:

  Solution to `A x = rhs`, shape `[..., M, K]`.


- - -

### `tf.matrix_solve(matrix, rhs, adjoint=None, name=None)` {#matrix_solve}

Solves systems of linear equations.

`Matrix` is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions
form square matrices. `Rhs` is a tensor of shape `[..., M, K]`. The `output` is
a tensor shape `[..., M, K]`.  If `adjoint` is `False` then each output matrix
satisfies `matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]`.
If `adjoint` is `True` then each output matrix satisfies
`adjoint(matrix[..., :, :]) * output[..., :, :] = rhs[..., :, :]`.

##### Args:


*  <b>`matrix`</b>: A `Tensor`. Must be one of the following types: `float64`, `float32`, `complex64`, `complex128`.
    Shape is `[..., M, M]`.
*  <b>`rhs`</b>: A `Tensor`. Must have the same type as `matrix`.
    Shape is `[..., M, K]`.
*  <b>`adjoint`</b>: An optional `bool`. Defaults to `False`.
    Boolean indicating whether to solve with `matrix` or its (block-wise)
    adjoint.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `matrix`. Shape is `[..., M, K]`.


- - -

### `tf.matrix_triangular_solve(matrix, rhs, lower=None, adjoint=None, name=None)` {#matrix_triangular_solve}

Solves systems of linear equations with upper or lower triangular matrices by

backsubstitution.

`matrix` is a tensor of shape `[..., M, M]` whose inner-most 2 dimensions form
square matrices. If `lower` is `True` then the strictly upper triangular part
of each inner-most matrix is assumed to be zero and not accessed.
If `lower` is False then the strictly lower triangular part of each inner-most
matrix is assumed to be zero and not accessed.
`rhs` is a tensor of shape `[..., M, K]`.

The output is a tensor of shape `[..., M, K]`. If `adjoint` is
`True` then the innermost matrices in output` satisfy matrix equations
`matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]`.
If `adjoint` is `False` then the strictly then the  innermost matrices in
`output` satisfy matrix equations
`adjoint(matrix[..., i, k]) * output[..., k, j] = rhs[..., i, j]`.

##### Args:


*  <b>`matrix`</b>: A `Tensor`. Must be one of the following types: `float64`, `float32`.
    Shape is `[..., M, M]`.
*  <b>`rhs`</b>: A `Tensor`. Must have the same type as `matrix`.
    Shape is `[..., M, K]`.
*  <b>`lower`</b>: An optional `bool`. Defaults to `True`.
    Boolean indicating whether the innermost matrices in `matrix` are
    lower or upper triangular.
*  <b>`adjoint`</b>: An optional `bool`. Defaults to `False`.
    Boolean indicating whether to solve with `matrix` or its (block-wise)
             adjoint.

    @compatibility(numpy)
    Equivalent to np.linalg.triangular_solve
    @end_compatibility

*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `matrix`. Shape is `[..., M, K]`.


- - -

### `tf.matrix_solve_ls(matrix, rhs, l2_regularizer=0.0, fast=True, name=None)` {#matrix_solve_ls}

Solves one or more linear least-squares problems.

`matrix` is a tensor of shape `[..., M, N]` whose inner-most 2 dimensions
form `M`-by-`N` matrices. Rhs is a tensor of shape `[..., M, K]` whose
inner-most 2 dimensions form `M`-by-`K` matrices.   The computed output is a
`Tensor` of shape `[..., N, K]` whose inner-most 2 dimensions form `M`-by-`K`
matrices that solve the equations
`matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]` in the least squares
sense.

Below we will use the following notation for each pair of matrix and
right-hand sides in the batch:

`matrix`=\\(A \in \Re^{m \times n}\\),
`rhs`=\\(B  \in \Re^{m \times k}\\),
`output`=\\(X  \in \Re^{n \times k}\\),
`l2_regularizer`=\\(\lambda\\).

If `fast` is `True`, then the solution is computed by solving the normal
equations using Cholesky decomposition. Specifically, if \\(m \ge n\\) then
\\(X = (A^T A + \lambda I)^{-1} A^T B\\), which solves the least-squares
problem \\(X = \mathrm{argmin}_{Z \in \Re^{n \times k}} ||A Z - B||_F^2 +
\lambda ||Z||_F^2\\). If \\(m \lt n\\) then `output` is computed as
\\(X = A^T (A A^T + \lambda I)^{-1} B\\), which (for \\(\lambda = 0\\)) is
the minimum-norm solution to the under-determined linear system, i.e.
\\(X = \mathrm{argmin}_{Z \in \Re^{n \times k}} ||Z||_F^2 \\), subject to
\\(A Z = B\\). Notice that the fast path is only numerically stable when
\\(A\\) is numerically full rank and has a condition number
\\(\mathrm{cond}(A) \lt \frac{1}{\sqrt{\epsilon_{mach}}}\\) or\\(\lambda\\)
is sufficiently large.

If `fast` is `False` an algorithm based on the numerically robust complete
orthogonal decomposition is used. This computes the minimum-norm
least-squares solution, even when \\(A\\) is rank deficient. This path is
typically 6-7 times slower than the fast path. If `fast` is `False` then
`l2_regularizer` is ignored.

##### Args:


*  <b>`matrix`</b>: `Tensor` of shape `[..., M, N]`.
*  <b>`rhs`</b>: `Tensor` of shape `[..., M, K]`.
*  <b>`l2_regularizer`</b>: 0-D `double` `Tensor`. Ignored if `fast=False`.
*  <b>`fast`</b>: bool. Defaults to `True`.
*  <b>`name`</b>: string, optional name of the operation.

##### Returns:


*  <b>`output`</b>: `Tensor` of shape `[..., N, K]` whose inner-most 2 dimensions form
    `M`-by-`K` matrices that solve the equations
    `matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]` in the least
    squares sense.


- - -

### `tf.qr(input, full_matrices=None, name=None)` {#qr}

Computes the QR decompositions of one or more matrices.

Computes the QR decomposition of each inner matrix in `tensor` such that
`tensor[..., :, :] = q[..., :, :] * r[..., :,:])`

```prettyprint
# a is a tensor.
# q is a tensor of orthonormal matrices.
# r is a tensor of upper triangular matrices.
q, r = qr(a)
q_full, r_full = qr(a, full_matrices=True)
```

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float64`, `float32`, `complex64`, `complex128`.
    A tensor of shape `[..., M, N]` whose inner-most 2 dimensions
    form matrices of size `[M, N]`. Let `P` be the minimum of `M` and `N`.
*  <b>`full_matrices`</b>: An optional `bool`. Defaults to `False`.
    If true, compute full-sized `q` and `r`. If false
    (the default), compute only the leading `P` columns of `q`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A tuple of `Tensor` objects (q, r).

*  <b>`q`</b>: A `Tensor`. Has the same type as `input`. Orthonormal basis for range of `a`. If `full_matrices` is `False` then
    shape is `[..., M, P]`; if `full_matrices` is `True` then shape is
    `[..., M, M]`.
*  <b>`r`</b>: A `Tensor`. Has the same type as `input`. Triangular factor. If `full_matrices` is `False` then shape is
    `[..., P, N]`. If `full_matrices` is `True` then shape is `[..., M, N]`.


- - -

### `tf.self_adjoint_eig(tensor, name=None)` {#self_adjoint_eig}

Computes the eigen decomposition of a batch of self-adjoint matrices.

Computes the eigenvalues and eigenvectors of the innermost N-by-N matrices
in `tensor` such that
`tensor[...,:,:] * v[..., :,i] = e[..., i] * v[...,:,i]`, for i=0...N-1.

##### Args:


*  <b>`tensor`</b>: `Tensor` of shape `[..., N, N]`. Only the lower triangular part of
    each inner inner matrix is referenced.
*  <b>`name`</b>: string, optional name of the operation.

##### Returns:


*  <b>`e`</b>: Eigenvalues. Shape is `[..., N]`.
*  <b>`v`</b>: Eigenvectors. Shape is `[..., N, N]`. The columns of the inner most
    matrices contain eigenvectors of the corresponding matrices in `tensor`


- - -

### `tf.self_adjoint_eigvals(tensor, name=None)` {#self_adjoint_eigvals}

Computes the eigenvalues of one or more self-adjoint matrices.

##### Args:


*  <b>`tensor`</b>: `Tensor` of shape `[..., N, N]`.
*  <b>`name`</b>: string, optional name of the operation.

##### Returns:


*  <b>`e`</b>: Eigenvalues. Shape is `[..., N]`. The vector `e[..., :]` contains the `N`
    eigenvalues of `tensor[..., :, :]`.


- - -

### `tf.svd(tensor, full_matrices=False, compute_uv=True, name=None)` {#svd}

Computes the singular value decompositions of one or more matrices.

Computes the SVD of each inner matrix in `tensor` such that
`tensor[..., :, :] = u[..., :, :] * diag(s[..., :, :]) * transpose(v[..., :,
:])`

```prettyprint
# a is a tensor.
# s is a tensor of singular values.
# u is a tensor of left singular vectors.
#v is a tensor of right singular vectors.
s, u, v = svd(a)
s = svd(a, compute_uv=False)
```

##### Args:


*  <b>`tensor`</b>: `Tensor` of shape `[..., M, N]`. Let `P` be the minimum of `M` and
    `N`.
*  <b>`full_matrices`</b>: If true, compute full-sized `u` and `v`. If false
    (the default), compute only the leading `P` singular vectors.
    Ignored if `compute_uv` is `False`.
*  <b>`compute_uv`</b>: If `True` then left and right singular vectors will be
    computed and returned in `u` and `v`, respectively. Otherwise, only the
    singular values will be computed, which can be significantly faster.
*  <b>`name`</b>: string, optional name of the operation.

##### Returns:


*  <b>`s`</b>: Singular values. Shape is `[..., P]`.
*  <b>`u`</b>: Right singular vectors. If `full_matrices` is `False` (default) then
    shape is `[..., M, P]`; if `full_matrices` is `True` then shape is
    `[..., M, M]`. Not returned if `compute_uv` is `False`.
*  <b>`v`</b>: Left singular vectors. If `full_matrices` is `False` (default) then
    shape is `[..., N, P]`. If `full_matrices` is `True` then shape is
    `[..., N, N]`. Not returned if `compute_uv` is `False`.

@compatibility(numpy)
Mostly equivalent to numpy.linalg.svd, except that the order of output
arguments here is `s`, `u`, `v` when `compute_uv` is `True`, as opposed to
`u`, `s`, `v` for numpy.linalg.svd.
@end_compatibility




## Tensor Math Function

TensorFlow provides operations that you can use to add tensor functions to your
graph.

- - -

### `tf.tensordot(a, b, axes, name=None)` {#tensordot}

Tensor contraction of a and b along specified axes.

Tensordot (also known as tensor contraction) sums the product of elements
from `a` and `b` over the indices specified by `a_axes` and `b_axes`.
The lists `a_axes` and `b_axes` specify those pairs of axes along which to
contract the tensors. The axis `a_axes[i]` of `a` must have the same dimension
as axis `b_axes[i]` of `b` for all `i` in `range(0, len(a_axes))`. The lists
`a_axes` and `b_axes` must have identical length and consist of unique
integers that specify valid axes for each of the tensors.

This operation corresponds to `numpy.tensordot(a, b, axes)`.

Example 1: When `a` and `b` are matrices (order 2), the case `axes = 1`
is equivalent to matrix multiplication.

Example 2: When `a` and `b` are matrices (order 2), the case
`axes = [[1], [0]]` is equivalent to matrix multiplication.

Example 3: Suppose that \\(a_ijk\\) and \\(b_lmn\\) represent two
tensors of order 3. Then, `contract(a, b, [0], [2])` is the order 4 tensor
\\(c_{jklm}\\) whose entry
corresponding to the indices \\((j,k,l,m)\\) is given by:

\\( c_{jklm} = \sum_i a_{ijk} b_{lmi} \\).

In general, `order(c) = order(a) + order(b) - 2*len(axes[0])`.

##### Args:


*  <b>`a`</b>: `Tensor` of type `float32` or `float64`.
*  <b>`b`</b>: `Tensor` with the same type as `a`.
*  <b>`axes`</b>: Either a scalar `N`, or a list or an `int32` `Tensor` of shape [2, k].
   If axes is a scalar, sum over the last N axes of a and the first N axes
   of b in order.
   If axes is a list or `Tensor` the first and second row contain the set of
   unique integers specifying axes along which the contraction is computed,
   for `a` and `b`, respectively. The number of axes for `a` and `b` must
   be equal.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` with the same type as `a`.

##### Raises:


*  <b>`ValueError`</b>: If the shapes of `a`, `b`, and `axes` are incompatible.
*  <b>`IndexError`</b>: If the values in axes exceed the rank of the corresponding
    tensor.




## Complex Number Functions

TensorFlow provides several operations that you can use to add complex number
functions to your graph.

- - -

### `tf.complex(real, imag, name=None)` {#complex}

Converts two real numbers to a complex number.

Given a tensor `real` representing the real part of a complex number, and a
tensor `imag` representing the imaginary part of a complex number, this
operation returns complex numbers elementwise of the form \\(a + bj\\), where
*a* represents the `real` part and *b* represents the `imag` part.

The input tensors `real` and `imag` must have the same shape.

For example:

```
# tensor 'real' is [2.25, 3.25]
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]]
```

##### Args:


*  <b>`real`</b>: A `Tensor`. Must be one of the following types: `float32`,
    `float64`.
*  <b>`imag`</b>: A `Tensor`. Must have the same type as `real`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `complex64` or `complex128`.


- - -

### `tf.conj(x, name=None)` {#conj}

Returns the complex conjugate of a complex number.

Given a tensor `input` of complex numbers, this operation returns a tensor of
complex numbers that are the complex conjugate of each element in `input`. The
complex numbers in `input` must be of the form \\(a + bj\\), where *a* is the
real part and *b* is the imaginary part.

The complex conjugate returned by this operation is of the form \\(a - bj\\).

For example:

    # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
    tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j]

If `x` is real, it is returned unchanged.

##### Args:


*  <b>`x`</b>: `Tensor` to conjugate.  Must have numeric type.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` that is the conjugate of `x` (with the same type).

##### Raises:


*  <b>`TypeError`</b>: If `x` is not a numeric tensor.


- - -

### `tf.imag(input, name=None)` {#imag}

Returns the imaginary part of a complex number.

Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float32` or `float64` that is the imaginary part of each element in
`input`. All elements in `input` must be complex numbers of the form \(a +
bj\), where *a* is the real part and *b* is the imaginary part returned by
this operation.

For example:

```
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(input) ==> [4.75, 5.75]
```

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `complex64`,
    `complex128`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `float32` or `float64`.


- - -

### `tf.real(input, name=None)` {#real}

Returns the real part of a complex number.

Given a tensor `input` of complex numbers, this operation returns a tensor of
type `float32` or `float64` that is the real part of each element in `input`.
All elements in `input` must be complex numbers of the form \\(a + bj\\),
where *a* is the real part returned by this operation and *b* is the
imaginary part.

For example:

```
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.real(input) ==> [-2.25, 3.25]
```

If `input` is already real, it is returned unchanged.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must have numeric type.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `float32` or `float64`.



## Fourier Transform Functions

TensorFlow provides several operations that you can use to add discrete
Fourier transform functions to your graph.

- - -

### `tf.fft(input, name=None)` {#fft}

Compute the 1-dimensional discrete Fourier Transform over the inner-most

dimension of `input`.

##### Args:


*  <b>`input`</b>: A `Tensor` of type `complex64`. A complex64 tensor.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `complex64`.
  A complex64 tensor of the same shape as `input`. The inner-most
  dimension of `input` is replaced with its 1D Fourier Transform.


- - -

### `tf.ifft(input, name=None)` {#ifft}

Compute the inverse 1-dimensional discrete Fourier Transform over the inner-most

dimension of `input`.

##### Args:


*  <b>`input`</b>: A `Tensor` of type `complex64`. A complex64 tensor.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `complex64`.
  A complex64 tensor of the same shape as `input`. The inner-most
  dimension of `input` is replaced with its inverse 1D Fourier Transform.


- - -

### `tf.fft2d(input, name=None)` {#fft2d}

Compute the 2-dimensional discrete Fourier Transform over the inner-most

2 dimensions of `input`.

##### Args:


*  <b>`input`</b>: A `Tensor` of type `complex64`. A complex64 tensor.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `complex64`.
  A complex64 tensor of the same shape as `input`. The inner-most 2
    dimensions of `input` are replaced with their 2D Fourier Transform.

  @compatibility(numpy)
  Equivalent to np.fft2
  @end_compatibility


- - -

### `tf.ifft2d(input, name=None)` {#ifft2d}

Compute the inverse 2-dimensional discrete Fourier Transform over the inner-most

2 dimensions of `input`.

##### Args:


*  <b>`input`</b>: A `Tensor` of type `complex64`. A complex64 tensor.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `complex64`.
  A complex64 tensor of the same shape as `input`. The inner-most 2
    dimensions of `input` are replaced with their inverse 2D Fourier Transform.

  @compatibility(numpy)
  Equivalent to np.ifft2
  @end_compatibility


- - -

### `tf.fft3d(input, name=None)` {#fft3d}

Compute the 3-dimensional discrete Fourier Transform over the inner-most 3

dimensions of `input`.

##### Args:


*  <b>`input`</b>: A `Tensor` of type `complex64`. A complex64 tensor.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `complex64`.
  A complex64 tensor of the same shape as `input`. The inner-most 3
    dimensions of `input` are replaced with their 3D Fourier Transform.

  @compatibility(numpy)
  Equivalent to np.fft3
  @end_compatibility


- - -

### `tf.ifft3d(input, name=None)` {#ifft3d}

Compute the inverse 3-dimensional discrete Fourier Transform over the inner-most

3 dimensions of `input`.

##### Args:


*  <b>`input`</b>: A `Tensor` of type `complex64`. A complex64 tensor.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `complex64`.
  A complex64 tensor of the same shape as `input`. The inner-most 3
    dimensions of `input` are replaced with their inverse 3D Fourier Transform.

  @compatibility(numpy)
  Equivalent to np.fft3
  @end_compatibility



## Reduction

TensorFlow provides several operations that you can use to perform
common math computations that reduce various dimensions of a tensor.

- - -

### `tf.reduce_sum(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)` {#reduce_sum}

Computes the sum of elements across dimensions of a tensor.

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

```python
# 'x' is [[1, 1, 1]
#         [1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6
```

##### Args:


*  <b>`input_tensor`</b>: The tensor to reduce. Should have numeric type.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor.

@compatibility(numpy)
Equivalent to np.sum
@end_compatibility


- - -

### `tf.reduce_prod(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)` {#reduce_prod}

Computes the product of elements across dimensions of a tensor.

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

##### Args:


*  <b>`input_tensor`</b>: The tensor to reduce. Should have numeric type.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor.

@compatibility(numpy)
Equivalent to np.prod
@end_compatibility


- - -

### `tf.reduce_min(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)` {#reduce_min}

Computes the minimum of elements across dimensions of a tensor.

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

##### Args:


*  <b>`input_tensor`</b>: The tensor to reduce. Should have numeric type.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor.

@compatibility(numpy)
Equivalent to np.min
@end_compatibility


- - -

### `tf.reduce_max(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)` {#reduce_max}

Computes the maximum of elements across dimensions of a tensor.

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

##### Args:


*  <b>`input_tensor`</b>: The tensor to reduce. Should have numeric type.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor.

@compatibility(numpy)
Equivalent to np.max
@end_compatibility


- - -

### `tf.reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)` {#reduce_mean}

Computes the mean of elements across dimensions of a tensor.

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

```python
# 'x' is [[1., 1.]
#         [2., 2.]]
tf.reduce_mean(x) ==> 1.5
tf.reduce_mean(x, 0) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1.,  2.]
```

##### Args:


*  <b>`input_tensor`</b>: The tensor to reduce. Should have numeric type.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor.

@compatibility(numpy)
Equivalent to np.mean
@end_compatibility


- - -

### `tf.reduce_all(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)` {#reduce_all}

Computes the "logical and" of elements across dimensions of a tensor.

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

```python
# 'x' is [[True,  True]
#         [False, False]]
tf.reduce_all(x) ==> False
tf.reduce_all(x, 0) ==> [False, False]
tf.reduce_all(x, 1) ==> [True, False]
```

##### Args:


*  <b>`input_tensor`</b>: The boolean tensor to reduce.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor.

@compatibility(numpy)
Equivalent to np.all
@end_compatibility


- - -

### `tf.reduce_any(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)` {#reduce_any}

Computes the "logical or" of elements across dimensions of a tensor.

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

```python
# 'x' is [[True,  True]
#         [False, False]]
tf.reduce_any(x) ==> True
tf.reduce_any(x, 0) ==> [True, True]
tf.reduce_any(x, 1) ==> [True, False]
```

##### Args:


*  <b>`input_tensor`</b>: The boolean tensor to reduce.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor.

@compatibility(numpy)
Equivalent to np.any
@end_compatibility


- - -

### `tf.reduce_logsumexp(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)` {#reduce_logsumexp}

Computes log(sum(exp(elements across dimensions of a tensor))).

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

This function is more numerically stable than log(sum(exp(input))). It avoids
overflows caused by taking the exp of large inputs and underflows caused by
taking the log of small inputs.

For example:

```python
# 'x' is [[0, 0, 0]]
#         [0, 0, 0]]
tf.reduce_logsumexp(x) ==> log(6)
tf.reduce_logsumexp(x, 0) ==> [log(2), log(2), log(2)]
tf.reduce_logsumexp(x, 1) ==> [log(3), log(3)]
tf.reduce_logsumexp(x, 1, keep_dims=True) ==> [[log(3)], [log(3)]]
tf.reduce_logsumexp(x, [0, 1]) ==> log(6)
```

##### Args:


*  <b>`input_tensor`</b>: The tensor to reduce. Should have numeric type.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor.


- - -

### `tf.count_nonzero(input_tensor, axis=None, keep_dims=False, dtype=tf.int64, name=None, reduction_indices=None)` {#count_nonzero}

Computes number of nonzero elements across dimensions of a tensor.

Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.

If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

**NOTE** Floating point comparison to zero is done by exact floating point
equality check.  Small values are **not** rounded to zero for purposes of
the nonzero check.

For example:

```python
# 'x' is [[0, 1, 0]
#         [1, 1, 0]]
tf.count_nonzero(x) ==> 3
tf.count_nonzero(x, 0) ==> [1, 2, 0]
tf.count_nonzero(x, 1) ==> [1, 2]
tf.count_nonzero(x, 1, keep_dims=True) ==> [[1], [2]]
tf.count_nonzero(x, [0, 1]) ==> 3
```

##### Args:


*  <b>`input_tensor`</b>: The tensor to reduce. Should be of numeric type, or `bool`.
*  <b>`axis`</b>: The dimensions to reduce. If `None` (the default),
    reduces all dimensions.
*  <b>`keep_dims`</b>: If true, retains reduced dimensions with length 1.
*  <b>`dtype`</b>: The output dtype; defaults to `tf.int64`.
*  <b>`name`</b>: A name for the operation (optional).
*  <b>`reduction_indices`</b>: The old (deprecated) name for axis.

##### Returns:

  The reduced tensor (number of nonzero values).



- - -

### `tf.accumulate_n(inputs, shape=None, tensor_dtype=None, name=None)` {#accumulate_n}

Returns the element-wise sum of a list of tensors.

Optionally, pass `shape` and `tensor_dtype` for shape and type checking,
otherwise, these are inferred.

NOTE: This operation is not differentiable and cannot be used if inputs depend
on trainable variables. Please use `tf.add_n` for such cases.

For example:

```python
# tensor 'a' is [[1, 2], [3, 4]]
# tensor `b` is [[5, 0], [0, 6]]
tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]]

# Explicitly pass shape and type
tf.accumulate_n([a, b, a], shape=[2, 2], tensor_dtype=tf.int32)
  ==> [[7, 4], [6, 14]]
```

##### Args:


*  <b>`inputs`</b>: A list of `Tensor` objects, each with same shape and type.
*  <b>`shape`</b>: Shape of elements of `inputs`.
*  <b>`tensor_dtype`</b>: The type of `inputs`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of same shape and type as the elements of `inputs`.

##### Raises:


*  <b>`ValueError`</b>: If `inputs` don't all have same shape and dtype or the shape
  cannot be inferred.



- - -

### `tf.einsum(equation, *inputs)` {#einsum}

A generalized contraction between tensors of arbitrary dimension.

This function returns a tensor whose elements are defined by `equation`,
which is written in a shorthand form inspired by the Einstein summation
convention.  As an example, consider multiplying two matrices
A and B to form a matrix C.  The elements of C are given by:

```
  C[i,k] = sum_j A[i,j] * B[j,k]
```

The corresponding `equation` is:

```
  ij,jk->ik
```

In general, the `equation` is obtained from the more familiar element-wise
equation by
  1. removing variable names, brackets, and commas,
  2. replacing "*" with ",",
  3. dropping summation signs, and
  4. moving the output to the right, and replacing "=" with "->".

Many common operations can be expressed in this way.  For example:

```python
# Matrix multiplication
>>> einsum('ij,jk->ik', m0, m1)  # output[i,k] = sum_j m0[i,j] * m1[j, k]

# Dot product
>>> einsum('i,i->', u, v)  # output = sum_i u[i]*v[i]

# Outer product
>>> einsum('i,j->ij', u, v)  # output[i,j] = u[i]*v[j]

# Transpose
>>> einsum('ij->ji', m)  # output[j,i] = m[i,j]

# Batch matrix multiplication
>>> einsum('aij,ajk->aik', s, t)  # out[a,i,k] = sum_j s[a,i,j] * t[a, j, k]
```

This function behaves like `numpy.einsum`, but does not support:
* Ellipses (subscripts like `ij...,jk...->ik...`)
* Subscripts where an axis appears more than once for a single input
  (e.g. `ijj,k->ik`).
* Subscripts that are summed across multiple inputs (e.g., `ij,ij,jk->ik`).

##### Args:


*  <b>`equation`</b>: a `str` describing the contraction, in the same format as
    `numpy.einsum`.
*  <b>`inputs`</b>: the inputs to contract (each one a `Tensor`), whose shapes should
    be consistent with `equation`.

##### Returns:

  The contracted `Tensor`, with shape determined by `equation`.

##### Raises:


*  <b>`ValueError`</b>: If
    - the format of `equation` is incorrect,
    - the number of inputs implied by `equation` does not match `len(inputs)`,
    - an axis appears in the output subscripts but not in any of the inputs,
    - the number of dimensions of an input differs from the number of
      indices in its subscript, or
    - the input shapes are inconsistent along a particular axis.



## Scan

TensorFlow provides several operations that you can use to perform scans
(running totals) across one axis of a tensor.

- - -

### `tf.cumsum(x, axis=0, exclusive=False, reverse=False, name=None)` {#cumsum}

Compute the cumulative sum of the tensor `x` along `axis`.

By default, this op performs an inclusive cumsum, which means that the first
element of the input is identical to the first element of the output:
```prettyprint
tf.cumsum([a, b, c]) ==> [a, a + b, a + b + c]
```

By setting the `exclusive` kwarg to `True`, an exclusive cumsum is performed
instead:
```prettyprint
tf.cumsum([a, b, c], exclusive=True) ==> [0, a, a + b]
```

By setting the `reverse` kwarg to `True`, the cumsum is performed in the
opposite direction:
```prettyprint
tf.cumsum([a, b, c], reverse=True) ==> [a + b + c, b + c, c]
```
This is more efficient than using separate `tf.reverse` ops.

The `reverse` and `exclusive` kwargs can also be combined:
```prettyprint
tf.cumsum([a, b, c], exclusive=True, reverse=True) ==> [b + c, c, 0]
```

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`,
     `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
     `complex128`, `qint8`, `quint8`, `qint32`, `half`.
*  <b>`axis`</b>: A `Tensor` of type `int32` (default: 0).
*  <b>`reverse`</b>: A `bool` (default: False).
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.


- - -

### `tf.cumprod(x, axis=0, exclusive=False, reverse=False, name=None)` {#cumprod}

Compute the cumulative product of the tensor `x` along `axis`.

By default, this op performs an inclusive cumprod, which means that the
first
element of the input is identical to the first element of the output:
```prettyprint
tf.cumprod([a, b, c]) ==> [a, a * b, a * b * c]
```

By setting the `exclusive` kwarg to `True`, an exclusive cumprod is
performed
instead:
```prettyprint
tf.cumprod([a, b, c], exclusive=True) ==> [1, a, a * b]
```

By setting the `reverse` kwarg to `True`, the cumprod is performed in the
opposite direction:
```prettyprint
tf.cumprod([a, b, c], reverse=True) ==> [a * b * c, b * c, c]
```
This is more efficient than using separate `tf.reverse` ops.

The `reverse` and `exclusive` kwargs can also be combined:
```prettyprint
tf.cumprod([a, b, c], exclusive=True, reverse=True) ==> [b * c, c, 1]
```

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`,
     `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`,
     `complex128`, `qint8`, `quint8`, `qint32`, `half`.
*  <b>`axis`</b>: A `Tensor` of type `int32` (default: 0).
*  <b>`reverse`</b>: A `bool` (default: False).
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`.



## Segmentation

TensorFlow provides several operations that you can use to perform common
math computations on tensor segments.
Here a segmentation is a partitioning of a tensor along
the first dimension, i.e. it  defines a mapping from the first dimension onto
`segment_ids`. The `segment_ids` tensor should be the size of
the first dimension, `d0`, with consecutive IDs in the range `0` to `k`,
where `k<d0`.
In particular, a segmentation of a matrix tensor is a mapping of rows to
segments.

For example:

```python
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.segment_sum(c, tf.constant([0, 0, 1]))
  ==>  [[0 0 0 0]
        [5 6 7 8]]
```

- - -

### `tf.segment_sum(data, segment_ids, name=None)` {#segment_sum}

Computes the sum along segments of a tensor.

Read [the section on Segmentation](../../api_docs/python/math_ops.md#segmentation)
for an explanation of segments.

Computes a tensor such that
\\(output_i = \sum_j data_j\\) where sum is over `j` such
that `segment_ids[j] == i`.

<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
<img style="width:100%" src="../../images/SegmentSum.png" alt>
</div>

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
*  <b>`segment_ids`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor whose rank is equal to the rank of `data`'s
    first dimension.  Values should be sorted and can be repeated.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `k`, the number of segments.


- - -

### `tf.segment_prod(data, segment_ids, name=None)` {#segment_prod}

Computes the product along segments of a tensor.

Read [the section on
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
of segments.

Computes a tensor such that
\\(output_i = \prod_j data_j\\) where the product is over `j` such
that `segment_ids[j] == i`.

<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
<img style="width:100%" src="../../images/SegmentProd.png" alt>
</div>

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
*  <b>`segment_ids`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor whose rank is equal to the rank of `data`'s
    first dimension.  Values should be sorted and can be repeated.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `k`, the number of segments.


- - -

### `tf.segment_min(data, segment_ids, name=None)` {#segment_min}

Computes the minimum along segments of a tensor.

Read [the section on
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
of segments.

Computes a tensor such that
\\(output_i = \min_j(data_j)\\) where `min` is over `j` such
that `segment_ids[j] == i`.

<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
<img style="width:100%" src="../../images/SegmentMin.png" alt>
</div>

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
*  <b>`segment_ids`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor whose rank is equal to the rank of `data`'s
    first dimension.  Values should be sorted and can be repeated.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `k`, the number of segments.


- - -

### `tf.segment_max(data, segment_ids, name=None)` {#segment_max}

Computes the maximum along segments of a tensor.

Read [the section on Segmentation](../../api_docs/python/math_ops.md#segmentation)
for an explanation of segments.

Computes a tensor such that
\\(output_i = \max_j(data_j)\\) where `max` is over `j` such
that `segment_ids[j] == i`.

<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
<img style="width:100%" src="../../images/SegmentMax.png" alt>
</div>

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
*  <b>`segment_ids`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor whose rank is equal to the rank of `data`'s
    first dimension.  Values should be sorted and can be repeated.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `k`, the number of segments.


- - -

### `tf.segment_mean(data, segment_ids, name=None)` {#segment_mean}

Computes the mean along segments of a tensor.

Read [the section on
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
of segments.

Computes a tensor such that
\\(output_i = \frac{\sum_j data_j}{N}\\) where `mean` is
over `j` such that `segment_ids[j] == i` and `N` is the total number of
values summed.

<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
<img style="width:100%" src="../../images/SegmentMean.png" alt>
</div>

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
*  <b>`segment_ids`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor whose rank is equal to the rank of `data`'s
    first dimension.  Values should be sorted and can be repeated.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `k`, the number of segments.



- - -

### `tf.unsorted_segment_sum(data, segment_ids, num_segments, name=None)` {#unsorted_segment_sum}

Computes the sum along segments of a tensor.

Read [the section on
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
of segments.

Computes a tensor such that
`(output[i] = sum_{j...} data[j...]` where the sum is over tuples `j...` such
that `segment_ids[j...] == i`.  Unlike `SegmentSum`, `segment_ids`
need not be sorted and need not cover all values in the full
range of valid values.

If the sum is empty for a given segment ID `i`, `output[i] = 0`.

`num_segments` should equal the number of distinct segment IDs.

<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
<img style="width:100%" src="../../images/UnsortedSegmentSum.png" alt>
</div>

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
*  <b>`segment_ids`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A tensor whose shape is a prefix of `data.shape`.
*  <b>`num_segments`</b>: A `Tensor` of type `int32`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for the first `segment_ids.rank`
  dimensions, which are replaced with a single dimension which has size
  `num_segments`.


- - -

### `tf.unsorted_segment_max(data, segment_ids, num_segments, name=None)` {#unsorted_segment_max}

Computes the Max along segments of a tensor.

Read [the section on
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
of segments.

This operator is similar to the [unsorted segment sum operator](../../api_docs/python/math_ops.md#UnsortedSegmentSum).
Instead of computing the sum over segments, it computes the maximum
such that:

\\(output_i = \max_j data_j\\) where max is over `j` such
that `segment_ids[j] == i`.

If the maximum is empty for a given segment ID `i`, it outputs the smallest possible value for specific numeric type,
 `output[i] = numeric_limits<T>::min()`.

<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
<img style="width:100%" src="../../images/UnsortedSegmentSum.png" alt>
</div>

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
*  <b>`segment_ids`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor whose rank is equal to the rank of `data`'s
    first dimension.
*  <b>`num_segments`</b>: A `Tensor` of type `int32`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `num_segments`.



- - -

### `tf.sparse_segment_sum(data, indices, segment_ids, name=None)` {#sparse_segment_sum}

Computes the sum along sparse segments of a tensor.

Read [the section on
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
of segments.

Like `SegmentSum`, but `segment_ids` can have rank less than `data`'s first
dimension, selecting a subset of dimension 0, specified by `indices`.

For example:

```prettyprint
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])

# Select two rows, one segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 0]))
  ==> [[0 0 0 0]]

# Select two rows, two segment.
tf.sparse_segment_sum(c, tf.constant([0, 1]), tf.constant([0, 1]))
  ==> [[ 1  2  3  4]
       [-1 -2 -3 -4]]

# Select all rows, two segments.
tf.sparse_segment_sum(c, tf.constant([0, 1, 2]), tf.constant([0, 0, 1]))
  ==> [[0 0 0 0]
       [5 6 7 8]]

# Which is equivalent to:
tf.segment_sum(c, tf.constant([0, 0, 1]))
```

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `int64`, `uint8`, `int16`, `int8`, `uint16`, `half`.
*  <b>`indices`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor. Has same rank as `segment_ids`.
*  <b>`segment_ids`</b>: A `Tensor` of type `int32`.
    A 1-D tensor. Values should be sorted and can be repeated.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `k`, the number of segments.


- - -

### `tf.sparse_segment_mean(data, indices, segment_ids, name=None)` {#sparse_segment_mean}

Computes the mean along sparse segments of a tensor.

Read [the section on
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
of segments.

Like `SegmentMean`, but `segment_ids` can have rank less than `data`'s first
dimension, selecting a subset of dimension 0, specified by `indices`.

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`indices`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor. Has same rank as `segment_ids`.
*  <b>`segment_ids`</b>: A `Tensor` of type `int32`.
    A 1-D tensor. Values should be sorted and can be repeated.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `k`, the number of segments.


- - -

### `tf.sparse_segment_sqrt_n(data, indices, segment_ids, name=None)` {#sparse_segment_sqrt_n}

Computes the sum along sparse segments of a tensor divided by the sqrt of N.

N is the size of the segment being reduced.

Read [the section on
Segmentation](../../api_docs/python/math_ops.md#segmentation) for an explanation
of segments.

##### Args:


*  <b>`data`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`.
*  <b>`indices`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    A 1-D tensor. Has same rank as `segment_ids`.
*  <b>`segment_ids`</b>: A `Tensor` of type `int32`.
    A 1-D tensor. Values should be sorted and can be repeated.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `data`.
  Has same shape as data, except for dimension 0 which
  has size `k`, the number of segments.




## Sequence Comparison and Indexing

TensorFlow provides several operations that you can use to add sequence
comparison and index extraction to your graph. You can use these operations to
determine sequence differences and determine the indexes of specific values in
a tensor.

- - -

### `tf.argmin(input, axis=None, name=None, dimension=None)` {#argmin}

Returns the index with the smallest value across axes of a tensor.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
*  <b>`axis`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    int32, 0 <= axis < rank(input).  Describes which axis
    of the input Tensor to reduce across. For vectors, use axis = 0.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `int64`.


- - -

### `tf.argmax(input, axis=None, name=None, dimension=None)` {#argmax}

Returns the index with the largest value across axes of a tensor.

##### Args:


*  <b>`input`</b>: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`.
*  <b>`axis`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
    int32, 0 <= axis < rank(input).  Describes which axis
    of the input Tensor to reduce across. For vectors, use axis = 0.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `int64`.



- - -

### `tf.setdiff1d(x, y, index_dtype=tf.int32, name=None)` {#setdiff1d}

Computes the difference between two lists of numbers or strings.

Given a list `x` and a list `y`, this operation returns a list `out` that
represents all values that are in `x` but not in `y`. The returned list `out`
is sorted in the same order that the numbers appear in `x` (duplicates are
preserved). This operation also returns a list `idx` that represents the
position of each `out` element in `x`. In other words:

`out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1]`

For example, given this input:

```prettyprint
x = [1, 2, 3, 4, 5, 6]
y = [1, 3, 5]
```

This operation would return:

```prettyprint
out ==> [2, 4, 6]
idx ==> [1, 3, 5]
```

##### Args:


*  <b>`x`</b>: A `Tensor`. 1-D. Values to keep.
*  <b>`y`</b>: A `Tensor`. Must have the same type as `x`. 1-D. Values to remove.
*  <b>`out_idx`</b>: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int32`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A tuple of `Tensor` objects (out, idx).

*  <b>`out`</b>: A `Tensor`. Has the same type as `x`. 1-D. Values present in `x` but not in `y`.
*  <b>`idx`</b>: A `Tensor` of type `out_idx`. 1-D. Positions of `x` values preserved in `out`.


- - -

### `tf.where(condition, x=None, y=None, name=None)` {#where}

Return the elements, either from `x` or `y`, depending on the `condition`.

If both `x` and `y` are None, then this operation returns the coordinates of
true elements of `condition`.  The coordinates are returned in a 2-D tensor
where the first dimension (rows) represents the number of true elements, and
the second dimension (columns) represents the coordinates of the true
elements. Keep in mind, the shape of the output tensor can vary depending on
how many true values there are in input. Indices are output in row-major
order.

If both non-None, `x` and `y` must have the same shape.
The `condition` tensor must be a scalar if `x` and `y` are scalar.
If `x` and `y` are vectors or higher rank, then `condition` must be either a
vector with size matching the first dimension of `x`, or must have the same
shape as `x`.

The `condition` tensor acts as a mask that chooses, based on the value at each
element, whether the corresponding element / row in the output should be taken
from `x` (if true) or `y` (if false).

If `condition` is a vector and `x` and `y` are higher rank matrices, then it
chooses which row (outer dimension) to copy from `x` and `y`. If `condition`
has the same shape as `x` and `y`, then it chooses which element to copy from
`x` and `y`.

##### Args:


*  <b>`condition`</b>: A `Tensor` of type `bool`
*  <b>`x`</b>: A Tensor which may have the same shape as `condition`. If `condition` is
    rank 1, `x` may have higher rank, but its first dimension must match the
    size of `condition`.
*  <b>`y`</b>: A `tensor` with the same shape and type as `x`.
*  <b>`name`</b>: A name of the operation (optional)

##### Returns:

  A `Tensor` with the same type and shape as `x`, `y` if they are non-None.
  A `Tensor` with shape `(num_true, dim_size(condition))`.

##### Raises:


*  <b>`ValueError`</b>: When exactly one of `x` or `y` is non-None.


- - -

### `tf.unique(x, out_idx=None, name=None)` {#unique}

Finds unique elements in a 1-D tensor.

This operation returns a tensor `y` containing all of the unique elements of `x`
sorted in the same order that they occur in `x`. This operation also returns a
tensor `idx` the same size as `x` that contains the index of each value of `x`
in the unique output `y`. In other words:

`y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]`

For example:

```prettyprint
# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx = unique(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
```

##### Args:


*  <b>`x`</b>: A `Tensor`. 1-D.
*  <b>`out_idx`</b>: An optional `tf.DType` from: `tf.int32, tf.int64`. Defaults to `tf.int32`.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A tuple of `Tensor` objects (y, idx).

*  <b>`y`</b>: A `Tensor`. Has the same type as `x`. 1-D.
*  <b>`idx`</b>: A `Tensor` of type `out_idx`. 1-D.



- - -

### `tf.edit_distance(hypothesis, truth, normalize=True, name='edit_distance')` {#edit_distance}

Computes the Levenshtein distance between sequences.

This operation takes variable-length sequences (`hypothesis` and `truth`),
each provided as a `SparseTensor`, and computes the Levenshtein distance.
You can normalize the edit distance by length of `truth` by setting
`normalize` to true.

For example, given the following input:

```python
# 'hypothesis' is a tensor of shape `[2, 1]` with variable-length values:
#   (0,0) = ["a"]
#   (1,0) = ["b"]
hypothesis = tf.SparseTensor(
    [[0, 0, 0],
     [1, 0, 0]],
    ["a", "b"]
    (2, 1, 1))

# 'truth' is a tensor of shape `[2, 2]` with variable-length values:
#   (0,0) = []
#   (0,1) = ["a"]
#   (1,0) = ["b", "c"]
#   (1,1) = ["a"]
truth = tf.SparseTensor(
    [[0, 1, 0],
     [1, 0, 0],
     [1, 0, 1],
     [1, 1, 0]]
    ["a", "b", "c", "a"],
    (2, 2, 2))

normalize = True
```

This operation would return the following:

```python
# 'output' is a tensor of shape `[2, 2]` with edit distances normalized
# by 'truth' lengths.
output ==> [[inf, 1.0],  # (0,0): no truth, (0,1): no hypothesis
           [0.5, 1.0]]  # (1,0): addition, (1,1): no hypothesis
```

##### Args:


*  <b>`hypothesis`</b>: A `SparseTensor` containing hypothesis sequences.
*  <b>`truth`</b>: A `SparseTensor` containing truth sequences.
*  <b>`normalize`</b>: A `bool`. If `True`, normalizes the Levenshtein distance by
    length of `truth.`
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A dense `Tensor` with rank `R - 1`, where R is the rank of the
  `SparseTensor` inputs `hypothesis` and `truth`.

##### Raises:


*  <b>`TypeError`</b>: If either `hypothesis` or `truth` are not a `SparseTensor`.



- - -

### `tf.invert_permutation(x, name=None)` {#invert_permutation}

Computes the inverse permutation of a tensor.

This operation computes the inverse of an index permutation. It takes a 1-D
integer tensor `x`, which represents the indices of a zero-based array, and
swaps each value with its index position. In other words, for an output tensor
`y` and an input tensor `x`, this operation computes the following:

`y[x[i]] = i for i in [0, 1, ..., len(x) - 1]`

The values must include 0. There can be no duplicate values or negative values.

For example:

```prettyprint
# tensor `x` is [3, 4, 0, 2, 1]
invert_permutation(x) ==> [2, 4, 3, 0, 1]
```

##### Args:


*  <b>`x`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`. 1-D.
*  <b>`name`</b>: A name for the operation (optional).

##### Returns:

  A `Tensor`. Has the same type as `x`. 1-D.