aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.contrib.distributions.RelaxedOneHotCategorical.md
blob: acd76a6fa6635f0da1e3b28b007babaa557daa5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
RelaxedOneHotCategorical distribution with temperature and logits.

The RelaxedOneHotCategorical is a distribution over random probability
vectors, vectors of positive real values that sum to one, which continuously
approximates a OneHotCategorical. The degree of approximation is controlled by
a temperature: as the temperaturegoes to 0 the RelaxedOneHotCategorical
becomes discrete with a distribution described by the `logits` or `probs`
parameters, as the temperature goes to infinity the RelaxedOneHotCategorical
becomes the constant distribution that is identically the constant vector of
(1/event_size, ..., 1/event_size).

The RelaxedOneHotCategorical distribution was concurrently introduced as the
Gumbel-Softmax (Jang et al., 2016) and Concrete (Maddison et al., 2016)
distributions for use as a reparameterized continuous approximation to the
`Categorical` one-hot distribution. If you use this distribution, please cite
both papers.

#### Examples

Creates a continuous distribution, which approximates a 3-class one-hot
categorical distiribution. The 2nd class is the most likely to be the
largest component in samples drawn from this distribution.

```python
temperature = 0.5
p = [0.1, 0.5, 0.4]
dist = RelaxedOneHotCategorical(temperature, probs=p)
```

Creates a continuous distribution, which approximates a 3-class one-hot
categorical distiribution. The 2nd class is the most likely to be the
largest component in samples drawn from this distribution.

```python
temperature = 0.5
logits = [-2, 2, 0]
dist = RelaxedOneHotCategorical(temperature, logits=logits)
```

Creates a continuous distribution, which approximates a 3-class one-hot
categorical distiribution. Because the temperature is very low, samples from
this distribution are almost discrete, with one component almost 1 and the
others nearly 0. The 2nd class is the most likely to be the largest component
in samples drawn from this distribution.

```python
temperature = 1e-5
logits = [-2, 2, 0]
dist = RelaxedOneHotCategorical(temperature, logits=logits)
```

Creates a continuous distribution, which approximates a 3-class one-hot
categorical distiribution. Because the temperature is very high, samples from
this distribution are usually close to the (1/3, 1/3, 1/3) vector. The 2nd
class is still the most likely to be the largest component
in samples drawn from this distribution.

```python
temperature = 10
logits = [-2, 2, 0]
dist = RelaxedOneHotCategorical(temperature, logits=logits)
```

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with
Gumbel-Softmax. 2016.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution:
A Continuous Relaxation of Discrete Random Variables. 2016.
- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.__init__(temperature, logits=None, probs=None, dtype=tf.float32, validate_args=False, allow_nan_stats=True, name='RelaxedOneHotCategorical')` {#RelaxedOneHotCategorical.__init__}

Initialize RelaxedOneHotCategorical using class log-probabilities.

##### Args:


*  <b>`temperature`</b>: An 0-D `Tensor`, representing the temperature
    of a set of RelaxedOneHotCategorical distributions. The temperature
    should be positive.
*  <b>`logits`</b>: An N-D `Tensor`, `N >= 1`, representing the log probabilities
    of a set of RelaxedOneHotCategorical distributions. The first
    `N - 1` dimensions index into a batch of independent distributions and
    the last dimension represents a vector of logits for each class. Only
    one of `logits` or `probs` should be passed in.
*  <b>`probs`</b>: An N-D `Tensor`, `N >= 1`, representing the probabilities
    of a set of RelaxedOneHotCategorical distributions. The first `N - 1`
    dimensions index into a batch of independent distributions and the last
    dimension represents a vector of probabilities for each class. Only one
    of `logits` or `probs` should be passed in.
*  <b>`dtype`</b>: The type of the event samples (default: int32).
*  <b>`validate_args`</b>: Unused in this distribution.
*  <b>`allow_nan_stats`</b>: Python `bool`, default `True`. If `False`, raise an
    exception if a statistic (e.g. mean/mode/etc...) is undefined for any
    batch member. If `True`, batch members with valid parameters leading to
    undefined statistics will return NaN for this statistic.
*  <b>`name`</b>: A name for this distribution (optional).


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.allow_nan_stats` {#RelaxedOneHotCategorical.allow_nan_stats}

Python `bool` describing behavior when a stat is undefined.

Stats return +/- infinity when it makes sense. E.g., the variance of a
Cauchy distribution is infinity. However, sometimes the statistic is
undefined, e.g., if a distribution's pdf does not achieve a maximum within
the support of the distribution, the mode is undefined. If the mean is
undefined, then by definition the variance is undefined. E.g. the mean for
Student's T for df = 1 is undefined (no clear way to say it is either + or -
infinity), so the variance = E[(X - mean)**2] is also undefined.

##### Returns:


*  <b>`allow_nan_stats`</b>: Python `bool`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.batch_shape` {#RelaxedOneHotCategorical.batch_shape}

Shape of a single sample from a single event index as a `TensorShape`.

May be partially defined or unknown.

The batch dimensions are indexes into independent, non-identical
parameterizations of this distribution.

##### Returns:


*  <b>`batch_shape`</b>: `TensorShape`, possibly unknown.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.batch_shape_tensor(name='batch_shape_tensor')` {#RelaxedOneHotCategorical.batch_shape_tensor}

Shape of a single sample from a single event index as a 1-D `Tensor`.

The batch dimensions are indexes into independent, non-identical
parameterizations of this distribution.

##### Args:


*  <b>`name`</b>: name to give to the op

##### Returns:


*  <b>`batch_shape`</b>: `Tensor`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.bijector` {#RelaxedOneHotCategorical.bijector}

Function transforming x => y.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.cdf(value, name='cdf')` {#RelaxedOneHotCategorical.cdf}

Cumulative distribution function.

Given random variable `X`, the cumulative distribution function `cdf` is:

```
cdf(x) := P[X <= x]
```

##### Args:


*  <b>`value`</b>: `float` or `double` `Tensor`.
*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`cdf`</b>: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with
    values of type `self.dtype`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.copy(**override_parameters_kwargs)` {#RelaxedOneHotCategorical.copy}

Creates a deep copy of the distribution.

Note: the copy distribution may continue to depend on the original
intialization arguments.

##### Args:


*  <b>`**override_parameters_kwargs`</b>: String/value dictionary of initialization
    arguments to override with new values.

##### Returns:


*  <b>`distribution`</b>: A new instance of `type(self)` intitialized from the union
    of self.parameters and override_parameters_kwargs, i.e.,
    `dict(self.parameters, **override_parameters_kwargs)`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.covariance(name='covariance')` {#RelaxedOneHotCategorical.covariance}

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-`k`, vector-valued distribution, it is calculated
as,

```none
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
```

where `Cov` is a (batch of) `k x k` matrix, `0 <= (i, j) < k`, and `E`
denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), `Covariance` shall return a (batch of) matrices
under some vectorization of the events, i.e.,

```none
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
````

where `Cov` is a (batch of) `k' x k'` matrices,
`0 <= (i, j) < k' = reduce_prod(event_shape)`, and `Vec` is some function
mapping indices of this distribution's event dimensions to indices of a
length-`k'` vector.

##### Args:


*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`covariance`</b>: Floating-point `Tensor` with shape `[B1, ..., Bn, k', k']`
    where the first `n` dimensions are batch coordinates and
    `k' = reduce_prod(self.event_shape)`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.distribution` {#RelaxedOneHotCategorical.distribution}

Base distribution, p(x).


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.dtype` {#RelaxedOneHotCategorical.dtype}

The `DType` of `Tensor`s handled by this `Distribution`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.entropy(name='entropy')` {#RelaxedOneHotCategorical.entropy}

Shannon entropy in nats.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.event_shape` {#RelaxedOneHotCategorical.event_shape}

Shape of a single sample from a single batch as a `TensorShape`.

May be partially defined or unknown.

##### Returns:


*  <b>`event_shape`</b>: `TensorShape`, possibly unknown.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.event_shape_tensor(name='event_shape_tensor')` {#RelaxedOneHotCategorical.event_shape_tensor}

Shape of a single sample from a single batch as a 1-D int32 `Tensor`.

##### Args:


*  <b>`name`</b>: name to give to the op

##### Returns:


*  <b>`event_shape`</b>: `Tensor`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.is_continuous` {#RelaxedOneHotCategorical.is_continuous}




- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.is_scalar_batch(name='is_scalar_batch')` {#RelaxedOneHotCategorical.is_scalar_batch}

Indicates that `batch_shape == []`.

##### Args:


*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`is_scalar_batch`</b>: `bool` scalar `Tensor`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.is_scalar_event(name='is_scalar_event')` {#RelaxedOneHotCategorical.is_scalar_event}

Indicates that `event_shape == []`.

##### Args:


*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`is_scalar_event`</b>: `bool` scalar `Tensor`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.log_cdf(value, name='log_cdf')` {#RelaxedOneHotCategorical.log_cdf}

Log cumulative distribution function.

Given random variable `X`, the cumulative distribution function `cdf` is:

```
log_cdf(x) := Log[ P[X <= x] ]
```

Often, a numerical approximation can be used for `log_cdf(x)` that yields
a more accurate answer than simply taking the logarithm of the `cdf` when
`x << -1`.

##### Args:


*  <b>`value`</b>: `float` or `double` `Tensor`.
*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`logcdf`</b>: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with
    values of type `self.dtype`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.log_prob(value, name='log_prob')` {#RelaxedOneHotCategorical.log_prob}

Log probability density/mass function (depending on `is_continuous`).

##### Args:


*  <b>`value`</b>: `float` or `double` `Tensor`.
*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`log_prob`</b>: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with
    values of type `self.dtype`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.log_survival_function(value, name='log_survival_function')` {#RelaxedOneHotCategorical.log_survival_function}

Log survival function.

Given random variable `X`, the survival function is defined:

```
log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]
```

Typically, different numerical approximations can be used for the log
survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`.

##### Args:


*  <b>`value`</b>: `float` or `double` `Tensor`.
*  <b>`name`</b>: The name to give this op.

##### Returns:

  `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type
    `self.dtype`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.mean(name='mean')` {#RelaxedOneHotCategorical.mean}

Mean.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.mode(name='mode')` {#RelaxedOneHotCategorical.mode}

Mode.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.name` {#RelaxedOneHotCategorical.name}

Name prepended to all ops created by this `Distribution`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.param_shapes(cls, sample_shape, name='DistributionParamShapes')` {#RelaxedOneHotCategorical.param_shapes}

Shapes of parameters given the desired shape of a call to `sample()`.

This is a class method that describes what key/value arguments are required
to instantiate the given `Distribution` so that a particular shape is
returned for that instance's call to `sample()`.

Subclasses should override class method `_param_shapes`.

##### Args:


*  <b>`sample_shape`</b>: `Tensor` or python list/tuple. Desired shape of a call to
    `sample()`.
*  <b>`name`</b>: name to prepend ops with.

##### Returns:

  `dict` of parameter name to `Tensor` shapes.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.param_static_shapes(cls, sample_shape)` {#RelaxedOneHotCategorical.param_static_shapes}

param_shapes with static (i.e. `TensorShape`) shapes.

This is a class method that describes what key/value arguments are required
to instantiate the given `Distribution` so that a particular shape is
returned for that instance's call to `sample()`. Assumes that the sample's
shape is known statically.

Subclasses should override class method `_param_shapes` to return
constant-valued tensors when constant values are fed.

##### Args:


*  <b>`sample_shape`</b>: `TensorShape` or python list/tuple. Desired shape of a call
    to `sample()`.

##### Returns:

  `dict` of parameter name to `TensorShape`.

##### Raises:


*  <b>`ValueError`</b>: if `sample_shape` is a `TensorShape` and is not fully defined.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.parameters` {#RelaxedOneHotCategorical.parameters}

Dictionary of parameters used to instantiate this `Distribution`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.prob(value, name='prob')` {#RelaxedOneHotCategorical.prob}

Probability density/mass function (depending on `is_continuous`).

##### Args:


*  <b>`value`</b>: `float` or `double` `Tensor`.
*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`prob`</b>: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with
    values of type `self.dtype`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.reparameterization_type` {#RelaxedOneHotCategorical.reparameterization_type}

Describes how samples from the distribution are reparameterized.

Currently this is one of the static instances
`distributions.FULLY_REPARAMETERIZED`
or `distributions.NOT_REPARAMETERIZED`.

##### Returns:

  An instance of `ReparameterizationType`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.sample(sample_shape=(), seed=None, name='sample')` {#RelaxedOneHotCategorical.sample}

Generate samples of the specified shape.

Note that a call to `sample()` without arguments will generate a single
sample.

##### Args:


*  <b>`sample_shape`</b>: 0D or 1D `int32` `Tensor`. Shape of the generated samples.
*  <b>`seed`</b>: Python integer seed for RNG
*  <b>`name`</b>: name to give to the op.

##### Returns:


*  <b>`samples`</b>: a `Tensor` with prepended dimensions `sample_shape`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.stddev(name='stddev')` {#RelaxedOneHotCategorical.stddev}

Standard deviation.

Standard deviation is defined as,

```none
stddev = E[(X - E[X])**2]**0.5
```

where `X` is the random variable associated with this distribution, `E`
denotes expectation, and `stddev.shape = batch_shape + event_shape`.

##### Args:


*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`stddev`</b>: Floating-point `Tensor` with shape identical to
    `batch_shape + event_shape`, i.e., the same shape as `self.mean()`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.survival_function(value, name='survival_function')` {#RelaxedOneHotCategorical.survival_function}

Survival function.

Given random variable `X`, the survival function is defined:

```
survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).
```

##### Args:


*  <b>`value`</b>: `float` or `double` `Tensor`.
*  <b>`name`</b>: The name to give this op.

##### Returns:

  `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type
    `self.dtype`.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.validate_args` {#RelaxedOneHotCategorical.validate_args}

Python `bool` indicating possibly expensive checks are enabled.


- - -

#### `tf.contrib.distributions.RelaxedOneHotCategorical.variance(name='variance')` {#RelaxedOneHotCategorical.variance}

Variance.

Variance is defined as,

```none
Var = E[(X - E[X])**2]
```

where `X` is the random variable associated with this distribution, `E`
denotes expectation, and `Var.shape = batch_shape + event_shape`.

##### Args:


*  <b>`name`</b>: The name to give this op.

##### Returns:


*  <b>`variance`</b>: Floating-point `Tensor` with shape identical to
    `batch_shape + event_shape`, i.e., the same shape as `self.mean()`.