aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/docs_src/tutorials/pdes.md
blob: 425e8d7084e7f2505b7a3013b431345b72b38cf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Partial Differential Equations

TensorFlow isn't just for machine learning.  Here we give a (somewhat
pedestrian) example of using TensorFlow for simulating the behavior of a
[partial differential equation](
https://en.wikipedia.org/wiki/Partial_differential_equation).
We'll simulate the surface of square pond as a few raindrops land on it.


## Basic Setup

A few imports we'll need.

```python
#Import libraries for simulation
import tensorflow as tf
import numpy as np

#Imports for visualization
import PIL.Image
from io import BytesIO
from IPython.display import clear_output, Image, display
```

A function for displaying the state of the pond's surface as an image.

```python
def DisplayArray(a, fmt='jpeg', rng=[0,1]):
  """Display an array as a picture."""
  a = (a - rng[0])/float(rng[1] - rng[0])*255
  a = np.uint8(np.clip(a, 0, 255))
  f = BytesIO()
  PIL.Image.fromarray(a).save(f, fmt)
  clear_output(wait = True)
  display(Image(data=f.getvalue()))
```

Here we start an interactive TensorFlow session for convenience in playing
around.  A regular session would work as well if we were doing this in an
executable .py file.

```python
sess = tf.InteractiveSession()
```

## Computational Convenience Functions


```python
def make_kernel(a):
  """Transform a 2D array into a convolution kernel"""
  a = np.asarray(a)
  a = a.reshape(list(a.shape) + [1,1])
  return tf.constant(a, dtype=1)

def simple_conv(x, k):
  """A simplified 2D convolution operation"""
  x = tf.expand_dims(tf.expand_dims(x, 0), -1)
  y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
  return y[0, :, :, 0]

def laplace(x):
  """Compute the 2D laplacian of an array"""
  laplace_k = make_kernel([[0.5, 1.0, 0.5],
                           [1.0, -6., 1.0],
                           [0.5, 1.0, 0.5]])
  return simple_conv(x, laplace_k)
```

## Define the PDE

Our pond is a perfect 500 x 500 square, as is the case for most ponds found in
nature.

```python
N = 500
```

Here we create our pond and hit it with some rain drops.

```python
# Initial Conditions -- some rain drops hit a pond

# Set everything to zero
u_init = np.zeros([N, N], dtype=np.float32)
ut_init = np.zeros([N, N], dtype=np.float32)

# Some rain drops hit a pond at random points
for n in range(40):
  a,b = np.random.randint(0, N, 2)
  u_init[a,b] = np.random.uniform()

DisplayArray(u_init, rng=[-0.1, 0.1])
```

![jpeg](https://www.tensorflow.org/images/pde_output_1.jpg)


Now let's specify the details of the differential equation.


```python
# Parameters:
# eps -- time resolution
# damping -- wave damping
eps = tf.placeholder(tf.float32, shape=())
damping = tf.placeholder(tf.float32, shape=())

# Create variables for simulation state
U  = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

# Discretized PDE update rules
U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)

# Operation to update the state
step = tf.group(
  U.assign(U_),
  Ut.assign(Ut_))
```

## Run The Simulation

This is where it gets fun -- running time forward with a simple for loop.

```python
# Initialize state to initial conditions
tf.global_variables_initializer().run()

# Run 1000 steps of PDE
for i in range(1000):
  # Step simulation
  step.run({eps: 0.03, damping: 0.04})
  DisplayArray(U.eval(), rng=[-0.1, 0.1])
```

![jpeg](../images/pde_output_2.jpg)

Look! Ripples!