aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/examples/learn/mnist.py
blob: 98819b20bfea5021d52e2c50b004bccdaf1f25e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""This showcases how simple it is to build image classification networks.

It follows description from this TensorFlow tutorial:
    https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html#deep-mnist-for-experts
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf


N_DIGITS = 10  # Number of digits.
X_FEATURE = 'x'  # Name of the input feature.


def conv_model(features, labels, mode):
  """2-layer convolution model."""
  # Reshape feature to 4d tensor with 2nd and 3rd dimensions being
  # image width and height final dimension being the number of color channels.
  feature = tf.reshape(features[X_FEATURE], [-1, 28, 28, 1])

  # First conv layer will compute 32 features for each 5x5 patch
  with tf.variable_scope('conv_layer1'):
    h_conv1 = tf.layers.conv2d(
        feature,
        filters=32,
        kernel_size=[5, 5],
        padding='same',
        activation=tf.nn.relu)
    h_pool1 = tf.layers.max_pooling2d(
        h_conv1, pool_size=2, strides=2, padding='same')

  # Second conv layer will compute 64 features for each 5x5 patch.
  with tf.variable_scope('conv_layer2'):
    h_conv2 = tf.layers.conv2d(
        h_pool1,
        filters=64,
        kernel_size=[5, 5],
        padding='same',
        activation=tf.nn.relu)
    h_pool2 = tf.layers.max_pooling2d(
        h_conv2, pool_size=2, strides=2, padding='same')
    # reshape tensor into a batch of vectors
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])

  # Densely connected layer with 1024 neurons.
  h_fc1 = tf.layers.dense(h_pool2_flat, 1024, activation=tf.nn.relu)
  if mode == tf.estimator.ModeKeys.TRAIN:
    h_fc1 = tf.layers.dropout(h_fc1, rate=0.5)

  # Compute logits (1 per class) and compute loss.
  logits = tf.layers.dense(h_fc1, N_DIGITS, activation=None)

  # Compute predictions.
  predicted_classes = tf.argmax(logits, 1)
  if mode == tf.estimator.ModeKeys.PREDICT:
    predictions = {
        'class': predicted_classes,
        'prob': tf.nn.softmax(logits)
    }
    return tf.estimator.EstimatorSpec(mode, predictions=predictions)

  # Compute loss.
  loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

  # Create training op.
  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)

  # Compute evaluation metrics.
  eval_metric_ops = {
      'accuracy': tf.metrics.accuracy(
          labels=labels, predictions=predicted_classes)
  }
  return tf.estimator.EstimatorSpec(
      mode, loss=loss, eval_metric_ops=eval_metric_ops)


def main(unused_args):
  tf.logging.set_verbosity(tf.logging.INFO)

  ### Download and load MNIST dataset.
  mnist = tf.contrib.learn.datasets.DATASETS['mnist']('/tmp/mnist')
  train_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={X_FEATURE: mnist.train.images},
      y=mnist.train.labels.astype(np.int32),
      batch_size=100,
      num_epochs=None,
      shuffle=True)
  test_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={X_FEATURE: mnist.train.images},
      y=mnist.train.labels.astype(np.int32),
      num_epochs=1,
      shuffle=False)

  ### Linear classifier.
  feature_columns = [
      tf.feature_column.numeric_column(
          X_FEATURE, shape=mnist.train.images.shape[1:])]

  classifier = tf.estimator.LinearClassifier(
      feature_columns=feature_columns, n_classes=N_DIGITS)
  classifier.train(input_fn=train_input_fn, steps=200)
  scores = classifier.evaluate(input_fn=test_input_fn)
  print('Accuracy (LinearClassifier): {0:f}'.format(scores['accuracy']))

  ### Convolutional network
  classifier = tf.estimator.Estimator(model_fn=conv_model)
  classifier.train(input_fn=train_input_fn, steps=200)
  scores = classifier.evaluate(input_fn=test_input_fn)
  print('Accuracy (conv_model): {0:f}'.format(scores['accuracy']))


if __name__ == '__main__':
  tf.app.run()