aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/g3doc/api_docs/python/io_ops.md
blob: ab8c4aa146d23a8ce7030ee2ffc5aef2548b5067 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
<!-- This file is machine generated: DO NOT EDIT! -->

# Inputs and Readers
<!-- TOC-BEGIN This section is generated by neural network: DO NOT EDIT! -->
## Contents
* [Placeholders](#AUTOGENERATED-placeholders)
  * [tf.placeholder(dtype, shape=None, name=None)](#placeholder)
* [Readers](#AUTOGENERATED-readers)
  * [class tf.ReaderBase](#ReaderBase)
  * [class tf.TextLineReader](#TextLineReader)
  * [class tf.WholeFileReader](#WholeFileReader)
  * [class tf.IdentityReader](#IdentityReader)
  * [class tf.TFRecordReader](#TFRecordReader)
  * [class tf.FixedLengthRecordReader](#FixedLengthRecordReader)
* [Converting](#AUTOGENERATED-converting)
  * [tf.decode_csv(records, record_defaults, field_delim=None, name=None)](#decode_csv)
  * [tf.decode_raw(bytes, out_type, little_endian=None, name=None)](#decode_raw)
  * [tf.parse_example(serialized, names=None, sparse_keys=None, sparse_types=None, dense_keys=None, dense_types=None, dense_defaults=None, dense_shapes=None, name='ParseExample')](#parse_example)
  * [tf.parse_single_example(serialized, names=None, sparse_keys=None, sparse_types=None, dense_keys=None, dense_types=None, dense_defaults=None, dense_shapes=None, name='ParseSingleExample')](#parse_single_example)
* [Queues](#AUTOGENERATED-queues)
  * [class tf.QueueBase](#QueueBase)
  * [class tf.FIFOQueue](#FIFOQueue)
  * [class tf.RandomShuffleQueue](#RandomShuffleQueue)
* [Dealing with the filesystem](#AUTOGENERATED-dealing-with-the-filesystem)
  * [tf.matching_files(pattern, name=None)](#matching_files)
  * [tf.read_file(filename, name=None)](#read_file)
* [Input pipeline](#AUTOGENERATED-input-pipeline)
  * [Beginning of an input pipeline](#AUTOGENERATED-beginning-of-an-input-pipeline)
  * [tf.train.match_filenames_once(pattern, name=None)](#match_filenames_once)
  * [tf.train.limit_epochs(tensor, num_epochs=None, name=None)](#limit_epochs)
  * [tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)](#range_input_producer)
  * [tf.train.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)](#slice_input_producer)
  * [tf.train.string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None)](#string_input_producer)
  * [Batching at the end of an input pipeline](#AUTOGENERATED-batching-at-the-end-of-an-input-pipeline)
  * [tf.train.batch(tensor_list, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, name=None)](#batch)
  * [tf.train.batch_join(tensor_list_list, batch_size, capacity=32, enqueue_many=False, shapes=None, name=None)](#batch_join)
  * [tf.train.shuffle_batch(tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, name=None)](#shuffle_batch)
  * [tf.train.shuffle_batch_join(tensor_list_list, batch_size, capacity, min_after_dequeue, seed=None, enqueue_many=False, shapes=None, name=None)](#shuffle_batch_join)


<!-- TOC-END This section was generated by neural network, THANKS FOR READING! -->

## Placeholders <div class="md-anchor" id="AUTOGENERATED-placeholders">{#AUTOGENERATED-placeholders}</div>

TensorFlow provides a placeholder operation that must be fed with data
on execution.  For more info, see the section on [Feeding
data](../../how_tos/reading_data/index.md#feeding).

- - -

### tf.placeholder(dtype, shape=None, name=None) <div class="md-anchor" id="placeholder">{#placeholder}</div>

Inserts a placeholder for a tensor that will be always fed.

**Important**: This tensor will produce an error if evaluated. Its value must
be fed using the `feed_dict` optional argument to `Session.run()`,
`Tensor.eval()`, or `Operation.run()`.

For example:

```python
x = tf.placeholder(float, shape=(1024, 1024))
y = tf.matmul(x, x)

with tf.Session() as sess:
  print sess.run(y)  # ERROR: will fail because x was not fed.

  rand_array = np.random.rand(1024, 1024)
  print sess.run(y, feed_dict={x: rand_array})  # Will succeed.
```

##### Args:


*  <b>dtype</b>: The type of elements in the tensor to be fed.
*  <b>shape</b>: The shape of the tensor to be fed (optional). If the shape is not
    specified, you can feed a tensor of any shape.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` that may be used as a handle for feeding a value, but not
  evaluated directly.



## Readers <div class="md-anchor" id="AUTOGENERATED-readers">{#AUTOGENERATED-readers}</div>

TensorFlow provides a set of Reader classes for reading data formats.
For more information on inputs and readers, see [Reading
data](../../how_tos/reading_data/index.md).

- - -

### class tf.ReaderBase <div class="md-anchor" id="ReaderBase">{#ReaderBase}</div>

Base class for different Reader types, that produce a record every step.

Conceptually, Readers convert string 'work units' into records (key,
value pairs).  Typically the 'work units' are filenames and the
records are extracted from the contents of those files.  We want a
single record produced per step, but a work unit can correspond to
many records.

Therefore we introduce some decoupling using a queue.  The queue
contains the work units and the Reader dequeues from the queue when
it is asked to produce a record (via Read()) but it has finished the
last work unit.
- - -

#### tf.ReaderBase.__init__(reader_ref, supports_serialize=False) {#ReaderBase.__init__}

Creates a new ReaderBase.

##### Args:


*  <b>reader_ref</b>: The operation that implements the reader.
*  <b>supports_serialize</b>: True if the reader implementation can
    serialize its state.


- - -

#### tf.ReaderBase.num_records_produced(name=None) {#ReaderBase.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.ReaderBase.num_work_units_completed(name=None) {#ReaderBase.num_work_units_completed}

Returns the number of work units this reader has finished processing.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.ReaderBase.read(queue, name=None) {#ReaderBase.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

##### Args:


*  <b>queue</b>: A Queue or a mutable string Tensor representing a handle
    to a Queue, with string work items.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A tuple of Tensors (key, value).

*  <b>key</b>: A string scalar Tensor.
*  <b>value</b>: A string scalar Tensor.


- - -

#### tf.ReaderBase.reader_ref {#ReaderBase.reader_ref}

Op that implements the reader.

- - -

#### tf.ReaderBase.reset(name=None) {#ReaderBase.reset}

Restore a reader to its initial clean state.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.ReaderBase.restore_state(state, name=None) {#ReaderBase.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

##### Args:


*  <b>state</b>: A string Tensor.
    Result of a SerializeState of a Reader with matching type.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.ReaderBase.serialize_state(name=None) {#ReaderBase.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A string Tensor.


- - -

#### tf.ReaderBase.supports_serialize {#ReaderBase.supports_serialize}

Whether the Reader implementation can serialize its state.


- - -

### class tf.TextLineReader <div class="md-anchor" id="TextLineReader">{#TextLineReader}</div>

A Reader that outputs the lines of a file delimited by newlines.

Newlines are stripped from the output.
See ReaderBase for supported methods.
- - -

#### tf.TextLineReader.__init__(skip_header_lines=None, name=None) {#TextLineReader.__init__}

Create a TextLineReader.

##### Args:


*  <b>skip_header_lines</b>: An optional int. Defaults to 0.  Number of lines
    to skip from the beginning of every file.
*  <b>name</b>: A name for the operation (optional).


- - -

#### tf.TextLineReader.num_records_produced(name=None) {#TextLineReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.TextLineReader.num_work_units_completed(name=None) {#TextLineReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.TextLineReader.read(queue, name=None) {#TextLineReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

##### Args:


*  <b>queue</b>: A Queue or a mutable string Tensor representing a handle
    to a Queue, with string work items.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A tuple of Tensors (key, value).

*  <b>key</b>: A string scalar Tensor.
*  <b>value</b>: A string scalar Tensor.


- - -

#### tf.TextLineReader.reader_ref {#TextLineReader.reader_ref}

Op that implements the reader.

- - -

#### tf.TextLineReader.reset(name=None) {#TextLineReader.reset}

Restore a reader to its initial clean state.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.TextLineReader.restore_state(state, name=None) {#TextLineReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

##### Args:


*  <b>state</b>: A string Tensor.
    Result of a SerializeState of a Reader with matching type.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.TextLineReader.serialize_state(name=None) {#TextLineReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A string Tensor.


- - -

#### tf.TextLineReader.supports_serialize {#TextLineReader.supports_serialize}

Whether the Reader implementation can serialize its state.


- - -

### class tf.WholeFileReader <div class="md-anchor" id="WholeFileReader">{#WholeFileReader}</div>

A Reader that outputs the entire contents of a file as a value.

To use, enqueue filenames in a Queue.  The output of Read will
be a filename (key) and the contents of that file (value).

See ReaderBase for supported methods.
- - -

#### tf.WholeFileReader.__init__(name=None) {#WholeFileReader.__init__}

Create a WholeFileReader.

##### Args:


*  <b>name</b>: A name for the operation (optional).


- - -

#### tf.WholeFileReader.num_records_produced(name=None) {#WholeFileReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.WholeFileReader.num_work_units_completed(name=None) {#WholeFileReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.WholeFileReader.read(queue, name=None) {#WholeFileReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

##### Args:


*  <b>queue</b>: A Queue or a mutable string Tensor representing a handle
    to a Queue, with string work items.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A tuple of Tensors (key, value).

*  <b>key</b>: A string scalar Tensor.
*  <b>value</b>: A string scalar Tensor.


- - -

#### tf.WholeFileReader.reader_ref {#WholeFileReader.reader_ref}

Op that implements the reader.

- - -

#### tf.WholeFileReader.reset(name=None) {#WholeFileReader.reset}

Restore a reader to its initial clean state.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.WholeFileReader.restore_state(state, name=None) {#WholeFileReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

##### Args:


*  <b>state</b>: A string Tensor.
    Result of a SerializeState of a Reader with matching type.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.WholeFileReader.serialize_state(name=None) {#WholeFileReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A string Tensor.


- - -

#### tf.WholeFileReader.supports_serialize {#WholeFileReader.supports_serialize}

Whether the Reader implementation can serialize its state.


- - -

### class tf.IdentityReader <div class="md-anchor" id="IdentityReader">{#IdentityReader}</div>

A Reader that outputs the queued work as both the key and value.

To use, enqueue strings in a Queue.  Read will take the front
work string and output (work, work).

See ReaderBase for supported methods.
- - -

#### tf.IdentityReader.__init__(name=None) {#IdentityReader.__init__}

Create a IdentityReader.

##### Args:


*  <b>name</b>: A name for the operation (optional).


- - -

#### tf.IdentityReader.num_records_produced(name=None) {#IdentityReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.IdentityReader.num_work_units_completed(name=None) {#IdentityReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.IdentityReader.read(queue, name=None) {#IdentityReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

##### Args:


*  <b>queue</b>: A Queue or a mutable string Tensor representing a handle
    to a Queue, with string work items.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A tuple of Tensors (key, value).

*  <b>key</b>: A string scalar Tensor.
*  <b>value</b>: A string scalar Tensor.


- - -

#### tf.IdentityReader.reader_ref {#IdentityReader.reader_ref}

Op that implements the reader.

- - -

#### tf.IdentityReader.reset(name=None) {#IdentityReader.reset}

Restore a reader to its initial clean state.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.IdentityReader.restore_state(state, name=None) {#IdentityReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

##### Args:


*  <b>state</b>: A string Tensor.
    Result of a SerializeState of a Reader with matching type.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.IdentityReader.serialize_state(name=None) {#IdentityReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A string Tensor.


- - -

#### tf.IdentityReader.supports_serialize {#IdentityReader.supports_serialize}

Whether the Reader implementation can serialize its state.


- - -

### class tf.TFRecordReader <div class="md-anchor" id="TFRecordReader">{#TFRecordReader}</div>

A Reader that outputs the records from a TFRecords file.

See ReaderBase for supported methods.
- - -

#### tf.TFRecordReader.__init__(name=None) {#TFRecordReader.__init__}

Create a TFRecordReader.

##### Args:


*  <b>name</b>: A name for the operation (optional).


- - -

#### tf.TFRecordReader.num_records_produced(name=None) {#TFRecordReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.TFRecordReader.num_work_units_completed(name=None) {#TFRecordReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.TFRecordReader.read(queue, name=None) {#TFRecordReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

##### Args:


*  <b>queue</b>: A Queue or a mutable string Tensor representing a handle
    to a Queue, with string work items.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A tuple of Tensors (key, value).

*  <b>key</b>: A string scalar Tensor.
*  <b>value</b>: A string scalar Tensor.


- - -

#### tf.TFRecordReader.reader_ref {#TFRecordReader.reader_ref}

Op that implements the reader.

- - -

#### tf.TFRecordReader.reset(name=None) {#TFRecordReader.reset}

Restore a reader to its initial clean state.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.TFRecordReader.restore_state(state, name=None) {#TFRecordReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

##### Args:


*  <b>state</b>: A string Tensor.
    Result of a SerializeState of a Reader with matching type.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.TFRecordReader.serialize_state(name=None) {#TFRecordReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A string Tensor.


- - -

#### tf.TFRecordReader.supports_serialize {#TFRecordReader.supports_serialize}

Whether the Reader implementation can serialize its state.


- - -

### class tf.FixedLengthRecordReader <div class="md-anchor" id="FixedLengthRecordReader">{#FixedLengthRecordReader}</div>

A Reader that outputs fixed-length records from a file.

See ReaderBase for supported methods.
- - -

#### tf.FixedLengthRecordReader.__init__(record_bytes, header_bytes=None, footer_bytes=None, name=None) {#FixedLengthRecordReader.__init__}

Create a FixedLengthRecordReader.

##### Args:


*  <b>record_bytes</b>: An int.
*  <b>header_bytes</b>: An optional int. Defaults to 0.
*  <b>footer_bytes</b>: An optional int. Defaults to 0.
*  <b>name</b>: A name for the operation (optional).


- - -

#### tf.FixedLengthRecordReader.num_records_produced(name=None) {#FixedLengthRecordReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.FixedLengthRecordReader.num_work_units_completed(name=None) {#FixedLengthRecordReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  An int64 Tensor.


- - -

#### tf.FixedLengthRecordReader.read(queue, name=None) {#FixedLengthRecordReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

##### Args:


*  <b>queue</b>: A Queue or a mutable string Tensor representing a handle
    to a Queue, with string work items.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A tuple of Tensors (key, value).

*  <b>key</b>: A string scalar Tensor.
*  <b>value</b>: A string scalar Tensor.


- - -

#### tf.FixedLengthRecordReader.reader_ref {#FixedLengthRecordReader.reader_ref}

Op that implements the reader.

- - -

#### tf.FixedLengthRecordReader.reset(name=None) {#FixedLengthRecordReader.reset}

Restore a reader to its initial clean state.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.FixedLengthRecordReader.restore_state(state, name=None) {#FixedLengthRecordReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

##### Args:


*  <b>state</b>: A string Tensor.
    Result of a SerializeState of a Reader with matching type.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The created Operation.


- - -

#### tf.FixedLengthRecordReader.serialize_state(name=None) {#FixedLengthRecordReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A string Tensor.


- - -

#### tf.FixedLengthRecordReader.supports_serialize {#FixedLengthRecordReader.supports_serialize}

Whether the Reader implementation can serialize its state.



## Converting <div class="md-anchor" id="AUTOGENERATED-converting">{#AUTOGENERATED-converting}</div>

TensorFlow provides several operations that you can use to convert various data
formats into tensors.

- - -

### tf.decode_csv(records, record_defaults, field_delim=None, name=None) <div class="md-anchor" id="decode_csv">{#decode_csv}</div>

Convert CSV records to tensors. Each column maps to one tensor.

RFC 4180 format is expected for the CSV records.
(https://tools.ietf.org/html/rfc4180)
Note that we allow leading and trailing spaces with int or float field.

##### Args:


*  <b>records</b>: A `Tensor` of type `string`.
    Each string is a record/row in the csv and all records should have
    the same format.
*  <b>record_defaults</b>: A list of `Tensor` objects with types from: `float32`, `int32`, `int64`, `string`.
    One tensor per column of the input record, with either a
    scalar default value for that column or empty if the column is required.
*  <b>field_delim</b>: An optional `string`. Defaults to `","`.
    delimiter to separate fields in a record.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A list of `Tensor` objects. Has the same type as `record_defaults`.
  Each tensor will have the same shape as records.


- - -

### tf.decode_raw(bytes, out_type, little_endian=None, name=None) <div class="md-anchor" id="decode_raw">{#decode_raw}</div>

Reinterpret the bytes of a string as a vector of numbers.

##### Args:


*  <b>bytes</b>: A `Tensor` of type `string`.
    All the elements must have the same length.
*  <b>out_type</b>: A `tf.DType` from: `tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.int64`.
*  <b>little_endian</b>: An optional `bool`. Defaults to `True`.
    Whether the input bytes are in little-endian order.
    Ignored for out_types that are stored in a single byte like uint8.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `out_type`.
  A Tensor with one more dimension than the input bytes.  The
  added dimension will have size equal to the length of the elements
  of bytes divided by the number of bytes to represent out_type.


- - -

### tf.parse_example(serialized, names=None, sparse_keys=None, sparse_types=None, dense_keys=None, dense_types=None, dense_defaults=None, dense_shapes=None, name='ParseExample') <div class="md-anchor" id="parse_example">{#parse_example}</div>

Parse Example protos.

##### Args:


*  <b>serialized</b>: string vector, a batch of binary serialized Example protos.
*  <b>names</b>: A string vector, the names of the serialized protos.
    "names" may contain, e.g., table key (descriptive) names for the
    corresponding serialized protos.  These are purely useful for debugging
    purposes, and the presence of values here has no effect on the output.
    "names" may be an empty vector, if no names are available.
    If non-empty, this vector must be the same length as "serialized".
*  <b>sparse_keys</b>: A string list of keys in the Examples' features.
    These keys are associated with sparse values.
*  <b>sparse_types</b>: A list of DTypes.
    This list's length must match that of sparse_keys.  Currently
    parse_example supports tf.float32 (FloatList), tf.int64 (Int64List),
    and tf.string (BytesList).
*  <b>dense_keys</b>: A string list of keys in the Examples' features.
    These keys are associated with dense values.
*  <b>dense_types</b>: A list of DTypes.
    This list's length must match that of dense_keys.  Currently
    parse_example supports tf.float32 (FloatList), tf.int64 (Int64List),
    and tf.string (BytesList).
*  <b>dense_defaults</b>: A dict of {key:Tensor} (some may be missing).
    The keys of the dict must match the dense_keys of the feature.
    If a key is not present in this dictionary, the corresponding dense
    Feature is required in all elements of serialized.
*  <b>dense_shapes</b>: A list of tuples.
    Entries provide the shape of data in each dense Feature in features.
    The length of dense_shapes must be the same as the length of dense_keys.
    The number of elements in the Feature corresponding to dense_key[j]
    must always have np.prod(dense_shapes[j]) entries.
    If dense_shapes[j] == (D0, D1, ..., DN) then the the shape of output
    Tensor dense_values[j] will be (|serialized|, D0, D1, ..., DN):
    The dense outputs are just the inputs row-stacked by batch.
*  <b>name</b>: (Optional) Name of Op in the graph.

##### Returns:

  A dictionary mapping keys to Tensors and SparseTensors.

  The key dense_keys[j] is mapped to a tensor of type dense_types[j] and
  of shape (serialized.size(),) + dense_shapes[j] (i.e., the dense outputs are
  inputs, reshaped in row-major format and then row-stacked by batch).

  The key sparse_keys[j] is mapped to a SparseTensor of type sparse_types[j].
  The SparseTensor represents a ragged matrix.  Its indices are [batch, index]
  where "batch" is is the batch entry the value is from, and "index" is the
  value's index in the list of values associated with that feature
  and example.  For example, if one expects a tf.float32 sparse feature "ft"
  and three serialized examples are provided:

  serialized = [

*  <b>features</b>: 
      { feature: [ key: { "ft" value: float_list: { value: [1.0, 2.0] } } ] },
*  <b>features</b>: 
      { feature: [] },
*  <b>features</b>: 
      { feature: [ key: { "ft" value: float_list: { value: [3.0] } } ] }
  ]

  then the output will look like:

    {"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]],
                        values=[1.0, 2.0, 3.0],
                        shape=(3, 2)) }

##### Raises:


*  <b>ValueError</b>: If sparse and dense keys intersect, or input lengths do not
    match up for sparse_* (similarly for dense_*).
*  <b>TypeError</b>: If an input is malformed.

Example input, format, and output: Just Sparse Inputs
================================================

Given two brain.Example input protos:


*  <b>serialized</b>: // serialized versions of the protos below
  [features: {

*  <b>feature</b>: { key: "kw" value: { bytes_list: { value: [ "knit", "big" ] } } }
*  <b>feature</b>: { key: "gps" value: { float_list: { value: [] } } }
   },
*  <b>features</b>: {
*  <b>feature</b>: { key: "kw" value: { bytes_list: { value: [ "emmy" ] } } }
*  <b>feature</b>: { key: "dank" value: { int64_list: { value: [ 42 ] } } }
*  <b>feature</b>: { key: "gps" value: { } }
  }]

*  <b>names</b>: ["input0", "input1"],
*  <b>sparse_keys</b>: ["kw", "dank", "gps"]
*  <b>sparse_types</b>: [DT_STRING, DT_INT64, DT_FLOAT]

Then the expected output is a dictionary:
{
  "kw": SparseTensor(
      indices=[[0, 0], [0, 1], [1, 0]],
      values=["knit", "big", "emmy"]
      shape=[2, 2]),
  "dank": SparseTensor(
      indices=[[1, 0]],
      values=[42],
      shape=[2, 1]),
  "gps": SparseTensor(
      indices=[],
      values=[],
      shape=[2, 0]),
}


Example input, format, and output: Dense Inputs (without defaults)
==================================================================

Given two brain.Example input protos:


*  <b>serialized</b>: // serialized versions of the protos below
  [features: {

*  <b>feature</b>: { key: "age" value: { int64_list: { value: [ 0 ] } } }
*  <b>feature</b>: { key: "gender" value: { bytes_list: { value: [ "f" ] } } }
   },
*  <b>features</b>: {
*  <b>feature</b>: { key: "age" value: { int64_list: { value: [] } } }
*  <b>feature</b>: { key: "gender" value: { bytes_list: { value: [ "f" ] } } }
  }]

*  <b>names</b>: ["input0", "input1"],
*  <b>dense_keys</b>: np.array(["age", "gender"])
*  <b>dense_types</b>: [tf.int64, tf.string]
*  <b>dense_defaults</b>: {
  "age": -1  # defaults to -1 if missing
             # "gender" has no specified default so it's required
}

*  <b>dense_shapes</b>: [(1,), (1,)]  # age, gender, label, weight

Then the expected output is a dictionary:
{
  "age": [[0], [-1]],
  "gender": [["f"], ["f"]],
}


Example input, format, and output: Dense Inputs (with defaults)
===============================================================

Given two brain.Example input protos:


*  <b>serialized</b>: // serialized versions of the protos below
  [features: {

*  <b>feature</b>: { key: "weight" value: { float_list: { value: [ 1.0 ] } } }
   },
*  <b>features</b>: {
*  <b>feature</b>: { key: "label" value: { float_list: { value: [ -1.0, 0.0 ] } } }
  }]

*  <b>names</b>: ["input0", "input1"],
*  <b>dense_keys</b>: np.array(["label", "weight"])
*  <b>dense_defaults</b>: {
  "label": [1.0, 2.0],  # float (default: vector)
  "weight": 5.0         # float (default: scalar, 5.0)
}

*  <b>dense_shapes</b>: [(2,), (1,)]  # age, gender, label, weight

Then the expected output is a dictionary:
{
  "label": [[1.0, 2.0], [-1.0, 0.0]],
  "weight": [[1.0], [5.0]],
}


- - -

### tf.parse_single_example(serialized, names=None, sparse_keys=None, sparse_types=None, dense_keys=None, dense_types=None, dense_defaults=None, dense_shapes=None, name='ParseSingleExample') <div class="md-anchor" id="parse_single_example">{#parse_single_example}</div>

Identical to parse_example but for scalar serialized and names.

##### Args:


*  <b>serialized</b>: A scalar string, a single serialized Example.
    See parse_example documentation for more details.
*  <b>names</b>: (Optional) A scalar string, the associated name.
    See parse_example documentation for more details.
*  <b>sparse_keys</b>: See parse_example documentation for more details.
*  <b>sparse_types</b>: See parse_example documentation for more details.
*  <b>dense_keys</b>: See parse_example documentation for more details.
*  <b>dense_types</b>: See parse_example documentation for more details.
*  <b>dense_defaults</b>: See parse_example documentation for more details.
*  <b>dense_shapes</b>: See parse_example documentation for more details.
*  <b>name</b>: Optional op name.

##### Returns:

  A dictionary mapping keys to Tensors and SparseTensors.

  For dense tensors, the Tensor is identical to the output of parse_example,
  except it is one less dimension (the first, batch, dimension is removed).

  For SparseTensors:
    The first (batch) column of the indices matrix is removed
      (it is now a column vector).
    The values vector is unchanged.
    The first (batch_size) entry of the shape vector is removed
      (it is now a single element vector).

##### Raises:


*  <b>ValueError</b>: if "scalar" or "names" have known shapes, and are not scalars.



## Queues <div class="md-anchor" id="AUTOGENERATED-queues">{#AUTOGENERATED-queues}</div>

TensorFlow provides several implementations of 'Queues', which are
structures within the TensorFlow computation graph to stage pipelines
of tensors together. The following describe the basic Queue interface
and some implementations.  To see an example use, see [Threading and
Queues](../../how_tos/threading_and_queues/index.md).

- - -

### class tf.QueueBase <div class="md-anchor" id="QueueBase">{#QueueBase}</div>

Base class for queue implementations.

A queue is a TensorFlow data structure that stores tensors across
multiple steps, and exposes operations that enqueue and dequeue
tensors.

Each queue element is a tuple of one or more tensors, where each
tuple component has a static dtype, and may have a static shape. The
queue implementations support versions of enqueue and dequeue that
handle single elements, versions that support enqueuing and
dequeuing a batch of elements at once.

See [`tf.FIFOQueue`](#FIFOQueue) and
[`tf.RandomShuffleQueue`](#RandomShuffleQueue) for concrete
implementations of this class, and instructions on how to create
them.

- - -

#### tf.QueueBase.enqueue(vals, name=None) {#QueueBase.enqueue}

Enqueues one element to this queue.

If the queue is full when this operation executes, it will block
until the element has been enqueued.

##### Args:


*  <b>vals</b>: The tuple of `Tensor` objects to be enqueued.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The operation that enqueues a new tuple of tensors to the queue.


- - -

#### tf.QueueBase.enqueue_many(vals, name=None) {#QueueBase.enqueue_many}

Enqueues zero or elements to this queue.

This operation slices each component tensor along the 0th dimension to
make multiple queue elements. All of the tensors in `vals` must have the
same size in the 0th dimension.

If the queue is full when this operation executes, it will block
until all of the elements have been enqueued.

##### Args:


*  <b>vals</b>: The tensor or tuple of tensors from which the queue elements
    are taken.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The operation that enqueues a batch of tuples of tensors to the queue.



- - -

#### tf.QueueBase.dequeue(name=None) {#QueueBase.dequeue}

Dequeues one element from this queue.

If the queue is empty when this operation executes, it will block
until there is an element to dequeue.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The tuple of tensors that was dequeued.


- - -

#### tf.QueueBase.dequeue_many(n, name=None) {#QueueBase.dequeue_many}

Dequeues and concatenates `n` elements from this queue.

This operation concatenates queue-element component tensors along
the 0th dimension to make a single component tensor.  All of the
components in the dequeued tuple will have size `n` in the 0th dimension.

If the queue contains fewer than `n` elements when this operation
executes, it will block until `n` elements have been dequeued.

##### Args:


*  <b>n</b>: A scalar `Tensor` containing the number of elements to dequeue.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The tuple of concatenated tensors that was dequeued.



- - -

#### tf.QueueBase.size(name=None) {#QueueBase.size}

Compute the number of elements in this queue.

##### Args:


*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A scalar tensor containing the number of elements in this queue.



- - -

#### tf.QueueBase.close(cancel_pending_enqueues=False, name=None) {#QueueBase.close}

Closes this queue.

This operation signals that no more elements will be enqueued in
the given queue. Subsequent `enqueue` and `enqueue_many`
operations will fail. Subsequent `dequeue` and `dequeue_many`
operations will continue to succeed if sufficient elements remain
in the queue. Subsequent `dequeue` and `dequeue_many` operations
that would block will fail immediately.

If `cancel_pending_enqueues` is `True`, all pending requests will also
be cancelled.

##### Args:


*  <b>cancel_pending_enqueues</b>: (Optional.) A boolean, defaulting to
    `False` (described above).
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  The operation that closes the queue.



#### Other Methods
- - -

#### tf.QueueBase.__init__(dtypes, shapes, queue_ref) {#QueueBase.__init__}

Constructs a queue object from a queue reference.

##### Args:


*  <b>dtypes</b>: A list of types.  The length of dtypes must equal the number
    of tensors in each element.
*  <b>shapes</b>: Constraints on the shapes of tensors in an element:
    A list of shape tuples or None. This list is the same length
    as dtypes.  If the shape of any tensors in the element are constrained,
    all must be; shapes can be None if the shapes should not be constrained.
*  <b>queue_ref</b>: The queue reference, i.e. the output of the queue op.


- - -

#### tf.QueueBase.dtypes {#QueueBase.dtypes}

The list of dtypes for each component of a queue element.

- - -

#### tf.QueueBase.name {#QueueBase.name}

The name of the underlying queue.

- - -

#### tf.QueueBase.queue_ref {#QueueBase.queue_ref}

The underlying queue reference.


- - -

### class tf.FIFOQueue <div class="md-anchor" id="FIFOQueue">{#FIFOQueue}</div>

A queue implementation that dequeues elements in first-in-first out order.

See [`tf.QueueBase`](#QueueBase) for a description of the methods on
this class.

- - -

#### tf.FIFOQueue.__init__(capacity, dtypes, shapes=None, shared_name=None, name='fifo_queue') {#FIFOQueue.__init__}

Creates a queue that dequeues elements in a first-in first-out order.

A `FIFOQueue` has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A `FIFOQueue` holds a list of up to `capacity` elements. Each
element is a fixed-length tuple of tensors whose dtypes are
described by `dtypes`, and whose shapes are optionally described
by the `shapes` argument.

If the `shapes` argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of `dequeue_many` is disallowed.

##### Args:


*  <b>capacity</b>: An integer. The upper bound on the number of elements
    that may be stored in this queue.
*  <b>dtypes</b>: A list of `DType` objects. The length of `dtypes` must equal
    the number of tensors in each queue element.
*  <b>shapes</b>: (Optional.) A list of fully-defined `TensorShape` objects,
    with the same length as `dtypes` or `None`.
*  <b>shared_name</b>: (Optional.) If non-empty, this queue will be shared under
    the given name across multiple sessions.
*  <b>name</b>: Optional name for the queue operation.



- - -

### class tf.RandomShuffleQueue <div class="md-anchor" id="RandomShuffleQueue">{#RandomShuffleQueue}</div>

A queue implementation that dequeues elements in a random order.

See [`tf.QueueBase`](#QueueBase) for a description of the methods on
this class.

- - -

#### tf.RandomShuffleQueue.__init__(capacity, min_after_dequeue, dtypes, shapes=None, seed=None, shared_name=None, name='random_shuffle_queue') {#RandomShuffleQueue.__init__}

Create a queue that dequeues elements in a random order.

A `RandomShuffleQueue` has bounded capacity; supports multiple
concurrent producers and consumers; and provides exactly-once
delivery.

A `RandomShuffleQueue` holds a list of up to `capacity`
elements. Each element is a fixed-length tuple of tensors whose
dtypes are described by `dtypes`, and whose shapes are optionally
described by the `shapes` argument.

If the `shapes` argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of `dequeue_many` is disallowed.

The `min_after_dequeue` argument allows the caller to specify a
minimum number of elements that will remain in the queue after a
`dequeue` or `dequeue_many` operation completes, to ensure a
minimum level of mixing of elements. This invariant is maintained
by blocking those operations until sufficient elements have been
enqueued. The `min_after_dequeue` argument is ignored after the
queue has been closed.

##### Args:


*  <b>capacity</b>: An integer. The upper bound on the number of elements
    that may be stored in this queue.
*  <b>min_after_dequeue</b>: An integer (described above).
*  <b>dtypes</b>: A list of `DType` objects. The length of `dtypes` must equal
    the number of tensors in each queue element.
*  <b>shapes</b>: (Optional.) A list of fully-defined `TensorShape` objects,
    with the same length as `dtypes` or `None`.
*  <b>seed</b>: A Python integer. Used to create a random seed.
    See [`set_random_seed`](constant_op.md#set_random_seed) for behavior.
*  <b>shared_name</b>: (Optional.) If non-empty, this queue will be shared under
    the given name across multiple sessions.
*  <b>name</b>: Optional name for the queue operation.




## Dealing with the filesystem <div class="md-anchor" id="AUTOGENERATED-dealing-with-the-filesystem">{#AUTOGENERATED-dealing-with-the-filesystem}</div>

- - -

### tf.matching_files(pattern, name=None) <div class="md-anchor" id="matching_files">{#matching_files}</div>

Returns the set of files matching a pattern.

Note that this routine only supports wildcard characters in the
basename portion of the pattern, not in the directory portion.

##### Args:


*  <b>pattern</b>: A `Tensor` of type `string`. A (scalar) shell wildcard pattern.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `string`. A vector of matching filenames.


- - -

### tf.read_file(filename, name=None) <div class="md-anchor" id="read_file">{#read_file}</div>

Reads and outputs the entire contents of the input filename.

##### Args:


*  <b>filename</b>: A `Tensor` of type `string`.
*  <b>name</b>: A name for the operation (optional).

##### Returns:

  A `Tensor` of type `string`.



## Input pipeline <div class="md-anchor" id="AUTOGENERATED-input-pipeline">{#AUTOGENERATED-input-pipeline}</div>

TensorFlow functions for setting up an input-prefetching pipeline.
Please see the [reading data how-to](../../how_tos/reading_data.md)
for context.

### Beginning of an input pipeline <div class="md-anchor" id="AUTOGENERATED-beginning-of-an-input-pipeline">{#AUTOGENERATED-beginning-of-an-input-pipeline}</div>

The "producer" functions add a queue to the graph and a corresponding
`QueueRunner` for running the subgraph that fills that queue.

- - -

### tf.train.match_filenames_once(pattern, name=None) <div class="md-anchor" id="match_filenames_once">{#match_filenames_once}</div>

Save the list of files matching pattern, so it is only computed once.

##### Args:


*  <b>pattern</b>: A file pattern (glob).
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  A variable that is initialized to the list of files matching pattern.


- - -

### tf.train.limit_epochs(tensor, num_epochs=None, name=None) <div class="md-anchor" id="limit_epochs">{#limit_epochs}</div>

Returns tensor num_epochs times and then raises an OutOfRange error.

##### Args:


*  <b>tensor</b>: Any Tensor.
*  <b>num_epochs</b>: An integer (optional).  If specified, limits the number
    of steps the output tensor may be evaluated.
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  tensor or OutOfRange.


- - -

### tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None) <div class="md-anchor" id="range_input_producer">{#range_input_producer}</div>

Produces the integers from 0 to limit-1 in a queue.

##### Args:


*  <b>limit</b>: An int32 scalar tensor.
*  <b>num_epochs</b>: An integer (optional). If specified, `range_input_producer`
    produces each integer `num_epochs` times before generating an
    OutOfRange error. If not specified, `range_input_producer` can cycle
    through the integers an unlimited number of times.
*  <b>shuffle</b>: Boolean. If true, the integers are randomly shuffled within each
    epoch.
*  <b>seed</b>: An integer (optional). Seed used if shuffle == True.
*  <b>capacity</b>: An integer. Sets the queue capacity.
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  A Queue with the output integers.  A QueueRunner for the Queue
  is added to the current Graph's QUEUE_RUNNER collection.


- - -

### tf.train.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None) <div class="md-anchor" id="slice_input_producer">{#slice_input_producer}</div>

Produces a slice of each Tensor in tensor_list.

Implemented using a Queue -- a QueueRunner for the Queue
is added to the current Graph's QUEUE_RUNNER collection.

##### Args:


*  <b>tensor_list</b>: A list of Tensors. Every Tensor in tensor_list must
    have the same size in the first dimension.
*  <b>num_epochs</b>: An integer (optional). If specified, `slice_input_producer`
    produces each slice `num_epochs` times before generating
    an OutOfRange error. If not specified, `slice_input_producer` can cycle
    through the slices an unlimited number of times.
*  <b>seed</b>: An integer (optional). Seed used if shuffle == True.
*  <b>capacity</b>: An integer. Sets the queue capacity.
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  A list of tensors, one for each element of tensor_list.  If the tensor
  in tensor_list has shape [N, a, b, .., z], then the corresponding output
  tensor will have shape [a, b, ..., z].


- - -

### tf.train.string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None) <div class="md-anchor" id="string_input_producer">{#string_input_producer}</div>

Output strings (e.g. filenames) to a queue for an input pipeline.

##### Args:


*  <b>string_tensor</b>: A 1-D string tensor with the strings to produce.
*  <b>num_epochs</b>: An integer (optional). If specified, `string_input_producer`
    produces each string from `string_tensor` `num_epochs` times before
    generating an OutOfRange error. If not specified, `string_input_producer`
    can cycle through the strings in `string_tensor` an unlimited number of
    times.
*  <b>shuffle</b>: Boolean. If true, the strings are randomly shuffled within each
    epoch.
*  <b>seed</b>: An integer (optional). Seed used if shuffle == True.
*  <b>capacity</b>: An integer. Sets the queue capacity.
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  A queue with the output strings.  A QueueRunner for the Queue
  is added to the current Graph's QUEUE_RUNNER collection.



### Batching at the end of an input pipeline <div class="md-anchor" id="AUTOGENERATED-batching-at-the-end-of-an-input-pipeline">{#AUTOGENERATED-batching-at-the-end-of-an-input-pipeline}</div>

These functions add a queue to the graph to assemble a batch of examples, with
possible shuffling.  They also add a `QueueRunner` for running the subgraph
that fills that queue.

Use [batch](#batch) or [batch_join](#batch_join) for batching examples that have
already been well shuffled.  Use [shuffle_batch](#shuffle_batch) or
[shuffle_batch_join](#shuffle_batch_join) for examples that
would benefit from additional shuffling.

Use [batch](#batch) or [shuffle_batch](#shuffle_batch) if you want a
single thread producing examples to batch, or if you have a
single subgraph producing examples but you want to run it in N threads
(where you increase N until it can keep the queue full).  Use
[batch_join](#batch_join) or [shuffle_batch_join](#shuffle_batch_join)
if you have N different subgraphs producing examples to batch and you
want them run by N threads.

- - -

### tf.train.batch(tensor_list, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, name=None) <div class="md-anchor" id="batch">{#batch}</div>

Run tensor_list to fill a queue to create batches.

Implemented using a queue -- a QueueRunner for the queue
is added to the current Graph's QUEUE_RUNNER collection.

##### Args:


*  <b>tensor_list</b>: The list of tensors to enqueue.
*  <b>batch_size</b>: The new batch size pulled from the queue.
*  <b>num_threads</b>: The number of threads enqueuing tensor_list.
*  <b>capacity</b>: Maximum number of elements in the queue, controls the
    how far ahead the prefetching allowed is allowed to get and
    memory usage.
*  <b>enqueue_many</b>: If False, tensor_list is assumed to represent a
    single example.  If True, tensor_list is assumed to represent
    a batch of examples, where the first dimension is indexed by
    example, and all members of tensor_list should have the same
    size in the first dimension.
*  <b>shapes</b>: Optional. The shapes for each example.  Defaults to the
    inferred shapes for tensor_list (leaving off the first dimension
    if enqueue_many is True).
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  A list of tensors with the same number and types as tensor_list.
  If enqueue_many is false, then an input tensor with shape
  `[x, y, z]` will be output as a tensor with shape
  `[batch_size, x, y, z]`.  If enqueue_many is True, and an
  input tensor has shape `[*, x, y, z]`, the the output will have
  shape `[batch_size, x, y, z]`.


- - -

### tf.train.batch_join(tensor_list_list, batch_size, capacity=32, enqueue_many=False, shapes=None, name=None) <div class="md-anchor" id="batch_join">{#batch_join}</div>

Run a list of tensors to fill a queue to create batches of examples.

This version enqueues a different list of tensors in different threads.
Implemented using a queue -- a QueueRunner for the queue
is added to the current Graph's QUEUE_RUNNER collection.

##### Args:


*  <b>tensor_list_list</b>: A list of tuples of tensors to enqueue.
    len(tensor_list_list) threads will be started, with the i-th
    thread enqueuing the tensors from tensor_list[i].
    tensor_list[i1][j] must match tensor_list[i2][j] in type and
    shape (except in the first dimension if enqueue_many is true).
*  <b>batch_size</b>: The new batch size pulled from the queue.
*  <b>capacity</b>: Maximum number of elements in the queue, controls the
    how far ahead the prefetching allowed is allowed to get and
    memory usage.
*  <b>enqueue_many</b>: If False, each tensor_list_list[i] is assumed to
    represent a single example.  If True, tensor_list_list[i] is
    assumed to represent a batch of examples, where the first
    dimension is indexed by example, and all members of
    tensor_list_list[i] should have the same size in the first
    dimension.
*  <b>shapes</b>: Optional. The shapes for each example.  Defaults to the
    inferred shapes for tensor_list_list[i] (which must match, after
    leaving off the first dimension if enqueue_many is True).
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  A list of tensors with the same number and types as
  tensor_list_list[i].  If enqueue_many is false, then an input
  tensor with shape `[x, y, z]` will be output as a tensor with
  shape `[batch_size, x, y, z]`.  If enqueue_many is True, and an
  input tensor has shape `[*, x, y, z]`, the the output will have
  shape `[batch_size, x, y, z]`.


- - -

### tf.train.shuffle_batch(tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, name=None) <div class="md-anchor" id="shuffle_batch">{#shuffle_batch}</div>

Create batches by randomly shuffling tensors.

This adds:

* a shuffling queue into which tensors from tensor_list are enqueued.
* a dequeue many operation to create batches from the queue,
* and a QueueRunner is added to the current Graph's QUEUE_RUNNER collection,
  to enqueue the tensors from tensor_list.

##### Args:


*  <b>tensor_list</b>: The list of tensors to enqueue.
*  <b>batch_size</b>: The new batch size pulled from the queue.
*  <b>capacity</b>: Maximum number of elements in the queue, controls the
    how far ahead the prefetching allowed is allowed to get and
    memory usage.
*  <b>min_after_dequeue</b>: Minimum number elements in the queue after a
    dequeue, used to ensure a level of mixing of elements.
*  <b>num_threads</b>: The number of threads enqueuing tensor_list.
*  <b>seed</b>: Seed for the random shuffling within the queue.
*  <b>enqueue_many</b>: If False, tensor_list is assumed to represent a
    single example.  If True, tensor_list is assumed to represent
    a batch of examples, where the first dimension is indexed by
    example, and all members of tensor_list should have the same
    size in the first dimension.
*  <b>shapes</b>: Optional. The shapes for each example.  Defaults to the
    inferred shapes for tensor_list (leaving off the first dimension
    if enqueue_many is True).
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  A list of tensors with the same number and types as tensor_list.
  If enqueue_many is false, then an input tensor with shape
  `[x, y, z]` will be output as a tensor with shape
  `[batch_size, x, y, z]`.  If enqueue_many is True, and an
  input tensor has shape `[*, x, y, z]`, the the output will have
  shape `[batch_size, x, y, z]`.


- - -

### tf.train.shuffle_batch_join(tensor_list_list, batch_size, capacity, min_after_dequeue, seed=None, enqueue_many=False, shapes=None, name=None) <div class="md-anchor" id="shuffle_batch_join">{#shuffle_batch_join}</div>

Create batches by randomly shuffling tensors.

This version enqueues a different list of tensors in different threads.
It adds:

* a shuffling queue into which tensors from tensor_list_list are enqueued.
* a dequeue many operation to create batches from the queue,
* and a QueueRunner is added to the current Graph's QUEUE_RUNNER collection,
  to enqueue the tensors from tensor_list_list.

##### Args:


*  <b>tensor_list_list</b>: A list of tuples of tensors to enqueue.
    len(tensor_list_list) threads will be started, with the i-th
    thread enqueuing the tensors from tensor_list[i].
    tensor_list[i1][j] must match tensor_list[i2][j] in type and
    shape (except in the first dimension if enqueue_many is true).
*  <b>batch_size</b>: The new batch size pulled from the queue.
*  <b>capacity</b>: Maximum number of elements in the queue, controls the
    how far ahead the prefetching allowed is allowed to get and
    memory usage.
*  <b>min_after_dequeue</b>: Minimum number elements in the queue after a
    dequeue, used to ensure a level of mixing of elements.
*  <b>seed</b>: Seed for the random shuffling within the queue.
*  <b>enqueue_many</b>: If False, each tensor_list_list[i] is assumed to
    represent a single example.  If True, tensor_list_list[i] is
    assumed to represent a batch of examples, where the first
    dimension is indexed by example, and all members of
    tensor_list_list[i] should have the same size in the first
    dimension.
*  <b>shapes</b>: Optional. The shapes for each example.  Defaults to the
    inferred shapes for tensor_list_list[i] (which must match, after
    leaving off the first dimension if enqueue_many is True).
*  <b>name</b>: A name for the operations (optional).

##### Returns:

  A list of tensors with the same number and types as
  tensor_list_list[i].  If enqueue_many is false, then an input
  tensor with shape `[x, y, z]` will be output as a tensor with
  shape `[batch_size, x, y, z]`.  If enqueue_many is True, and an
  input tensor has shape `[*, x, y, z]`, the the output will have
  shape `[batch_size, x, y, z]`.