aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/examples/skflow/resnet.py
blob: 7f02124a22d52eaff3a4cc76ecff950f4deb1a24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#  Copyright 2015-present The Scikit Flow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""
This example builds deep residual network for mnist data. 
Reference Paper: http://arxiv.org/pdf/1512.03385.pdf

Note that this is still a work-in-progress. Feel free to submit a PR
to make this better. 
"""

from __future__ import division, print_function, absolute_import

import os
from collections import namedtuple
from math import sqrt

from sklearn import metrics
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib import skflow


def res_net(x, y, activation=tf.nn.relu):
    """Builds a residual network. Note that if the input tensor is 2D, it must be
    square in order to be converted to a 4D tensor. 

    Borrowed structure from here: https://github.com/pkmital/tensorflow_tutorials/blob/master/10_residual_network.py

    Args:
        x: Input of the network
        y: Output of the network
        activation: Activation function to apply after each convolution
    """

    # Configurations for each bottleneck block
    BottleneckBlock = namedtuple(
        'BottleneckBlock', ['num_layers', 'num_filters', 'bottleneck_size'])
    blocks = [BottleneckBlock(3, 128, 32),
              BottleneckBlock(3, 256, 64),
              BottleneckBlock(3, 512, 128),
              BottleneckBlock(3, 1024, 256)]

    input_shape = x.get_shape().as_list()

    # Reshape the input into the right shape if it's 2D tensor
    if len(input_shape) == 2:
        ndim = int(sqrt(input_shape[1]))
        x = tf.reshape(x, [-1, ndim, ndim, 1])

    # First convolution expands to 64 channels
    with tf.variable_scope('conv_layer1'):
        net = skflow.ops.conv2d(x, 64, [7, 7], batch_norm=True,
                                activation=activation, bias=False)

    # Max pool
    net = tf.nn.max_pool(
        net, [1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')

    # First chain of resnets
    with tf.variable_scope('conv_layer2'):
        net = skflow.ops.conv2d(net, blocks[0].num_filters,
                               [1, 1], [1, 1, 1, 1],
                               padding='VALID', bias=True)

    # Create each bottleneck building block for each layer
    for block_i, block in enumerate(blocks):
        for layer_i in range(block.num_layers):

            name = 'block_%d/layer_%d' % (block_i, layer_i)

            # 1x1 convolution responsible for reducing dimension
            with tf.variable_scope(name + '/conv_in'):
                conv = skflow.ops.conv2d(net, block.num_filters,
                                         [1, 1], [1, 1, 1, 1],
                                         padding='VALID',
                                         activation=activation,
                                         batch_norm=True,
                                         bias=False)

            with tf.variable_scope(name + '/conv_bottleneck'):
                conv = skflow.ops.conv2d(conv, block.bottleneck_size,
                                         [3, 3], [1, 1, 1, 1],
                                         padding='SAME',
                                         activation=activation,
                                         batch_norm=True,
                                         bias=False)

            # 1x1 convolution responsible for restoring dimension
            with tf.variable_scope(name + '/conv_out'):
                conv = skflow.ops.conv2d(conv, block.num_filters,
                                         [1, 1], [1, 1, 1, 1],
                                         padding='VALID',
                                         activation=activation,
                                         batch_norm=True,
                                         bias=False)

            # shortcut connections that turn the network into its counterpart
            # residual function (identity shortcut)
            net = conv + net

        try:
            # upscale to the next block size
            next_block = blocks[block_i + 1]
            with tf.variable_scope('block_%d/conv_upscale' % block_i):
                net = skflow.ops.conv2d(net, next_block.num_filters,
                                        [1, 1], [1, 1, 1, 1],
                                        bias=False,
                                        padding='SAME')
        except IndexError:
            pass

    net_shape = net.get_shape().as_list()
    net = tf.nn.avg_pool(net,
                         ksize=[1, net_shape[1], net_shape[2], 1],
                         strides=[1, 1, 1, 1], padding='VALID')

    net_shape = net.get_shape().as_list()
    net = tf.reshape(net, [-1, net_shape[1] * net_shape[2] * net_shape[3]])

    return skflow.models.logistic_regression(net, y)


# Download and load MNIST data.
mnist = input_data.read_data_sets('MNIST_data')

# Restore model if graph is saved into a folder.
if os.path.exists("models/resnet/graph.pbtxt"):
    classifier = skflow.TensorFlowEstimator.restore("models/resnet/")
else:
    # Create a new resnet classifier.
    classifier = skflow.TensorFlowEstimator(
        model_fn=res_net, n_classes=10, batch_size=100, steps=100,
        learning_rate=0.001, continue_training=True)

while True:
    # Train model and save summaries into logdir.
    classifier.fit(mnist.train.images, mnist.train.labels, logdir="models/resnet/")

    # Calculate accuracy.
    score = metrics.accuracy_score(
        mnist.test.labels, classifier.predict(mnist.test.images, batch_size=64))
    print('Accuracy: {0:f}'.format(score))

    # Save model graph and checkpoints.
    classifier.save("models/resnet/")