aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/g3doc/api_docs/python/functions_and_classes/shard3/tf.contrib.linalg.LinearOperatorUDVHUpdate.md
blob: 9a6f57b7950c05cf0f62e0501644f95d0e505b41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
Perturb a `LinearOperator` with a rank `K` update.

This operator acts like a [batch] matrix `A` with shape
`[B1,...,Bb, M, N]` for some `b >= 0`.  The first `b` indices index a
batch member.  For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
an `M x N` matrix.

`LinearOperatorUDVHUpdate` represents `A = L + U D V^H`, where

```
L, is a LinearOperator representing [batch] M x N matrices
U, is a [batch] M x K matrix.  Typically K << M.
D, is a [batch] K x K matrix.
V, is a [batch] N x K matrix.  Typically K << N.
V^H is the Hermitian transpose (adjoint) of V.
```

If `M = N`, determinants and solves are done using the matrix determinant
lemma and Woodbury identities, and thus require L and D to be non-singular.

Solves and determinants will be attempted unless the "is_non_singular"
property of L and D is False.

In the event that L and D are positive-definite, and U = V, solves and
determinants can be done using a Cholesky factorization.

```python
# Create a 3 x 3 diagonal linear operator.
diag_operator = LinearOperatorDiag(
    diag=[1., 2., 3.], is_non_singular=True, is_self_adjoint=True,
    is_positive_definite=True)

# Perturb with a rank 2 perturbation
operator = LinearOperatorUDVHUpdate(
    operator=diag_operator,
    u=[[1., 2.], [-1., 3.], [0., 0.]],
    diag=[11., 12.],
    v=[[1., 2.], [-1., 3.], [10., 10.]])

operator.shape
==> [3, 3]

operator.log_determinant()
==> scalar Tensor

x = ... Shape [3, 4] Tensor
operator.apply(x)
==> Shape [3, 4] Tensor
```

### Shape compatibility

This operator acts on [batch] matrix with compatible shape.
`x` is a batch matrix with compatible shape for `apply` and `solve` if

```
operator.shape = [B1,...,Bb] + [M, N],  with b >= 0
x.shape =        [B1,...,Bb] + [N, R],  with R >= 0.
```

### Performance

Suppose `operator` is a `LinearOperatorUDVHUpdate` of shape `[M, N]`,
made from a rank `K` update of `base_operator` which performs `.apply(x)` on
`x` having `x.shape = [N, R]` with `O(L_apply*N*R)` complexity (and similarly
for `solve`, `determinant`.  Then, if `x.shape = [N, R]`,

* `operator.apply(x)` is `O(L_apply*N*R + K*N*R)`

and if `M = N`,

* `operator.solve(x)` is `O(L_apply*N*R + N*K*R + K^2*R + K^3)`
* `operator.determinant()` is `O(L_determinant + L_solve*N*K + K^2*N + K^3)`

If instead `operator` and `x` have shape `[B1,...,Bb, M, N]` and
`[B1,...,Bb, N, R]`, every operation increases in complexity by `B1*...*Bb`.

#### Matrix property hints

This `LinearOperator` is initialized with boolean flags of the form `is_X`,
for `X = non_singular, self_adjoint, positive_definite, diag_positive, square`
These have the following meaning
* If `is_X == True`, callers should expect the operator to have the
  property `X`.  This is a promise that should be fulfilled, but is *not* a
  runtime assert.  For example, finite floating point precision may result
  in these promises being violated.
* If `is_X == False`, callers should expect the operator to not have `X`.
* If `is_X == None` (the default), callers should have no expectation either
  way.
- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.__init__(base_operator, u, diag=None, v=None, is_diag_positive=None, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=None, name='LinearOperatorUDVHUpdate')` {#LinearOperatorUDVHUpdate.__init__}

Initialize a `LinearOperatorUDVHUpdate`.

This creates a `LinearOperator` of the form `A = L + U D V^H`, with
`L` a `LinearOperator`, `U, V` both [batch] matrices, and `D` a [batch]
diagonal matrix.

If `L` is non-singular, solves and determinants are available.
Solves/determinants both involve a solve/determinant of a `K x K` system.
In the event that L and D are self-adjoint positive-definite, and U = V,
this can be done using a Cholesky factorization.  The user should set the
`is_X` matrix property hints, which will trigger the appropriate code path.

##### Args:


*  <b>`base_operator`</b>: Shape `[B1,...,Bb, M, N]` real `float32` or `float64`
    `LinearOperator`.  This is `L` above.
*  <b>`u`</b>: Shape `[B1,...,Bb, M, K]` `Tensor` of same `dtype` as `base_operator`.
    This is `U` above.
*  <b>`diag`</b>: Optional shape `[B1,...,Bb, K]` `Tensor` with same `dtype` as
    `base_operator`.  This is the diagonal of `D` above.
     Defaults to `D` being the identity operator.
*  <b>`v`</b>: Optional `Tensor` of same `dtype` as `u` and shape `[B1,...,Bb, N, K]`
     Defaults to `v = u`, in which case the perturbation is symmetric.
     If `M != N`, then `v` must be set since the pertrubation is not square.
*  <b>`is_diag_positive`</b>: Python `bool`.  If `True`, expect `diag > 0`.
*  <b>`is_non_singular`</b>: Expect that this operator is non-singular.
    Default is `None`, unless `is_positive_definite` is auto-set to be
    `True` (see below).
*  <b>`is_self_adjoint`</b>: Expect that this operator is equal to its hermitian
    transpose.  Default is `None`, unless `base_operator` is self-adjoint
    and `v = None` (meaning `u=v`), in which case this defaults to `True`.
*  <b>`is_positive_definite`</b>: Expect that this operator is positive definite.
    Default is `None`, unless `base_operator` is positive-definite
    `v = None` (meaning `u=v`), and `is_diag_positive`, in which case this
    defaults to `True`.
*  <b>`is_square`</b>: Expect that this operator acts like square [batch] matrices.
*  <b>`name`</b>: A name for this `LinearOperator`.

##### Raises:


*  <b>`ValueError`</b>: If `is_X` flags are set in an inconsistent way.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.add_to_tensor(x, name='add_to_tensor')` {#LinearOperatorUDVHUpdate.add_to_tensor}

Add matrix represented by this operator to `x`.  Equivalent to `A + x`.

##### Args:


*  <b>`x`</b>: `Tensor` with same `dtype` and shape broadcastable to `self.shape`.
*  <b>`name`</b>: A name to give this `Op`.

##### Returns:

  A `Tensor` with broadcast shape and same `dtype` as `self`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.apply(x, adjoint=False, name='apply')` {#LinearOperatorUDVHUpdate.apply}

Transform `x` with left multiplication:  `x --> Ax`.

##### Args:


*  <b>`x`</b>: `Tensor` with compatible shape and same `dtype` as `self`.
    See class docstring for definition of compatibility.
*  <b>`adjoint`</b>: Python `bool`.  If `True`, left multiply by the adjoint.
*  <b>`name`</b>: A name for this `Op.

##### Returns:

  A `Tensor` with shape `[..., M, R]` and same `dtype` as `self`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.assert_non_singular(name='assert_non_singular')` {#LinearOperatorUDVHUpdate.assert_non_singular}

Returns an `Op` that asserts this operator is non singular.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.assert_positive_definite(name='assert_positive_definite')` {#LinearOperatorUDVHUpdate.assert_positive_definite}

Returns an `Op` that asserts this operator is positive definite.

Here, positive definite means the real part of all eigenvalues is positive.
We do not require the operator to be self-adjoint.

##### Args:


*  <b>`name`</b>: A name to give this `Op`.

##### Returns:

  An `Op` that asserts this operator is positive definite.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.assert_self_adjoint(name='assert_self_adjoint')` {#LinearOperatorUDVHUpdate.assert_self_adjoint}

Returns an `Op` that asserts this operator is self-adjoint.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.base_operator` {#LinearOperatorUDVHUpdate.base_operator}

If this operator is `A = L + U D V^H`, this is the `L`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.batch_shape` {#LinearOperatorUDVHUpdate.batch_shape}

`TensorShape` of batch dimensions of this `LinearOperator`.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns
`TensorShape([B1,...,Bb])`, equivalent to `A.get_shape()[:-2]`

##### Returns:

  `TensorShape`, statically determined, may be undefined.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.batch_shape_tensor(name='batch_shape_tensor')` {#LinearOperatorUDVHUpdate.batch_shape_tensor}

Shape of batch dimensions of this operator, determined at runtime.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns a `Tensor` holding
`[B1,...,Bb]`.

##### Args:


*  <b>`name`</b>: A name for this `Op.

##### Returns:

  `int32` `Tensor`


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.determinant(name='det')` {#LinearOperatorUDVHUpdate.determinant}

Determinant for every batch member.

##### Args:


*  <b>`name`</b>: A name for this `Op.

##### Returns:

  `Tensor` with shape `self.batch_shape` and same `dtype` as `self`.

##### Raises:


*  <b>`NotImplementedError`</b>: If `self.is_square` is `False`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.diag` {#LinearOperatorUDVHUpdate.diag}

If this operator is `A = L + U D V^H`, this is the diagonal of `D`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.diag_operator` {#LinearOperatorUDVHUpdate.diag_operator}

If this operator is `A = L + U D V^H`, this is `D`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.domain_dimension` {#LinearOperatorUDVHUpdate.domain_dimension}

Dimension (in the sense of vector spaces) of the domain of this operator.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `N`.

##### Returns:

  `Dimension` object.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.domain_dimension_tensor(name='domain_dimension_tensor')` {#LinearOperatorUDVHUpdate.domain_dimension_tensor}

Dimension (in the sense of vector spaces) of the domain of this operator.

Determined at runtime.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `N`.

##### Args:


*  <b>`name`</b>: A name for this `Op`.

##### Returns:

  `int32` `Tensor`


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.dtype` {#LinearOperatorUDVHUpdate.dtype}

The `DType` of `Tensor`s handled by this `LinearOperator`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.graph_parents` {#LinearOperatorUDVHUpdate.graph_parents}

List of graph dependencies of this `LinearOperator`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.is_non_singular` {#LinearOperatorUDVHUpdate.is_non_singular}




- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.is_positive_definite` {#LinearOperatorUDVHUpdate.is_positive_definite}




- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.is_self_adjoint` {#LinearOperatorUDVHUpdate.is_self_adjoint}




- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.is_square` {#LinearOperatorUDVHUpdate.is_square}

Return `True/False` depending on if this operator is square.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.log_abs_determinant(name='log_abs_det')` {#LinearOperatorUDVHUpdate.log_abs_determinant}

Log absolute value of determinant for every batch member.

##### Args:


*  <b>`name`</b>: A name for this `Op.

##### Returns:

  `Tensor` with shape `self.batch_shape` and same `dtype` as `self`.

##### Raises:


*  <b>`NotImplementedError`</b>: If `self.is_square` is `False`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.name` {#LinearOperatorUDVHUpdate.name}

Name prepended to all ops created by this `LinearOperator`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.range_dimension` {#LinearOperatorUDVHUpdate.range_dimension}

Dimension (in the sense of vector spaces) of the range of this operator.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `M`.

##### Returns:

  `Dimension` object.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.range_dimension_tensor(name='range_dimension_tensor')` {#LinearOperatorUDVHUpdate.range_dimension_tensor}

Dimension (in the sense of vector spaces) of the range of this operator.

Determined at runtime.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `M`.

##### Args:


*  <b>`name`</b>: A name for this `Op`.

##### Returns:

  `int32` `Tensor`


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.shape` {#LinearOperatorUDVHUpdate.shape}

`TensorShape` of this `LinearOperator`.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns
`TensorShape([B1,...,Bb, M, N])`, equivalent to `A.get_shape()`.

##### Returns:

  `TensorShape`, statically determined, may be undefined.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.shape_tensor(name='shape_tensor')` {#LinearOperatorUDVHUpdate.shape_tensor}

Shape of this `LinearOperator`, determined at runtime.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns a `Tensor` holding
`[B1,...,Bb, M, N]`, equivalent to `tf.shape(A)`.

##### Args:


*  <b>`name`</b>: A name for this `Op.

##### Returns:

  `int32` `Tensor`


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.solve(rhs, adjoint=False, name='solve')` {#LinearOperatorUDVHUpdate.solve}

Solve `R` (batch) systems of equations exactly: `A X = rhs`.

Examples:

```python
# Create an operator acting like a 10 x 2 x 2 matrix.
operator = LinearOperator(...)
operator.shape # = 10 x 2 x 2

# Solve one linear system (R = 1) for every member of the length 10 batch.
RHS = ... # shape 10 x 2 x 1
X = operator.solve(RHS)  # shape 10 x 2 x 1

# Solve five linear systems (R = 5) for every member of the length 10 batch.
RHS = ... # shape 10 x 2 x 5
X = operator.solve(RHS)
X[3, :, 2]  # Solution to the linear system A[3, :, :] X = RHS[3, :, 2]
```

##### Args:


*  <b>`rhs`</b>: `Tensor` with same `dtype` as this operator and compatible shape.
    See class docstring for definition of compatibility.
*  <b>`adjoint`</b>: Python `bool`.  If `True`, solve the system involving the adjoint
    of this `LinearOperator`.
*  <b>`name`</b>: A name scope to use for ops added by this method.

##### Returns:

  `Tensor` with shape `[...,N, R]` and same `dtype` as `rhs`.

##### Raises:


*  <b>`NotImplementedError`</b>: If `self.is_non_singular` or `is_square` is False.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.tensor_rank` {#LinearOperatorUDVHUpdate.tensor_rank}

Rank (in the sense of tensors) of matrix corresponding to this operator.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `b + 2`.

##### Args:


*  <b>`name`</b>: A name for this `Op.

##### Returns:

  Python integer, or None if the tensor rank is undefined.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.tensor_rank_tensor(name='tensor_rank_tensor')` {#LinearOperatorUDVHUpdate.tensor_rank_tensor}

Rank (in the sense of tensors) of matrix corresponding to this operator.

If this operator acts like the batch matrix `A` with
`A.shape = [B1,...,Bb, M, N]`, then this returns `b + 2`.

##### Args:


*  <b>`name`</b>: A name for this `Op.

##### Returns:

  `int32` `Tensor`, determined at runtime.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.to_dense(name='to_dense')` {#LinearOperatorUDVHUpdate.to_dense}

Return a dense (batch) matrix representing this operator.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.u` {#LinearOperatorUDVHUpdate.u}

If this operator is `A = L + U D V^H`, this is the `U`.


- - -

#### `tf.contrib.linalg.LinearOperatorUDVHUpdate.v` {#LinearOperatorUDVHUpdate.v}

If this operator is `A = L + U D V^H`, this is the `V`.