aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/examples/image_retraining/retrain.py
blob: 3549891461e74d96ea4a5aa98f929ddde7e62692 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Simple transfer learning with Inception v3 or Mobilenet models.

With support for TensorBoard.

This example shows how to take a Inception v3 or Mobilenet model trained on
ImageNet images, and train a new top layer that can recognize other classes of
images.

The top layer receives as input a 2048-dimensional vector (1001-dimensional for
Mobilenet) for each image. We train a softmax layer on top of this
representation. Assuming the softmax layer contains N labels, this corresponds
to learning N + 2048*N (or 1001*N)  model parameters corresponding to the
learned biases and weights.

Here's an example, which assumes you have a folder containing class-named
subfolders, each full of images for each label. The example folder flower_photos
should have a structure like this:

~/flower_photos/daisy/photo1.jpg
~/flower_photos/daisy/photo2.jpg
...
~/flower_photos/rose/anotherphoto77.jpg
...
~/flower_photos/sunflower/somepicture.jpg

The subfolder names are important, since they define what label is applied to
each image, but the filenames themselves don't matter. Once your images are
prepared, you can run the training with a command like this:


```bash
bazel build tensorflow/examples/image_retraining:retrain && \
bazel-bin/tensorflow/examples/image_retraining/retrain \
    --image_dir ~/flower_photos
```

Or, if you have a pip installation of tensorflow, `retrain.py` can be run
without bazel:

```bash
python tensorflow/examples/image_retraining/retrain.py \
    --image_dir ~/flower_photos
```

You can replace the image_dir argument with any folder containing subfolders of
images. The label for each image is taken from the name of the subfolder it's
in.

This produces a new model file that can be loaded and run by any TensorFlow
program, for example the label_image sample code.

By default this script will use the high accuracy, but comparatively large and
slow Inception v3 model architecture. It's recommended that you start with this
to validate that you have gathered good training data, but if you want to deploy
on resource-limited platforms, you can try the `--architecture` flag with a
Mobilenet model. For example:

```bash
python tensorflow/examples/image_retraining/retrain.py \
    --image_dir ~/flower_photos --architecture mobilenet_1.0_224
```

There are 32 different Mobilenet models to choose from, with a variety of file
size and latency options. The first number can be '1.0', '0.75', '0.50', or
'0.25' to control the size, and the second controls the input image size, either
'224', '192', '160', or '128', with smaller sizes running faster. See
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
for more information on Mobilenet.

To use with TensorBoard:

By default, this script will log summaries to /tmp/retrain_logs directory

Visualize the summaries with this command:

tensorboard --logdir /tmp/retrain_logs

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
from datetime import datetime
import hashlib
import os.path
import random
import re
import sys
import tarfile

import numpy as np
from six.moves import urllib
import tensorflow as tf

from tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import gfile
from tensorflow.python.util import compat

FLAGS = None

# These are all parameters that are tied to the particular model architecture
# we're using for Inception v3. These include things like tensor names and their
# sizes. If you want to adapt this script to work with another model, you will
# need to update these to reflect the values in the network you're using.
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1  # ~134M


def create_image_lists(image_dir, testing_percentage, validation_percentage):
  """Builds a list of training images from the file system.

  Analyzes the sub folders in the image directory, splits them into stable
  training, testing, and validation sets, and returns a data structure
  describing the lists of images for each label and their paths.

  Args:
    image_dir: String path to a folder containing subfolders of images.
    testing_percentage: Integer percentage of the images to reserve for tests.
    validation_percentage: Integer percentage of images reserved for validation.

  Returns:
    A dictionary containing an entry for each label subfolder, with images split
    into training, testing, and validation sets within each label.
  """
  if not gfile.Exists(image_dir):
    tf.logging.error("Image directory '" + image_dir + "' not found.")
    return None
  result = {}
  sub_dirs = [x[0] for x in gfile.Walk(image_dir)]
  # The root directory comes first, so skip it.
  is_root_dir = True
  for sub_dir in sub_dirs:
    if is_root_dir:
      is_root_dir = False
      continue
    extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
    file_list = []
    dir_name = os.path.basename(sub_dir)
    if dir_name == image_dir:
      continue
    tf.logging.info("Looking for images in '" + dir_name + "'")
    for extension in extensions:
      file_glob = os.path.join(image_dir, dir_name, '*.' + extension)
      file_list.extend(gfile.Glob(file_glob))
    if not file_list:
      tf.logging.warning('No files found')
      continue
    if len(file_list) < 20:
      tf.logging.warning(
          'WARNING: Folder has less than 20 images, which may cause issues.')
    elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:
      tf.logging.warning(
          'WARNING: Folder {} has more than {} images. Some images will '
          'never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))
    label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
    training_images = []
    testing_images = []
    validation_images = []
    for file_name in file_list:
      base_name = os.path.basename(file_name)
      # We want to ignore anything after '_nohash_' in the file name when
      # deciding which set to put an image in, the data set creator has a way of
      # grouping photos that are close variations of each other. For example
      # this is used in the plant disease data set to group multiple pictures of
      # the same leaf.
      hash_name = re.sub(r'_nohash_.*$', '', file_name)
      # This looks a bit magical, but we need to decide whether this file should
      # go into the training, testing, or validation sets, and we want to keep
      # existing files in the same set even if more files are subsequently
      # added.
      # To do that, we need a stable way of deciding based on just the file name
      # itself, so we do a hash of that and then use that to generate a
      # probability value that we use to assign it.
      hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest()
      percentage_hash = ((int(hash_name_hashed, 16) %
                          (MAX_NUM_IMAGES_PER_CLASS + 1)) *
                         (100.0 / MAX_NUM_IMAGES_PER_CLASS))
      if percentage_hash < validation_percentage:
        validation_images.append(base_name)
      elif percentage_hash < (testing_percentage + validation_percentage):
        testing_images.append(base_name)
      else:
        training_images.append(base_name)
    result[label_name] = {
        'dir': dir_name,
        'training': training_images,
        'testing': testing_images,
        'validation': validation_images,
    }
  return result


def get_image_path(image_lists, label_name, index, image_dir, category):
  """"Returns a path to an image for a label at the given index.

  Args:
    image_lists: Dictionary of training images for each label.
    label_name: Label string we want to get an image for.
    index: Int offset of the image we want. This will be moduloed by the
    available number of images for the label, so it can be arbitrarily large.
    image_dir: Root folder string of the subfolders containing the training
    images.
    category: Name string of set to pull images from - training, testing, or
    validation.

  Returns:
    File system path string to an image that meets the requested parameters.

  """
  if label_name not in image_lists:
    tf.logging.fatal('Label does not exist %s.', label_name)
  label_lists = image_lists[label_name]
  if category not in label_lists:
    tf.logging.fatal('Category does not exist %s.', category)
  category_list = label_lists[category]
  if not category_list:
    tf.logging.fatal('Label %s has no images in the category %s.',
                     label_name, category)
  mod_index = index % len(category_list)
  base_name = category_list[mod_index]
  sub_dir = label_lists['dir']
  full_path = os.path.join(image_dir, sub_dir, base_name)
  return full_path


def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,
                        category, architecture):
  """"Returns a path to a bottleneck file for a label at the given index.

  Args:
    image_lists: Dictionary of training images for each label.
    label_name: Label string we want to get an image for.
    index: Integer offset of the image we want. This will be moduloed by the
    available number of images for the label, so it can be arbitrarily large.
    bottleneck_dir: Folder string holding cached files of bottleneck values.
    category: Name string of set to pull images from - training, testing, or
    validation.
    architecture: The name of the model architecture.

  Returns:
    File system path string to an image that meets the requested parameters.
  """
  return get_image_path(image_lists, label_name, index, bottleneck_dir,
                        category) + '_' + architecture + '.txt'


def create_model_graph(model_info):
  """"Creates a graph from saved GraphDef file and returns a Graph object.

  Args:
    model_info: Dictionary containing information about the model architecture.

  Returns:
    Graph holding the trained Inception network, and various tensors we'll be
    manipulating.
  """
  with tf.Graph().as_default() as graph:
    model_path = os.path.join(FLAGS.model_dir, model_info['model_file_name'])
    with gfile.FastGFile(model_path, 'rb') as f:
      graph_def = tf.GraphDef()
      graph_def.ParseFromString(f.read())
      bottleneck_tensor, resized_input_tensor = (tf.import_graph_def(
          graph_def,
          name='',
          return_elements=[
              model_info['bottleneck_tensor_name'],
              model_info['resized_input_tensor_name'],
          ]))
  return graph, bottleneck_tensor, resized_input_tensor


def run_bottleneck_on_image(sess, image_data, image_data_tensor,
                            decoded_image_tensor, resized_input_tensor,
                            bottleneck_tensor):
  """Runs inference on an image to extract the 'bottleneck' summary layer.

  Args:
    sess: Current active TensorFlow Session.
    image_data: String of raw JPEG data.
    image_data_tensor: Input data layer in the graph.
    decoded_image_tensor: Output of initial image resizing and preprocessing.
    resized_input_tensor: The input node of the recognition graph.
    bottleneck_tensor: Layer before the final softmax.

  Returns:
    Numpy array of bottleneck values.
  """
  # First decode the JPEG image, resize it, and rescale the pixel values.
  resized_input_values = sess.run(decoded_image_tensor,
                                  {image_data_tensor: image_data})
  # Then run it through the recognition network.
  bottleneck_values = sess.run(bottleneck_tensor,
                               {resized_input_tensor: resized_input_values})
  bottleneck_values = np.squeeze(bottleneck_values)
  return bottleneck_values


def maybe_download_and_extract(data_url):
  """Download and extract model tar file.

  If the pretrained model we're using doesn't already exist, this function
  downloads it from the TensorFlow.org website and unpacks it into a directory.

  Args:
    data_url: Web location of the tar file containing the pretrained model.
  """
  dest_directory = FLAGS.model_dir
  if not os.path.exists(dest_directory):
    os.makedirs(dest_directory)
  filename = data_url.split('/')[-1]
  filepath = os.path.join(dest_directory, filename)
  if not os.path.exists(filepath):

    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' %
                       (filename,
                        float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()

    filepath, _ = urllib.request.urlretrieve(data_url, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    tf.logging.info('Successfully downloaded', filename, statinfo.st_size,
                    'bytes.')
  tarfile.open(filepath, 'r:gz').extractall(dest_directory)


def ensure_dir_exists(dir_name):
  """Makes sure the folder exists on disk.

  Args:
    dir_name: Path string to the folder we want to create.
  """
  if not os.path.exists(dir_name):
    os.makedirs(dir_name)


bottleneck_path_2_bottleneck_values = {}


def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
                           image_dir, category, sess, jpeg_data_tensor,
                           decoded_image_tensor, resized_input_tensor,
                           bottleneck_tensor):
  """Create a single bottleneck file."""
  tf.logging.info('Creating bottleneck at ' + bottleneck_path)
  image_path = get_image_path(image_lists, label_name, index,
                              image_dir, category)
  if not gfile.Exists(image_path):
    tf.logging.fatal('File does not exist %s', image_path)
  image_data = gfile.FastGFile(image_path, 'rb').read()
  try:
    bottleneck_values = run_bottleneck_on_image(
        sess, image_data, jpeg_data_tensor, decoded_image_tensor,
        resized_input_tensor, bottleneck_tensor)
  except Exception as e:
    raise RuntimeError('Error during processing file %s (%s)' % (image_path,
                                                                 str(e)))
  bottleneck_string = ','.join(str(x) for x in bottleneck_values)
  with open(bottleneck_path, 'w') as bottleneck_file:
    bottleneck_file.write(bottleneck_string)


def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,
                             category, bottleneck_dir, jpeg_data_tensor,
                             decoded_image_tensor, resized_input_tensor,
                             bottleneck_tensor, architecture):
  """Retrieves or calculates bottleneck values for an image.

  If a cached version of the bottleneck data exists on-disk, return that,
  otherwise calculate the data and save it to disk for future use.

  Args:
    sess: The current active TensorFlow Session.
    image_lists: Dictionary of training images for each label.
    label_name: Label string we want to get an image for.
    index: Integer offset of the image we want. This will be modulo-ed by the
    available number of images for the label, so it can be arbitrarily large.
    image_dir: Root folder string of the subfolders containing the training
    images.
    category: Name string of which set to pull images from - training, testing,
    or validation.
    bottleneck_dir: Folder string holding cached files of bottleneck values.
    jpeg_data_tensor: The tensor to feed loaded jpeg data into.
    decoded_image_tensor: The output of decoding and resizing the image.
    resized_input_tensor: The input node of the recognition graph.
    bottleneck_tensor: The output tensor for the bottleneck values.
    architecture: The name of the model architecture.

  Returns:
    Numpy array of values produced by the bottleneck layer for the image.
  """
  label_lists = image_lists[label_name]
  sub_dir = label_lists['dir']
  sub_dir_path = os.path.join(bottleneck_dir, sub_dir)
  ensure_dir_exists(sub_dir_path)
  bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
                                        bottleneck_dir, category, architecture)
  if not os.path.exists(bottleneck_path):
    create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
                           image_dir, category, sess, jpeg_data_tensor,
                           decoded_image_tensor, resized_input_tensor,
                           bottleneck_tensor)
  with open(bottleneck_path, 'r') as bottleneck_file:
    bottleneck_string = bottleneck_file.read()
  did_hit_error = False
  try:
    bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
  except ValueError:
    tf.logging.warning('Invalid float found, recreating bottleneck')
    did_hit_error = True
  if did_hit_error:
    create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
                           image_dir, category, sess, jpeg_data_tensor,
                           decoded_image_tensor, resized_input_tensor,
                           bottleneck_tensor)
    with open(bottleneck_path, 'r') as bottleneck_file:
      bottleneck_string = bottleneck_file.read()
    # Allow exceptions to propagate here, since they shouldn't happen after a
    # fresh creation
    bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
  return bottleneck_values


def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,
                      jpeg_data_tensor, decoded_image_tensor,
                      resized_input_tensor, bottleneck_tensor, architecture):
  """Ensures all the training, testing, and validation bottlenecks are cached.

  Because we're likely to read the same image multiple times (if there are no
  distortions applied during training) it can speed things up a lot if we
  calculate the bottleneck layer values once for each image during
  preprocessing, and then just read those cached values repeatedly during
  training. Here we go through all the images we've found, calculate those
  values, and save them off.

  Args:
    sess: The current active TensorFlow Session.
    image_lists: Dictionary of training images for each label.
    image_dir: Root folder string of the subfolders containing the training
    images.
    bottleneck_dir: Folder string holding cached files of bottleneck values.
    jpeg_data_tensor: Input tensor for jpeg data from file.
    decoded_image_tensor: The output of decoding and resizing the image.
    resized_input_tensor: The input node of the recognition graph.
    bottleneck_tensor: The penultimate output layer of the graph.
    architecture: The name of the model architecture.

  Returns:
    Nothing.
  """
  how_many_bottlenecks = 0
  ensure_dir_exists(bottleneck_dir)
  for label_name, label_lists in image_lists.items():
    for category in ['training', 'testing', 'validation']:
      category_list = label_lists[category]
      for index, unused_base_name in enumerate(category_list):
        get_or_create_bottleneck(
            sess, image_lists, label_name, index, image_dir, category,
            bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
            resized_input_tensor, bottleneck_tensor, architecture)

        how_many_bottlenecks += 1
        if how_many_bottlenecks % 100 == 0:
          tf.logging.info(
              str(how_many_bottlenecks) + ' bottleneck files created.')


def get_random_cached_bottlenecks(sess, image_lists, how_many, category,
                                  bottleneck_dir, image_dir, jpeg_data_tensor,
                                  decoded_image_tensor, resized_input_tensor,
                                  bottleneck_tensor, architecture):
  """Retrieves bottleneck values for cached images.

  If no distortions are being applied, this function can retrieve the cached
  bottleneck values directly from disk for images. It picks a random set of
  images from the specified category.

  Args:
    sess: Current TensorFlow Session.
    image_lists: Dictionary of training images for each label.
    how_many: If positive, a random sample of this size will be chosen.
    If negative, all bottlenecks will be retrieved.
    category: Name string of which set to pull from - training, testing, or
    validation.
    bottleneck_dir: Folder string holding cached files of bottleneck values.
    image_dir: Root folder string of the subfolders containing the training
    images.
    jpeg_data_tensor: The layer to feed jpeg image data into.
    decoded_image_tensor: The output of decoding and resizing the image.
    resized_input_tensor: The input node of the recognition graph.
    bottleneck_tensor: The bottleneck output layer of the CNN graph.
    architecture: The name of the model architecture.

  Returns:
    List of bottleneck arrays, their corresponding ground truths, and the
    relevant filenames.
  """
  class_count = len(image_lists.keys())
  bottlenecks = []
  ground_truths = []
  filenames = []
  if how_many >= 0:
    # Retrieve a random sample of bottlenecks.
    for unused_i in range(how_many):
      label_index = random.randrange(class_count)
      label_name = list(image_lists.keys())[label_index]
      image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
      image_name = get_image_path(image_lists, label_name, image_index,
                                  image_dir, category)
      bottleneck = get_or_create_bottleneck(
          sess, image_lists, label_name, image_index, image_dir, category,
          bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
          resized_input_tensor, bottleneck_tensor, architecture)
      ground_truth = np.zeros(class_count, dtype=np.float32)
      ground_truth[label_index] = 1.0
      bottlenecks.append(bottleneck)
      ground_truths.append(ground_truth)
      filenames.append(image_name)
  else:
    # Retrieve all bottlenecks.
    for label_index, label_name in enumerate(image_lists.keys()):
      for image_index, image_name in enumerate(
          image_lists[label_name][category]):
        image_name = get_image_path(image_lists, label_name, image_index,
                                    image_dir, category)
        bottleneck = get_or_create_bottleneck(
            sess, image_lists, label_name, image_index, image_dir, category,
            bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
            resized_input_tensor, bottleneck_tensor, architecture)
        ground_truth = np.zeros(class_count, dtype=np.float32)
        ground_truth[label_index] = 1.0
        bottlenecks.append(bottleneck)
        ground_truths.append(ground_truth)
        filenames.append(image_name)
  return bottlenecks, ground_truths, filenames


def get_random_distorted_bottlenecks(
    sess, image_lists, how_many, category, image_dir, input_jpeg_tensor,
    distorted_image, resized_input_tensor, bottleneck_tensor):
  """Retrieves bottleneck values for training images, after distortions.

  If we're training with distortions like crops, scales, or flips, we have to
  recalculate the full model for every image, and so we can't use cached
  bottleneck values. Instead we find random images for the requested category,
  run them through the distortion graph, and then the full graph to get the
  bottleneck results for each.

  Args:
    sess: Current TensorFlow Session.
    image_lists: Dictionary of training images for each label.
    how_many: The integer number of bottleneck values to return.
    category: Name string of which set of images to fetch - training, testing,
    or validation.
    image_dir: Root folder string of the subfolders containing the training
    images.
    input_jpeg_tensor: The input layer we feed the image data to.
    distorted_image: The output node of the distortion graph.
    resized_input_tensor: The input node of the recognition graph.
    bottleneck_tensor: The bottleneck output layer of the CNN graph.

  Returns:
    List of bottleneck arrays and their corresponding ground truths.
  """
  class_count = len(image_lists.keys())
  bottlenecks = []
  ground_truths = []
  for unused_i in range(how_many):
    label_index = random.randrange(class_count)
    label_name = list(image_lists.keys())[label_index]
    image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
    image_path = get_image_path(image_lists, label_name, image_index, image_dir,
                                category)
    if not gfile.Exists(image_path):
      tf.logging.fatal('File does not exist %s', image_path)
    jpeg_data = gfile.FastGFile(image_path, 'rb').read()
    # Note that we materialize the distorted_image_data as a numpy array before
    # sending running inference on the image. This involves 2 memory copies and
    # might be optimized in other implementations.
    distorted_image_data = sess.run(distorted_image,
                                    {input_jpeg_tensor: jpeg_data})
    bottleneck_values = sess.run(bottleneck_tensor,
                                 {resized_input_tensor: distorted_image_data})
    bottleneck_values = np.squeeze(bottleneck_values)
    ground_truth = np.zeros(class_count, dtype=np.float32)
    ground_truth[label_index] = 1.0
    bottlenecks.append(bottleneck_values)
    ground_truths.append(ground_truth)
  return bottlenecks, ground_truths


def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0))


def add_input_distortions(flip_left_right, random_crop, random_scale,
                          random_brightness, input_width, input_height,
                          input_depth, input_mean, input_std):
  """Creates the operations to apply the specified distortions.

  During training it can help to improve the results if we run the images
  through simple distortions like crops, scales, and flips. These reflect the
  kind of variations we expect in the real world, and so can help train the
  model to cope with natural data more effectively. Here we take the supplied
  parameters and construct a network of operations to apply them to an image.

  Cropping
  ~~~~~~~~

  Cropping is done by placing a bounding box at a random position in the full
  image. The cropping parameter controls the size of that box relative to the
  input image. If it's zero, then the box is the same size as the input and no
  cropping is performed. If the value is 50%, then the crop box will be half the
  width and height of the input. In a diagram it looks like this:

  <       width         >
  +---------------------+
  |                     |
  |   width - crop%     |
  |    <      >         |
  |    +------+         |
  |    |      |         |
  |    |      |         |
  |    |      |         |
  |    +------+         |
  |                     |
  |                     |
  +---------------------+

  Scaling
  ~~~~~~~

  Scaling is a lot like cropping, except that the bounding box is always
  centered and its size varies randomly within the given range. For example if
  the scale percentage is zero, then the bounding box is the same size as the
  input and no scaling is applied. If it's 50%, then the bounding box will be in
  a random range between half the width and height and full size.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.
    graph.
    input_width: Horizontal size of expected input image to model.
    input_height: Vertical size of expected input image to model.
    input_depth: How many channels the expected input image should have.
    input_mean: Pixel value that should be zero in the image for the graph.
    input_std: How much to divide the pixel values by before recognition.

  Returns:
    The jpeg input layer and the distorted result tensor.
  """

  jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput')
  decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
  decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
  decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
  margin_scale = 1.0 + (random_crop / 100.0)
  resize_scale = 1.0 + (random_scale / 100.0)
  margin_scale_value = tf.constant(margin_scale)
  resize_scale_value = tf.random_uniform(tensor_shape.scalar(),
                                         minval=1.0,
                                         maxval=resize_scale)
  scale_value = tf.multiply(margin_scale_value, resize_scale_value)
  precrop_width = tf.multiply(scale_value, input_width)
  precrop_height = tf.multiply(scale_value, input_height)
  precrop_shape = tf.stack([precrop_height, precrop_width])
  precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)
  precropped_image = tf.image.resize_bilinear(decoded_image_4d,
                                              precrop_shape_as_int)
  precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0])
  cropped_image = tf.random_crop(precropped_image_3d,
                                 [input_height, input_width, input_depth])
  if flip_left_right:
    flipped_image = tf.image.random_flip_left_right(cropped_image)
  else:
    flipped_image = cropped_image
  brightness_min = 1.0 - (random_brightness / 100.0)
  brightness_max = 1.0 + (random_brightness / 100.0)
  brightness_value = tf.random_uniform(tensor_shape.scalar(),
                                       minval=brightness_min,
                                       maxval=brightness_max)
  brightened_image = tf.multiply(flipped_image, brightness_value)
  offset_image = tf.subtract(brightened_image, input_mean)
  mul_image = tf.multiply(offset_image, 1.0 / input_std)
  distort_result = tf.expand_dims(mul_image, 0, name='DistortResult')
  return jpeg_data, distort_result


def variable_summaries(var):
  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
  with tf.name_scope('summaries'):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(var))
    tf.summary.scalar('min', tf.reduce_min(var))
    tf.summary.histogram('histogram', var)


def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor,
                           bottleneck_tensor_size):
  """Adds a new softmax and fully-connected layer for training.

  We need to retrain the top layer to identify our new classes, so this function
  adds the right operations to the graph, along with some variables to hold the
  weights, and then sets up all the gradients for the backward pass.

  The set up for the softmax and fully-connected layers is based on:
  https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.html

  Args:
    class_count: Integer of how many categories of things we're trying to
    recognize.
    final_tensor_name: Name string for the new final node that produces results.
    bottleneck_tensor: The output of the main CNN graph.
    bottleneck_tensor_size: How many entries in the bottleneck vector.

  Returns:
    The tensors for the training and cross entropy results, and tensors for the
    bottleneck input and ground truth input.
  """
  with tf.name_scope('input'):
    bottleneck_input = tf.placeholder_with_default(
        bottleneck_tensor,
        shape=[None, bottleneck_tensor_size],
        name='BottleneckInputPlaceholder')

    ground_truth_input = tf.placeholder(tf.float32,
                                        [None, class_count],
                                        name='GroundTruthInput')

  # Organizing the following ops as `final_training_ops` so they're easier
  # to see in TensorBoard
  layer_name = 'final_training_ops'
  with tf.name_scope(layer_name):
    with tf.name_scope('weights'):
      initial_value = tf.truncated_normal(
          [bottleneck_tensor_size, class_count], stddev=0.001)

      layer_weights = tf.Variable(initial_value, name='final_weights')

      variable_summaries(layer_weights)
    with tf.name_scope('biases'):
      layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
      variable_summaries(layer_biases)
    with tf.name_scope('Wx_plus_b'):
      logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
      tf.summary.histogram('pre_activations', logits)

  final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
  tf.summary.histogram('activations', final_tensor)

  with tf.name_scope('cross_entropy'):
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        labels=ground_truth_input, logits=logits)
    with tf.name_scope('total'):
      cross_entropy_mean = tf.reduce_mean(cross_entropy)
  tf.summary.scalar('cross_entropy', cross_entropy_mean)

  with tf.name_scope('train'):
    optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
    train_step = optimizer.minimize(cross_entropy_mean)

  return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
          final_tensor)


def add_evaluation_step(result_tensor, ground_truth_tensor):
  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:
    result_tensor: The new final node that produces results.
    ground_truth_tensor: The node we feed ground truth data
    into.

  Returns:
    Tuple of (evaluation step, prediction).
  """
  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      prediction = tf.argmax(result_tensor, 1)
      correct_prediction = tf.equal(
          prediction, tf.argmax(ground_truth_tensor, 1))
    with tf.name_scope('accuracy'):
      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', evaluation_step)
  return evaluation_step, prediction


def save_graph_to_file(sess, graph, graph_file_name):
  output_graph_def = graph_util.convert_variables_to_constants(
      sess, graph.as_graph_def(), [FLAGS.final_tensor_name])
  with gfile.FastGFile(graph_file_name, 'wb') as f:
    f.write(output_graph_def.SerializeToString())
  return


def prepare_file_system():
  # Setup the directory we'll write summaries to for TensorBoard
  if tf.gfile.Exists(FLAGS.summaries_dir):
    tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
  tf.gfile.MakeDirs(FLAGS.summaries_dir)
  if FLAGS.intermediate_store_frequency > 0:
    ensure_dir_exists(FLAGS.intermediate_output_graphs_dir)
  return


def create_model_info(architecture):
  """Given the name of a model architecture, returns information about it.

  There are different base image recognition pretrained models that can be
  retrained using transfer learning, and this function translates from the name
  of a model to the attributes that are needed to download and train with it.

  Args:
    architecture: Name of a model architecture.

  Returns:
    Dictionary of information about the model, or None if the name isn't
    recognized

  Raises:
    ValueError: If architecture name is unknown.
  """
  architecture = architecture.lower()
  if architecture == 'inception_v3':
    # pylint: disable=line-too-long
    data_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
    # pylint: enable=line-too-long
    bottleneck_tensor_name = 'pool_3/_reshape:0'
    bottleneck_tensor_size = 2048
    input_width = 299
    input_height = 299
    input_depth = 3
    resized_input_tensor_name = 'Mul:0'
    model_file_name = 'classify_image_graph_def.pb'
    input_mean = 128
    input_std = 128
  elif architecture.startswith('mobilenet_'):
    parts = architecture.split('_')
    if len(parts) != 3 and len(parts) != 4:
      tf.logging.error("Couldn't understand architecture name '%s'",
                       architecture)
      return None
    version_string = parts[1]
    if (version_string != '1.0' and version_string != '0.75' and
        version_string != '0.50' and version_string != '0.25'):
      tf.logging.error(
          """"The Mobilenet version should be '1.0', '0.75', '0.50', or '0.25',
  but found '%s' for architecture '%s'""",
          version_string, architecture)
      return None
    size_string = parts[2]
    if (size_string != '224' and size_string != '192' and
        size_string != '160' and size_string != '128'):
      tf.logging.error(
          """The Mobilenet input size should be '224', '192', '160', or '128',
 but found '%s' for architecture '%s'""",
          size_string, architecture)
      return None
    if len(parts) == 3:
      is_quantized = False
    else:
      if parts[3] != 'quantized':
        tf.logging.error(
            "Couldn't understand architecture suffix '%s' for '%s'", parts[3],
            architecture)
        return None
      is_quantized = True
    data_url = 'http://download.tensorflow.org/models/mobilenet_v1_'
    data_url += version_string + '_' + size_string + '_frozen.tgz'
    bottleneck_tensor_name = 'MobilenetV1/Predictions/Reshape:0'
    bottleneck_tensor_size = 1001
    input_width = int(size_string)
    input_height = int(size_string)
    input_depth = 3
    resized_input_tensor_name = 'input:0'
    if is_quantized:
      model_base_name = 'quantized_graph.pb'
    else:
      model_base_name = 'frozen_graph.pb'
    model_dir_name = 'mobilenet_v1_' + version_string + '_' + size_string
    model_file_name = os.path.join(model_dir_name, model_base_name)
    input_mean = 127.5
    input_std = 127.5
  else:
    tf.logging.error("Couldn't understand architecture name '%s'", architecture)
    raise ValueError('Unknown architecture', architecture)

  return {
      'data_url': data_url,
      'bottleneck_tensor_name': bottleneck_tensor_name,
      'bottleneck_tensor_size': bottleneck_tensor_size,
      'input_width': input_width,
      'input_height': input_height,
      'input_depth': input_depth,
      'resized_input_tensor_name': resized_input_tensor_name,
      'model_file_name': model_file_name,
      'input_mean': input_mean,
      'input_std': input_std,
  }


def add_jpeg_decoding(input_width, input_height, input_depth, input_mean,
                      input_std):
  """Adds operations that perform JPEG decoding and resizing to the graph..

  Args:
    input_width: Desired width of the image fed into the recognizer graph.
    input_height: Desired width of the image fed into the recognizer graph.
    input_depth: Desired channels of the image fed into the recognizer graph.
    input_mean: Pixel value that should be zero in the image for the graph.
    input_std: How much to divide the pixel values by before recognition.

  Returns:
    Tensors for the node to feed JPEG data into, and the output of the
      preprocessing steps.
  """
  jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')
  decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)
  decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
  decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
  resize_shape = tf.stack([input_height, input_width])
  resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
  resized_image = tf.image.resize_bilinear(decoded_image_4d,
                                           resize_shape_as_int)
  offset_image = tf.subtract(resized_image, input_mean)
  mul_image = tf.multiply(offset_image, 1.0 / input_std)
  return jpeg_data, mul_image


def main(_):
  # Needed to make sure the logging output is visible.
  # See https://github.com/tensorflow/tensorflow/issues/3047
  tf.logging.set_verbosity(tf.logging.INFO)

  # Prepare necessary directories that can be used during training
  prepare_file_system()

  # Gather information about the model architecture we'll be using.
  model_info = create_model_info(FLAGS.architecture)
  if not model_info:
    tf.logging.error('Did not recognize architecture flag')
    return -1

  # Set up the pre-trained graph.
  maybe_download_and_extract(model_info['data_url'])
  graph, bottleneck_tensor, resized_image_tensor = (
      create_model_graph(model_info))

  # Look at the folder structure, and create lists of all the images.
  image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,
                                   FLAGS.validation_percentage)
  class_count = len(image_lists.keys())
  if class_count == 0:
    tf.logging.error('No valid folders of images found at ' + FLAGS.image_dir)
    return -1
  if class_count == 1:
    tf.logging.error('Only one valid folder of images found at ' +
                     FLAGS.image_dir +
                     ' - multiple classes are needed for classification.')
    return -1

  # See if the command-line flags mean we're applying any distortions.
  do_distort_images = should_distort_images(
      FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
      FLAGS.random_brightness)

  with tf.Session(graph=graph) as sess:
    # Set up the image decoding sub-graph.
    jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding(
        model_info['input_width'], model_info['input_height'],
        model_info['input_depth'], model_info['input_mean'],
        model_info['input_std'])

    if do_distort_images:
      # We will be applying distortions, so setup the operations we'll need.
      (distorted_jpeg_data_tensor,
       distorted_image_tensor) = add_input_distortions(
           FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
           FLAGS.random_brightness, model_info['input_width'],
           model_info['input_height'], model_info['input_depth'],
           model_info['input_mean'], model_info['input_std'])
    else:
      # We'll make sure we've calculated the 'bottleneck' image summaries and
      # cached them on disk.
      cache_bottlenecks(sess, image_lists, FLAGS.image_dir,
                        FLAGS.bottleneck_dir, jpeg_data_tensor,
                        decoded_image_tensor, resized_image_tensor,
                        bottleneck_tensor, FLAGS.architecture)

    # Add the new layer that we'll be training.
    (train_step, cross_entropy, bottleneck_input, ground_truth_input,
     final_tensor) = add_final_training_ops(
         len(image_lists.keys()), FLAGS.final_tensor_name, bottleneck_tensor,
         model_info['bottleneck_tensor_size'])

    # Create the operations we need to evaluate the accuracy of our new layer.
    evaluation_step, prediction = add_evaluation_step(
        final_tensor, ground_truth_input)

    # Merge all the summaries and write them out to the summaries_dir
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                         sess.graph)

    validation_writer = tf.summary.FileWriter(
        FLAGS.summaries_dir + '/validation')

    # Set up all our weights to their initial default values.
    init = tf.global_variables_initializer()
    sess.run(init)

    # Run the training for as many cycles as requested on the command line.
    for i in range(FLAGS.how_many_training_steps):
      # Get a batch of input bottleneck values, either calculated fresh every
      # time with distortions applied, or from the cache stored on disk.
      if do_distort_images:
        (train_bottlenecks,
         train_ground_truth) = get_random_distorted_bottlenecks(
             sess, image_lists, FLAGS.train_batch_size, 'training',
             FLAGS.image_dir, distorted_jpeg_data_tensor,
             distorted_image_tensor, resized_image_tensor, bottleneck_tensor)
      else:
        (train_bottlenecks,
         train_ground_truth, _) = get_random_cached_bottlenecks(
             sess, image_lists, FLAGS.train_batch_size, 'training',
             FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
             decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
             FLAGS.architecture)
      # Feed the bottlenecks and ground truth into the graph, and run a training
      # step. Capture training summaries for TensorBoard with the `merged` op.
      train_summary, _ = sess.run(
          [merged, train_step],
          feed_dict={bottleneck_input: train_bottlenecks,
                     ground_truth_input: train_ground_truth})
      train_writer.add_summary(train_summary, i)

      # Every so often, print out how well the graph is training.
      is_last_step = (i + 1 == FLAGS.how_many_training_steps)
      if (i % FLAGS.eval_step_interval) == 0 or is_last_step:
        train_accuracy, cross_entropy_value = sess.run(
            [evaluation_step, cross_entropy],
            feed_dict={bottleneck_input: train_bottlenecks,
                       ground_truth_input: train_ground_truth})
        tf.logging.info('%s: Step %d: Train accuracy = %.1f%%' %
                        (datetime.now(), i, train_accuracy * 100))
        tf.logging.info('%s: Step %d: Cross entropy = %f' %
                        (datetime.now(), i, cross_entropy_value))
        validation_bottlenecks, validation_ground_truth, _ = (
            get_random_cached_bottlenecks(
                sess, image_lists, FLAGS.validation_batch_size, 'validation',
                FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
                decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
                FLAGS.architecture))
        # Run a validation step and capture training summaries for TensorBoard
        # with the `merged` op.
        validation_summary, validation_accuracy = sess.run(
            [merged, evaluation_step],
            feed_dict={bottleneck_input: validation_bottlenecks,
                       ground_truth_input: validation_ground_truth})
        validation_writer.add_summary(validation_summary, i)
        tf.logging.info('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' %
                        (datetime.now(), i, validation_accuracy * 100,
                         len(validation_bottlenecks)))

      # Store intermediate results
      intermediate_frequency = FLAGS.intermediate_store_frequency

      if (intermediate_frequency > 0 and (i % intermediate_frequency == 0)
          and i > 0):
        intermediate_file_name = (FLAGS.intermediate_output_graphs_dir +
                                  'intermediate_' + str(i) + '.pb')
        tf.logging.info('Save intermediate result to : ' +
                        intermediate_file_name)
        save_graph_to_file(sess, graph, intermediate_file_name)

    # We've completed all our training, so run a final test evaluation on
    # some new images we haven't used before.
    test_bottlenecks, test_ground_truth, test_filenames = (
        get_random_cached_bottlenecks(
            sess, image_lists, FLAGS.test_batch_size, 'testing',
            FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
            decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
            FLAGS.architecture))
    test_accuracy, predictions = sess.run(
        [evaluation_step, prediction],
        feed_dict={bottleneck_input: test_bottlenecks,
                   ground_truth_input: test_ground_truth})
    tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %
                    (test_accuracy * 100, len(test_bottlenecks)))

    if FLAGS.print_misclassified_test_images:
      tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')
      for i, test_filename in enumerate(test_filenames):
        if predictions[i] != test_ground_truth[i].argmax():
          tf.logging.info('%70s  %s' %
                          (test_filename,
                           list(image_lists.keys())[predictions[i]]))

    # Write out the trained graph and labels with the weights stored as
    # constants.
    save_graph_to_file(sess, graph, FLAGS.output_graph)
    with gfile.FastGFile(FLAGS.output_labels, 'w') as f:
      f.write('\n'.join(image_lists.keys()) + '\n')


if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument(
      '--image_dir',
      type=str,
      default='',
      help='Path to folders of labeled images.'
  )
  parser.add_argument(
      '--output_graph',
      type=str,
      default='/tmp/output_graph.pb',
      help='Where to save the trained graph.'
  )
  parser.add_argument(
      '--intermediate_output_graphs_dir',
      type=str,
      default='/tmp/intermediate_graph/',
      help='Where to save the intermediate graphs.'
  )
  parser.add_argument(
      '--intermediate_store_frequency',
      type=int,
      default=0,
      help="""\
         How many steps to store intermediate graph. If "0" then will not
         store.\
      """
  )
  parser.add_argument(
      '--output_labels',
      type=str,
      default='/tmp/output_labels.txt',
      help='Where to save the trained graph\'s labels.'
  )
  parser.add_argument(
      '--summaries_dir',
      type=str,
      default='/tmp/retrain_logs',
      help='Where to save summary logs for TensorBoard.'
  )
  parser.add_argument(
      '--how_many_training_steps',
      type=int,
      default=4000,
      help='How many training steps to run before ending.'
  )
  parser.add_argument(
      '--learning_rate',
      type=float,
      default=0.01,
      help='How large a learning rate to use when training.'
  )
  parser.add_argument(
      '--testing_percentage',
      type=int,
      default=10,
      help='What percentage of images to use as a test set.'
  )
  parser.add_argument(
      '--validation_percentage',
      type=int,
      default=10,
      help='What percentage of images to use as a validation set.'
  )
  parser.add_argument(
      '--eval_step_interval',
      type=int,
      default=10,
      help='How often to evaluate the training results.'
  )
  parser.add_argument(
      '--train_batch_size',
      type=int,
      default=100,
      help='How many images to train on at a time.'
  )
  parser.add_argument(
      '--test_batch_size',
      type=int,
      default=-1,
      help="""\
      How many images to test on. This test set is only used once, to evaluate
      the final accuracy of the model after training completes.
      A value of -1 causes the entire test set to be used, which leads to more
      stable results across runs.\
      """
  )
  parser.add_argument(
      '--validation_batch_size',
      type=int,
      default=100,
      help="""\
      How many images to use in an evaluation batch. This validation set is
      used much more often than the test set, and is an early indicator of how
      accurate the model is during training.
      A value of -1 causes the entire validation set to be used, which leads to
      more stable results across training iterations, but may be slower on large
      training sets.\
      """
  )
  parser.add_argument(
      '--print_misclassified_test_images',
      default=False,
      help="""\
      Whether to print out a list of all misclassified test images.\
      """,
      action='store_true'
  )
  parser.add_argument(
      '--model_dir',
      type=str,
      default='/tmp/imagenet',
      help="""\
      Path to classify_image_graph_def.pb,
      imagenet_synset_to_human_label_map.txt, and
      imagenet_2012_challenge_label_map_proto.pbtxt.\
      """
  )
  parser.add_argument(
      '--bottleneck_dir',
      type=str,
      default='/tmp/bottleneck',
      help='Path to cache bottleneck layer values as files.'
  )
  parser.add_argument(
      '--final_tensor_name',
      type=str,
      default='final_result',
      help="""\
      The name of the output classification layer in the retrained graph.\
      """
  )
  parser.add_argument(
      '--flip_left_right',
      default=False,
      help="""\
      Whether to randomly flip half of the training images horizontally.\
      """,
      action='store_true'
  )
  parser.add_argument(
      '--random_crop',
      type=int,
      default=0,
      help="""\
      A percentage determining how much of a margin to randomly crop off the
      training images.\
      """
  )
  parser.add_argument(
      '--random_scale',
      type=int,
      default=0,
      help="""\
      A percentage determining how much to randomly scale up the size of the
      training images by.\
      """
  )
  parser.add_argument(
      '--random_brightness',
      type=int,
      default=0,
      help="""\
      A percentage determining how much to randomly multiply the training image
      input pixels up or down by.\
      """
  )
  parser.add_argument(
      '--architecture',
      type=str,
      default='inception_v3',
      help="""\
      Which model architecture to use. 'inception_v3' is the most accurate, but
      also the slowest. For faster or smaller models, chose a MobileNet with the
      form 'mobilenet_<parameter size>_<input_size>[_quantized]'. For example,
      'mobilenet_1.0_224' will pick a model that is 17 MB in size and takes 224
      pixel input images, while 'mobilenet_0.25_128_quantized' will choose a much
      less accurate, but smaller and faster network that's 920 KB on disk and
      takes 128x128 images. See https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
      for more information on Mobilenet.\
      """)
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)