aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/docs_src/performance/xla/operation_semantics.md
blob: ccced8792ef637d1a339ee8b960ab29b4e6dad73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
# Operation Semantics

The following describes the semantics of operations defined in the
[`ComputationBuilder`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h)
interface. Typically, these operations map one-to-one to operations defined in
the RPC interface in
[`xla_data.proto`](https://www.tensorflow.org/code/tensorflow/compiler/xla/xla_data.proto).

A note on nomenclature: the generalized data type XLA deals with is an
N-dimensional array holding elements of some uniform type (such as 32-bit
float). Throughout the documentation, *array* is used to denote an
arbitrary-dimensional array. For convenience, special cases have more specific
and familiar names; for example a *vector* is a 1-dimensional array and a
*matrix* is a 2-dimensional array.

## Broadcast

See also
[`ComputationBuilder::Broadcast`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Adds dimensions to an array by duplicating the data in the array.

<b> `Broadcast(operand, broadcast_sizes)` </b>

Arguments         | Type                    | Semantics
----------------- | ----------------------- | -------------------------------
`operand`         | `ComputationDataHandle` | The array to duplicate
`broadcast_sizes` | `ArraySlice<int64>`     | The sizes of the new dimensions

The new dimensions are inserted on the left, i.e. if `broadcast_sizes` has
values `{a0, ..., aN}` and the operand shape has dimensions `{b0, ..., bM}` then
the shape of the output has dimensions `{a0, ..., aN, b0, ..., bM}`.

The new dimensions index into copies of the operand, i.e.

```
output[i0, ..., iN, j0, ..., jM] = operand[j0, ..., jM]
```

For example, if `operand` is a scalar `f32` with value `2.0f`, and
`broadcast_sizes` is `{2, 3}`, then the result will be an array with shape
`f32[2, 3]` and all the values in the result will be `2.0f`.

## Call

See also
[`ComputationBuilder::Call`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Invokes a computation with the given arguments.

<b> `Call(computation, args...)` </b>

| Arguments     | Type                     | Semantics                        |
| ------------- | ------------------------ | -------------------------------- |
| `computation` | `Computation`            | computation of type `T_0, T_1,   |
:               :                          : ..., T_N -> S` with N parameters :
:               :                          : of arbitrary type                :
| `args`        | sequence of N            | N arguments of arbitrary type    |
:               : `ComputationDataHandle`s :                                  :

The arity and types of the `args` must match the parameters of the
`computation`. It is allowed to have no `args`.

## Clamp

See also
[`ComputationBuilder::Clamp`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Clamps an operand to within the range between a minimum and maximum value.

<b> `Clamp(computation, args...)` </b>

| Arguments     | Type                    | Semantics                        |
| ------------- | ----------------------- | -------------------------------- |
| `computation` | `Computation`           | computation of type `T_0, T_1,   |
:               :                         : ..., T_N -> S` with N parameters :
:               :                         : of arbitrary type                :
| `operand`     | `ComputationDataHandle` | array of type T                  |
| `min`         | `ComputationDataHandle` | array of type T                  |
| `max`         | `ComputationDataHandle` | array of type T                  |

Given an operand and minimum and maximum values, returns the operand if it is in
the range between the minimum and maximum, else returns the minimum value if the
operand is below this range or the maximum value if the operand is above this
range.  That is, `clamp(x, a, b) =  max(min(x, a), b)`.

All three arrays must be the same shape. Alternately, as a restricted form of
[broadcasting](broadcasting.md), `min` and/or `max` can be a scalar of type `T`.

Example with scalar `min` and `max`:

```
let operand: s32[3] = {-1, 5, 9};
let min: s32 = 0;
let max: s32 = 6;
==>
Clamp(operand, min, max) = s32[3]{0, 5, 6};
```

## Collapse

See also
[`ComputationBuilder::Collapse`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h)
and the @{tf.reshape} operation.

Collapses dimensions of an array into one dimension.

<b> `Collapse(operand, dimensions)` </b>

| Arguments    | Type                    | Semantics                           |
| ------------ | ----------------------- | ----------------------------------- |
| `operand`    | `ComputationDataHandle` | array of type T                     |
| `dimensions` | `int64` vector          | in-order, consecutive subset of T's |
:              :                         : dimensions.                         :

Collapse replaces the given subset of the operand's dimensions by a single
dimension. The input arguments are an arbitrary array of type T and a
compile-time-constant vector of dimension indices. The dimension indices must be
an in-order (low to high dimension numbers), consecutive subset of T's
dimensions. Thus, {0, 1, 2}, {0, 1}, or {1, 2} are all valid dimension sets, but
{1, 0} or {0, 2} are not. They are replaced by a single new dimension, in the
same position in the dimension sequence as those they replace, with the new
dimension size equal to the product of original dimension sizes. The lowest
dimension number in `dimensions` is the slowest varying dimension (most major)
in the loop nest which collapses these dimension, and the highest dimension
number is fastest varying (most minor). See the @{tf.reshape} operator
if more general collapse ordering is needed.

For example, let v be an array of 24 elements:

```
let v = f32[4x2x3] {{{10, 11, 12},  {15, 16, 17}},
                    {{20, 21, 22},  {25, 26, 27}},
                    {{30, 31, 32},  {35, 36, 37}},
                    {{40, 41, 42},  {45, 46, 47}}};

// Collapse to a single dimension, leaving one dimension.
let v012 = Collapse(v, {0,1,2});
then v012 == f32[24] {10, 11, 12, 15, 16, 17,
                      20, 21, 22, 25, 26, 27,
                      30, 31, 32, 35, 36, 37,
                      40, 41, 42, 45, 46, 47};

// Collapse the two lower dimensions, leaving two dimensions.
let v01 = Collapse(v, {0,1});
then v01 == f32[4x6] {{10, 11, 12, 15, 16, 17},
                      {20, 21, 22, 25, 26, 27},
                      {30, 31, 32, 35, 36, 37},
                      {40, 41, 42, 45, 46, 47}};

// Collapse the two higher dimensions, leaving two dimensions.
let v12 = Collapse(v, {1,2});
then v12 == f32[8x3] {{10, 11, 12},
                      {15, 16, 17},
                      {20, 21, 22},
                      {25, 26, 27},
                      {30, 31, 32},
                      {35, 36, 37},
                      {40, 41, 42},
                      {45, 46, 47}};

```

## Concatenate

See also
[`ComputationBuilder::ConcatInDim`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Concatenate composes an array from multiple array operands. The array is of the
same rank as each of the input array operands (which must be of the same rank as
each other) and contains the arguments in the order that they were specified.

<b> `Concatenate(operands..., dimension)` </b>

| Arguments   | Type                    | Semantics                            |
| ----------- | ----------------------- | ------------------------------------ |
| `operands`  | sequence of N           | N arrays of type T with dimensions   |
:             : `ComputationDataHandle` : [L0, L1, ...]. Requires N >= 1.      :
| `dimension` | `int64`                 | A value in the interval `[0, N)`     |
:             :                         : that names the dimension to be       :
:             :                         : concatenated between the `operands`. :

With the exception of `dimension` all dimensions must be the same. This is
because XLA does not support "ragged" arrays Also note that rank-0 values
cannot be concatenated (as it's impossible to name the dimension along which the
concatenation occurs).

1-dimensional example:

```
Concat({{2, 3}, {4, 5}, {6, 7}}, 0)
>>> {2, 3, 4, 5, 6, 7}
```

2-dimensional example:

```
let a = {
  {1, 2},
  {3, 4},
  {5, 6},
};
let b = {
  {7, 8},
};
Concat({a, b}, 0)
>>> {
  {1, 2},
  {3, 4},
  {5, 6},
  {7, 8},
}
```

Diagram:
<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="https://www.tensorflow.org/images/ops_concatenate.png">
</div>

## ConvertElementType

See also
[`ComputationBuilder::ConvertElementType`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Similar to an element-wise `static_cast` in C++, performs an element-wise
conversion operation from a data shape to a target shape. The dimensions must
match, and the conversion is an element-wise one; e.g. `s32` elements become
`f32` elements via an `s32`-to-`f32` conversion routine.

<b> `ConvertElementType(operand, new_element_type)` </b>

Arguments          | Type                    | Semantics
------------------ | ----------------------- | ---------------------------
`operand`          | `ComputationDataHandle` | array of type T with dims D
`new_element_type` | `PrimitiveType`         | type U

If the dimensions of the operand and the target shape do not match, or an
invalid conversion is requested (e.g. to/from a tuple) an error will be
produced.

A conversion such as `T=s32` to `U=f32` will perform a normalizing int-to-float
conversion routine such as round-to-nearest-even.

> Note: The precise float-to-int and visa-versa conversions are currently
> unspecified, but may become additional arguments to the convert operation in
> the future.  Not all possible conversions have been implemented for all
>targets.

```
let a: s32[3] = {0, 1, 2};
let b: f32[3] = convert(a, f32);
then b == f32[3]{0.0, 1.0, 2.0}
```

## Conv (convolution)

See also
[`ComputationBuilder::Conv`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

As ConvWithGeneralPadding, but the padding is specified in a short-hand way as
either SAME or VALID. SAME padding pads the input (`lhs`) with zeroes so that
the output has the same shape as the input when not taking striding into
account. VALID padding simply means no padding.

## ConvWithGeneralPadding (convolution)

See also
[`ComputationBuilder::ConvWithGeneralPadding`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Computes a convolution of the kind used in neural networks. Here, a convolution
can be thought of as a n-dimensional window moving across a n-dimensional base
area and a computation is performed for each possible position of the window.

| Arguments        | Type                    | Semantics                     |
| ---------------- | ----------------------- | ----------------------------- |
| `lhs`            | `ComputationDataHandle` | rank n+2 array of inputs      |
| `rhs`            | `ComputationDataHandle` | rank n+2 array of kernel      |
:                  :                         : weights                       :
| `window_strides` | `ArraySlice<int64>`     | n-d array of kernel strides   |
| `padding`        | `ArraySlice<pair<int64, | n-d array of (low, high)      |
:                  : int64>>`                : padding                       :
| `lhs_dilation`   | `ArraySlice<int64>`     | n-d lhs dilation factor array |
| `rhs_dilation`   | `ArraySlice<int64>`     | n-d rhs dilation factor array |

Let n be the number of spatial dimensions. The `lhs` argument is a rank n+2
array describing the base area. This is called the input, even though of course
the rhs is also an input. In a neural network, these are the input activations.
The n+2 dimensions are, in this order:

*   `batch`: Each coordinate in this dimension represents an independent input
    for which convolution is carried out.
*   `z/depth/features`: Each (y,x) position in the base area has a vector
    associated to it, which goes into this dimension.
*   `spatial_dims`: Describes the `n` spatial dimensions that define the base
    area that the window moves across.

The `rhs` argument is a rank n+2 array describing the convolutional
filter/kernel/window. The dimensions are, in this order:

*   `output-z`: The `z` dimension of the output.
*   `input-z`: The size of this dimension should equal the size of the `z`
    dimension in lhs.
*   `spatial_dims`: Describes the `n` spatial dimensions that define the n-d
    window that moves across the base area.

The `window_strides` argument specifies the stride of the convolutional window
in the spatial dimensions. For example, if the stride in a the first spatial
dimension is 3, then the window can only be placed at coordinates where the
first spatial index is divisible by 3.

The `padding` argument specifies the amount of zero padding to be applied to the
base area. The amount of padding can be negative -- the absolute value of
negative padding indicates the number of elements to remove from the specified
dimension before doing the convolution. `padding[0]` specifies the padding for
dimension `y` and `padding[1]` specifies the padding for dimension `x`. Each
pair has the low padding as the first element and the high padding as the second
element. The low padding is applied in the direction of lower indices while the
high padding is applied in the direction of higher indices. For example, if
`padding[1]` is `(2,3)` then there will be a padding by 2 zeroes on the left and
by 3 zeroes on the right in the second spatial dimension. Using padding is
equivalent to inserting those same zero values into the input (`lhs`) before
doing the convolution.

The `lhs_dilation` and `rhs_dilation` arguments specify the dilation factor to
be applied to the lhs and rhs, respectively, in each spatial dimension. If the
dilation factor in a spatial dimension is d, then d-1 holes are implicitly
placed between each of the entries in that dimension, increasing the size of the
array. The holes are filled with a no-op value, which for convolution means
zeroes.

Dilation of the rhs is also called atrous convolution. For more details, see
@{tf.nn.atrous_conv2d}. Dilation of the lhs is also called transposed
convolution. For more details, see @{tf.nn.conv2d_transpose}.

The output shape has these dimensions, in this order:

*   `batch`: Same size as `batch` on the input (`lhs`).
*   `z`: Same size as `output-z` on the kernel (`rhs`).
*   `spatial_dims`: One value for each valid placement of the convolutional
    window.

The valid placements of the convolutional window are determined by the strides
and the size of the base area after padding.

To describe what a convolution does, consider a 2d convolution, and pick some
fixed `batch`, `z`, `y`, `x` coordinates in the output. Then `(y,x)` is a
position of a corner of the window within the base area (e.g. the upper left
corner, depending on how you interpret the spatial dimensions). We now have a 2d
window, taken from the base area, where each 2d point is associated to a 1d
vector, so we get a 3d box. From the convolutional kernel, since we fixed the
output coordinate `z`, we also have a 3d box. The two boxes have the same
dimensions, so we can take the sum of the element-wise products between the two
boxes (similar to a dot product). That is the output value.

Note that if `output-z` is e.g., 5, then each position of the window produces 5
values in the output into the `z` dimension of the output. These values differ
in what part of the convolutional kernel is used - there is a separate 3d box of
values used for each `output-z` coordinate. So you could think of it as 5
separate convolutions with a different filter for each of them.

Here is pseudo-code for a 2d convolution with padding and striding:

```
for (b, oz, oy, ox) {  // output coordinates
  value = 0;
  for (iz, ky, kx) {  // kernel coordinates and input z
    iy = oy*stride_y + ky - pad_low_y;
    ix = ox*stride_x + kx - pad_low_x;
    if ((iy, ix) inside the base area considered without padding) {
      value += input(b, iz, iy, ix) * kernel(oz, iz, ky, kx);
    }
  }
  output(b, oz, oy, ox) = value;
}
```

## CrossReplicaSum

See also
[`ComputationBuilder::CrossReplicaSum`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Computes a sum across replicas.

<b> `CrossReplicaSum(operand)` </b>

| Arguments    | Type                    | Semantics                          |
| ------------ | ----------------------- | ---------------------------------- |
| `operand`    | `ComputationDataHandle` | Array to sum across replicas.      |

The output shape is the same as the input shape. For example, if there are two
replicas and the operand has the value `(1.0, 2.5)` and `(3.0, 5.1)`
respectively on the two replicas, then the output value from this op will be
`(4.0, 7.6)` on both replicas.

Computing the result of CrossReplicaSum requires having one input from each
replica, so if one replica executes a CrossReplicaSum node more times than
another, then the former replica will wait forever. Since the replicas are all
running the same program, there are not a lot of ways for that to happen, but it
is possible when a while loop's condition depends on data from infeed and the
data that is infed causes the while loop to iterate more times on one replica
than another.

## CustomCall

See also
[`ComputationBuilder::CustomCall`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Call a user-provided function within a computation.

<b> `CustomCall(target_name, args..., shape)` </b>

| Arguments     | Type                     | Semantics                        |
| ------------- | ------------------------ | -------------------------------- |
| `target_name` | `string`                 | Name of the function. A call     |
:               :                          : instruction will be emitted      :
:               :                          : which targets this symbol name.  :
| `args`        | sequence of N            | N arguments of arbitrary type,   |
:               : `ComputationDataHandle`s : which will be passed to the      :
:               :                          : function.                        :
| `shape`       | `Shape`                  | Output shape of the function     |

The function signature is the same, regardless of the arity or type of args:

```
extern "C" void target_name(void* out, void** in);
```

For example, if CustomCall is used as follows:

```
let x = f32[2] {1,2};
let y = f32[2x3] {{10, 20, 30}, {40, 50, 60}};

CustomCall("myfunc", {x, y}, f32[3x3])
```

Here is an example of an implementation of `myfunc`:

```
extern "C" void myfunc(void* out, void** in) {
  float (&x)[2] = *static_cast<float(*)[2]>(in[0]);
  float (&y)[2][3] = *static_cast<float(*)[2][3]>(in[1]);
  EXPECT_EQ(1, x[0]);
  EXPECT_EQ(2, x[1]);
  EXPECT_EQ(10, y[0][0]);
  EXPECT_EQ(20, y[0][1]);
  EXPECT_EQ(30, y[0][2]);
  EXPECT_EQ(40, y[1][0]);
  EXPECT_EQ(50, y[1][1]);
  EXPECT_EQ(60, y[1][2]);
  float (&z)[3][3] = *static_cast<float(*)[3][3]>(out);
  z[0][0] = x[1] + y[1][0];
  // ...
}
```

The user-provided function must not have side-effects and its execution must be
idempotent.

> Note: The opaque nature of the user-provided function restricts optimization
> opportunities for the compiler. Try to express your computation in terms of
> native XLA ops whenever possible; only use CustomCall as a last resort.

## Dot

See also
[`ComputationBuilder::Dot`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> `Dot(lhs, rhs)` </b>

Arguments | Type                    | Semantics
--------- | ----------------------- | ---------------
`lhs`     | `ComputationDataHandle` | array of type T
`rhs`     | `ComputationDataHandle` | array of type T

The exact semantics of this operation depend on the ranks of the operands:

| Input                   | Output                | Semantics               |
| ----------------------- | --------------------- | ----------------------- |
| vector [n] `dot` vector | scalar                | vector dot product      |
: [n]                     :                       :                         :
| matrix [m x k] `dot`    | vector [m]            | matrix-vector           |
: vector [k]              :                       : multiplication          :
| matrix [m x k] `dot`    | matrix [m x n]        | matrix-matrix           |
: matrix [k x n]          :                       : multiplication          :

The operation performs sum of products over the last dimension of `lhs` and the
one-before-last dimension of `rhs`. These are the "contracted" dimensions. The
contracted dimensions of `lhs` and `rhs` must be of the same size. In practice,
it can be used to perform dot products between vectors, vector/matrix
multiplications or matrix/matrix multiplications.

## Element-wise binary arithmetic operations

See also
[`ComputationBuilder::Add`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

A set of element-wise binary arithmetic operations is supported.

<b> `Op(lhs, rhs)` </b>

Where `Op` is one of `Add` (addition), `Sub` (subtraction), `Mul`
(multiplication), `Div` (division), `Rem` (remainder), `Max` (maximum), `Min`
(minimum), `LogicalAnd` (logical AND), or `LogicalOr` (logical OR).

Arguments | Type                    | Semantics
--------- | ----------------------- | ----------------------------------------
`lhs`     | `ComputationDataHandle` | left-hand-side operand: array of type T
`rhs`     | `ComputationDataHandle` | right-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the
@{$broadcasting$broadcasting} documentation about what it means for shapes to
be compatible. The result of an operation has a shape which is the result of
broadcasting the two input arrays. In this variant, operations between arrays of
different ranks are *not* supported, unless one of the operands is a scalar.

When `Op` is `Rem`, the sign of the result is taken from the dividend, and the
absolute value of the result is always less than the divisor's absolute value.

An alternative variant with different-rank broadcasting support exists for these
operations:

<b> `Op(lhs, rhs, broadcast_dimensions)` </b>

Where `Op` is the same as above. This variant of the operation should be used
for arithmetic operations between arrays of different ranks (such as adding a
matrix to a vector).

The additional `broadcast_dimensions` operand is a slice of integers used to
expand the rank of the lower-rank operand up to the rank of the higher-rank
operand. `broadcast_dimensions` maps the dimensions of the lower-rank shape to
the dimensions of the higher-rank shape. The unmapped dimensions of the expanded
shape are filled with dimensions of size one. Degenerate-dimension broadcasting
then broadcasts the shapes along these degenerate dimension to equalize the
shapes of both operands. The semantics are described in detail on the
@{$broadcasting$broadcasting page}.

## Element-wise comparison operations

See also
[`ComputationBuilder::Eq`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

A set of standard element-wise binary comparison operations is supported. Note
that standard IEEE 754 floating-point comparison semantics apply when comparing
floating-point types.

<b> `Op(lhs, rhs)` </b>

Where `Op` is one of `Eq` (equal-to), `Ne` (not equal-to), `Ge`
(greater-or-equal-than), `Gt` (greater-than), `Le` (less-or-equal-than), `Lt`
(less-than).

Arguments | Type                    | Semantics
--------- | ----------------------- | ----------------------------------------
`lhs`     | `ComputationDataHandle` | left-hand-side operand: array of type T
`rhs`     | `ComputationDataHandle` | right-hand-side operand: array of type T

The arguments' shapes have to be either similar or compatible. See the
@{$broadcasting$broadcasting} documentation about what it means for shapes to
be compatible. The result of an operation has a shape which is the result of
broadcasting the two input arrays with the element type `PRED`. In this variant,
operations between arrays of different ranks are *not* supported, unless one of
the operands is a scalar.

An alternative variant with different-rank broadcasting support exists for these
operations:

<b> `Op(lhs, rhs, broadcast_dimensions)` </b>

Where `Op` is the same as above. This variant of the operation should be used
for comparison operations between arrays of different ranks (such as adding a
matrix to a vector).

The additional `broadcast_dimensions` operand is a slice of integers specifying
the dimensions to use for broadcasting the operands. The semantics are described
in detail on the @{$broadcasting$broadcasting page}.

## Element-wise unary functions

ComputationBuilder supports these element-wise unary functions:

<b>`Abs(operand)`</b> Element-wise abs `x -> |x|`.

<b>`Ceil(operand)`</b> Element-wise ceil `x -> ⌈x⌉`.

<b>`Cos(operand)`</b> Element-wise cosine `x -> cos(x)`.

<b>`Exp(operand)`</b> Element-wise natural exponential `x -> e^x`.

<b>`Floor(operand)`</b> Element-wise floor `x -> ⌊x⌋`.

<b>`IsFinite(operand)`</b> Tests whether each element of `operand` is finite,
i.e., is not positive or negative infinity, and is not `NaN`. Returns an array
of `PRED` values with the same shape as the input, where each element is `true`
if and only if the corresponding input element is finite.

<b>`Log(operand)`</b> Element-wise natural logarithm `x -> ln(x)`.

<b>`LogicalNot(operand)`</b> Element-wise logical not `x -> !(x)`.

<b>`Neg(operand)`</b> Element-wise negation `x -> -x`.

<b>`Sign(operand)`</b> Element-wise sign operation `x -> sgn(x)` where

$$\text{sgn}(x) = \begin{cases} -1 & x < 0\\ 0 & x = 0\\ 1 & x > 0 \end{cases}$$

using the comparison operator of the element type of `operand`.

<b>`Tanh(operand)`</b> Element-wise hyperbolic tangent `x -> tanh(x)`.


Arguments | Type                    | Semantics
--------- | ----------------------- | ---------------------------
`operand` | `ComputationDataHandle` | The operand to the function

The function is applied to each element in the `operand` array, resulting in an
array with the same shape. It is allowed for `operand` to be a scalar (rank 0).


## BatchNormTraining

See also
[`ComputationBuilder::BatchNormTraining`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h) and
[`the original batch normalization paper`](https://arxiv.org/abs/1502.03167)
for a detailed description of the algorithm.

<b> Warning: Not implemented on GPU backend yet. </b>

Normalizes an array across batch and spatial dimensions.

<b> `BatchNormTraining(operand, scale, offset, epsilon, feature_index)` </b>

| Arguments       | Type                    | Semantics                        |
| --------------- | ----------------------- | -------------------------------- |
| `operand`       | `ComputationDataHandle` | n dimensional array to be        |
:                 :                         : normalized                       :
| `scale`         | `ComputationDataHandle` | 1 dimensional array              |
:                 :                         : (\\(\gamma\\))                   :
| `offset`        | `ComputationDataHandle` | 1 dimensional array              |
:                 :                         : (\\(\beta\\ )                    :
| `epsilon`       | `float`                 | Epsilon value (\\(\epsilon\\))   |
| `feature_index` | `int64`                 | Index to feature dimension       |
:                 :                         : in `operand`                     :


For each feature in the feature dimension (`feature_index` is the index for the
feature dimension in `operand`), the operation calculates the mean and variance
across all the other dimensions and use the mean and variance to normalize each
element in `operand`. If an invalid `feature_index` is passed, an error is
produced.

The algorithm goes as follows for each batch in `operand` \\(x\\) that
contains `m` elements with `w` and `h` as the size of spatial dimensions (
assuming `operand` is an 4 dimensional array):

- Calculates batch mean \\(\mu_l\\) for each feature `l` in feature dimension:
\\(\mu_l=\frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h x_{ijkl}\\)

- Calculates batch variance \\(\sigma^2_l\\):
\\(\sigma^2_l=\frac{1}{mwh}\sum_{i=1}^m\sum_{j=1}^w\sum_{k=1}^h (x_{ijkl} - \mu_l)^2\\)

- Normalizes, scales and shifts:
\\(y_{ijkl}=\frac{\gamma_l(x_{ijkl}-\mu_l)}{\sqrt[2]{\sigma^2_l+\epsilon}}+\beta_l\\)

The epsilon value, usually a small number, is added to avoid divide-by-zero errors.

The output type is a tuple of three ComputationDataHandles:

| Outputs      | Type                    | Semantics                            |
| ------------ | ----------------------- | -------------------------------------|
| `output`     | `ComputationDataHandle` | n dimensional array with the same    |
:              :                         : shape as input `operand` (y)         :
| `batch_mean` | `ComputationDataHandle` | 1 dimensional array (\\(\mu\\))      |
| `batch_var`  | `ComputationDataHandle` | 1 dimensional array (\\(\sigma^2\\)) |

The `batch_mean` and `batch_var` are moments calculated across the batch and
spatial dimensions using the formulars above.

## BatchNormInference

See also
[`ComputationBuilder::BatchNormInference`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> Warning: Not implemented yet. </b>

Normalizes an array across batch and spatial dimensions.

<b> `BatchNormInference(operand, scale, offset, mean, variance, epsilon, feature_index)` </b>

| Arguments       | Type                    | Semantics                       |
| --------------  | ----------------------- | ------------------------------- |
| `operand`       | `ComputationDataHandle` | n dimensional array to be       |
:                 :                         : normalized                      :
| `scale`         | `ComputationDataHandle` | 1 dimensional array             |
| `offset`        | `ComputationDataHandle` | 1 dimensional array             |
| `mean`          | `ComputationDataHandle` | 1 dimensional array             |
| `variance`      | `ComputationDataHandle` | 1 dimensional array             |
| `epsilon`       | `float`                 | Epsilon value                   |
| `feature_index` | `int64`                 | Index to feature dimension in   |
:                 :                         : `operand`                       :

For each feature in the feature dimension (`feature_index` is the index for the
feature dimension in `operand`), the operation calculates the mean and variance
across all the other dimensions and use the mean and variance to normalize each
element in `operand`. If an invalid `feature_index` is passed, an error is
produced.

`BatchNormInference`  is equivalent to calling `BatchNormTraining` without
computing `mean` and `variance` for each batch. It uses the input `mean` and
`variance` instead as estimated values. The purpose of this op is to reduce
latency in inference, hence the name `BatchNormInference`.

The output is a n dimensional, normalized array with the same shape as input
`operand`.

## BatchNormGrad

See also
[`ComputationBuilder::BatchNormGrad`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> Warning: Not implemented yet. </b>

Calculates gradients of batch norm.

<b> `BatchNormGrad(operand, scale, mean, variance, grad_output, epsilon, feature_index)` </b>

| Arguments       | Type                    | Semantics                        |
| --------------  | ----------------------- | -------------------------------- |
| `operand`       | `ComputationDataHandle` | n dimensional array to be        |
:                 :                         : normalized (x)                   :
| `scale`         | `ComputationDataHandle` | 1 dimensional array              |
:                 :                         : (\\(\gamma\\))                   :
| `mean`          | `ComputationDataHandle` | 1 dimensional array (\\(\mu\\))  |
| `variance`      | `ComputationDataHandle` | 1 dimensional array              |
:                 :                         : (\\(\sigma^2\\))                 :
| `grad_output`   | `ComputationDataHandle` | Gradients passed to              |
:                 :                         : `BatchNormTraining`              :
:                 :                         : (\\( \nabla y\\))                :
| `epsilon`       | `float`                 | Epsilon value (\\(\epsilon\\))   |
| `feature_index` | `int64`                 | Index to feature dimension in    |
:                 :                         : `operand`                        :

For each feature in the feature dimension (`feature_index` is the index for the
feature dimension in `operand`), the operation calculates the gradients with
respect to `operand`, `offset` and `scale` across all the other dimensions. If
an invalid `feature_index` is passed, an error is produced.

The three gradients are defined by the following formulas:

\\( \nabla x = \nabla y * \gamma * \sqrt{\sigma^2+\epsilon} \\)

\\( \nabla \gamma = sum(\nabla y * (x - \mu) * \sqrt{\sigma^2 + \epsilon}) \\)

\\( \nabla \beta = sum(\nabla y) \\)

The inputs `mean` and `variance` represents moments value
across batch and spatial dimensions.

The output type is a tuple of three ComputationDataHandles:

|Outputs       | Type                    | Semantics                           |
|------------- | ----------------------- | ------------------------------------|
|`grad_operand`| `ComputationDataHandle` | gradient with respect to input      |
:              :                         : `operand`                           :
|`grad_offset` | `ComputationDataHandle` | gradient with respect to input      |
:              :                         : `offset`                            :
|`grad_scale`  | `ComputationDataHandle` | gradient with respect to input      |
:              :                         : `scale`                             :


## GetTupleElement

See also
[`ComputationBuilder::GetTupleElement`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Indexes into a tuple with a compile-time-constant value.

The value must be a compile-time-constant so that shape inference can determine
the type of the resulting value.

This is analogous to `std::get<int N>(t)` in C++. Conceptually:

```
let v: f32[10] = f32[10]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
let s: s32 = 5;
let t: (f32[10], s32) = tuple(v, s);
let element_1: s32 = gettupleelement(t, 1);  // Inferred shape matches s32.
```

See also @{tf.tuple}.

## Infeed

See also
[`ComputationBuilder::Infeed`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> `Infeed(shape)` </b>

| Argument | Type    | Semantics                                             |
| -------- | ------- | ----------------------------------------------------- |
| `shape`  | `Shape` | Shape of the data read from the Infeed interface. The |
:          :         : layout field of the shape must be set to match the    :
:          :         : layout of the data sent to the device; otherwise its  :
:          :         : behavior is undefined.                                :

Reads a single data item from the implicit Infeed streaming interface of the
device, interpreting the data as the given shape and its layout, and returns a
`ComputationDataHandle` of the data. Multiple Infeed operations are allowed in a
computation, but there must be a total order among the Infeed operations. For
example, two Infeeds in the code below have a total order since there is a
dependency between the while loops. The compiler issues an error if there isn't
a total order.

```
result1 = while (condition, init = init_value) {
  Infeed(shape)
}

result2 = while (condition, init = result1) {
  Infeed(shape)
}
```

Nested tuple shapes are not supported. For an empty tuple shape, the Infeed
operation is effectively a nop and proceeds without reading any data from the
Infeed of the device.

> Note: We plan to allow multiple Infeed operations without a total order, in
> which case the compiler will provide information about how the Infeed
> operations are serialized in the compiled program.

## Map

See also
[`ComputationBuilder::Map`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> `Map(operands..., computation)` </b>

| Arguments         | Type                     | Semantics                     |
| ----------------- | ------------------------ | ----------------------------- |
| `operands`        | sequence of N            | N arrays of types T_0..T_{N-1}|
:                   : `ComputationDataHandle`s :                               :
| `computation`     | `Computation`            | computation of type `T_0,     |
:                   :                          : T_1, ..., T_{N + M -1} -> S`  :
:                   :                          : with N parameters of type T   :
:                   :                          : and M of arbitrary type       :
| `dimensions`       | `int64` array           | array of map dimensions    |
| `static_operands` | sequence of M            | M arrays of arbitrary type    |
:                   : `ComputationDataHandle`s :                               :

Applies a scalar function over the given `operands` arrays, producing an array
of the same dimensions where each element is the result of the mapped function
applied to the corresponding elements in the input arrays with `static_operands`
given as additional input to `computation`.

The mapped function is an arbitrary computation with the restriction that it has
N inputs of scalar type `T` and a single output with type `S`. The output has
the same dimensions as the operands except that the element type T is replaced
with S.

For example: `Map(op1, op2, op3, computation, par1)` maps `elem_out <-
computation(elem1, elem2, elem3, par1)` at each (multi-dimensional) index in the
input arrays to produce the output array.

## Pad

See also
[`ComputationBuilder::Pad`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> `Pad(operand, padding_value, padding_config)` </b>

| Arguments        | Type                    | Semantics                     |
| ---------------- | ----------------------- | ----------------------------- |
| `operand`        | `ComputationDataHandle` | array of type `T`             |
| `padding_value`  | `ComputationDataHandle` | scalar of type `T` to fill in |
:                  :                         : the added padding             :
| `padding_config` | `PaddingConfig`         | padding amount on both edges  |
:                  :                         : (low, high) and between the   :
:                  :                         : elements of each dimension    :

Expands the given `operand` array by padding around the array as well as between
the elements of the array with the given `padding_value`. `padding_config`
specifies the amount of edge padding and the interior padding for each
dimension.

`PaddingConfig` is a repeated field of `PaddingConfigDimension`, which contains
three fields for each dimension: `edge_padding_low`, `edge_padding_high`, and
`interior_padding`. `edge_padding_low` and `edge_padding_high` specifies the
amount of padding added at the low-end (next to index 0) and the high-end (next
to the highest index) of each dimension respectively. The amount of edge padding
can be negative -- the absolute value of negative padding indicates the number
of elements to remove from the specified dimension. `interior_padding` specifies
the amount of padding added between any two elements in each dimension. Interior
padding occurs logically before edge padding, so in the case of negative edge
padding elements are removed from the interior-padded operand. This operation is
a no-op if the edge padding pairs are all (0, 0) and the interior padding values
are all 0. Figure below shows examples of different `edge_padding` and
`interior_padding` values for a two dimensional array.

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="https://www.tensorflow.org/images/ops_pad.png">
</div>

## Recv

See also
[`ComputationBuilder::Recv`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> `Recv(shape, channel_handle)` </b>

| Arguments        | Type            | Semantics                            |
| ---------------- | --------------- | ------------------------------------ |
| `shape`          | `Shape`         | shape of the data to receive         |
| `channel_handle` | `ChannelHandle` | unique identifier for each send/recv pair |

Receives data of the given shape from a `Send` instruction in another
computation that shares the same channel handle. Returns a
ComputationDataHandle for the received data.

The client API of `Recv` operation represents synchronous communication.
However, the instruction is internally decomposed into 2 HLO instructions
(`Recv` and `RecvDone`) to enable asynchronous data transfers. See also
[`HloInstruction::CreateRecv` and `HloInstruction::CreateRecvDone`](https://www.tensorflow.org/code/tensorflow/compiler/xla/service/hlo_instruction.h).

<b>`Recv(const Shape& shape, int64 channel_id)`</b>

Allocates resources required to receive data from a `Send` instruction with the
same channel_id. Returns a context for the allocated resources, which is used
by a following `RecvDone` instruction to wait for the completion of the data
transfer. The context is a tuple of {receive buffer (shape), request identifier
(U32)} and it can only be used by a `RecvDone` instruction.

<b> `RecvDone(HloInstruction context)` </b>

Given a context created by a `Recv` instruction, waits for the data transfer to
complete and returns the received data.

## Send

See also
[`ComputationBuilder::Send`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> `Send(operand, channel_handle)` </b>

| Arguments        | Type                    | Semantics                        |
| ---------------- | ----------------------- | -------------------------------- |
| `operand`        | `ComputationDataHandle` | data to send (array of type T)   |
| `channel_handle` | `ChannelHandle`         | unique identifier for each send/recv pair |

Sends the given operand data to a `Recv` instruction in another computation
that shares the same channel handle. Does not return any data.

Similar to the `Recv` operation, the client API of `Send` operation represents
synchronous communication, and is internally decomposed into 2 HLO instructions
(`Send` and `SendDone`) to enable asynchronous data transfers. See also
[`HloInstruction::CreateSend` and `HloInstruction::CreateSendDone`](https://www.tensorflow.org/code/tensorflow/compiler/xla/service/hlo_instruction.h).

<b>`Send(HloInstruction operand, int64 channel_id)`</b>

Initiates an asynchronous transfer of the operand to the resources allocated by
the `Recv` instruction with the same channel id. Returns a context, which is
used by a following `SendDone` instruction to wait for the completion of the
data transfer. The context is a tuple of {operand (shape), request identifier
(U32)} and it can only be used by a `SendDone` instruction.

<b> `SendDone(HloInstruction context)` </b>

Given a context created by a `Send` instruction, waits for the data transfer to
complete.  The instruction does not return any data.

<b> Scheduling of channel instructions </b>

The execution order of the 4 instructions for each channel (`Recv`, `RecvDone`,
`Send`, `SendDone`) is as below.

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:70%" src="../../images/send_recv_order.png">
</div>

* `Recv` happens before `Send`
* `Send` happens before `RecvDone`
* `Recv` happens before `RecvDone`
* `Send` happens before `SendDone`

When the backend compilers generate a linear schedule for each computation that
communicates via channel instructions, there must not be cycles across the
computations. For example, below schedules lead to deadlocks.

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="../../images/send_recv_schedule.png">
</div>

## Reduce

See also
[`ComputationBuilder::Reduce`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Applies a reduction function to an array.

<b> `Reduce(operand, init_value, computation, dimensions)` </b>

| Arguments     | Type                    | Semantics                        |
| ------------- | ----------------------- | -------------------------------- |
| `operand`     | `ComputationDataHandle` | array of type `T`                |
| `init_value`  | `ComputationDataHandle` | scalar of type `T`               |
| `computation` | `Computation`           | computation of type `T, T -> T`  |
| `dimensions`  | `int64` array           | unordered array of dimensions to |
:               :                         : reduce                           :

Conceptually, this operation reduces one or more dimensions in the input array
into scalars. The rank of the result array is `rank(operand) - len(dimensions)`.
`init_value` is the initial value used for every reduction and may also be
inserted anywhere during computation if the back-end chooses to do so. So in
most cases `init_value` should be an identity of the reduction function (for
example, 0 for addition).

The evaluation order of the reduction function is arbitrary and may be
non-deterministic. Therefore, the reduction function should not be overly
sensitive to reassociation.

Some reduction functions like addition are not strictly associative for floats.
However, if the range of the data is limited, floating-point addition is close
enough to being associative for most practical uses. It is possible to conceive
of some completely non-associative reductions, however, and these will produce
incorrect or unpredictable results in XLA reductions.

As an example, when reducing across the one dimension in a 1D array with values
[10, 11, 12, 13], with reduction function `f` (this is `computation`) then that
could be computed as

`f(10, f(11, f(12, f(init_value, 13)))`

but there are also many other possibilities, e.g.

`f(init_value, f(f(10, f(init_value, 11)), f(f(init_value, 12), f(13,
init_value))))`

The following is a rough pseudo-code example of how reduction could be
implemented, using summation as the reduction computation with an initial value
of 0.

```python
result_shape <- remove all dims in dimensions from operand_shape

# Iterate over all elements in result_shape. The number of r's here is equal
# to the rank of the result
for r0 in range(result_shape[0]), r1 in range(result_shape[1]), ...:
  # Initialize this result element
  result[r0, r1...] <- 0

  # Iterate over all the reduction dimensions
  for d0 in range(dimensions[0]), d1 in range(dimensions[1]), ...:
    # Increment the result element with the value of the operand's element.
    # The index of the operand's element is constructed from all ri's and di's
    # in the right order (by construction ri's and di's together index over the
    # whole operand shape).
    result[r0, r1...] += operand[ri... di]
```

Here's an example of reducing a 2D array (matrix). The shape has rank 2,
dimension 0 of size 2 and dimension 1 of size 3:

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:35%" src="https://www.tensorflow.org/images/ops_2d_matrix.png">
</div>

Results of reducing dimensions 0 or 1 with an "add" function:

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:35%" src="https://www.tensorflow.org/images/ops_reduce_from_2d_matrix.png">
</div>

Note that both reduction results are 1D arrays. The diagram shows one as column
and another as row just for visual convenience.

For a more complex example, here is a 3D array. Its rank is 3, dimension 0 of
size 4, dimension 1 of size 2 and dimension 2 of size 3. For simplicity, the
values 1 to 6 are replicated across dimension 0.

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:35%" src="https://www.tensorflow.org/images/ops_reduce_from_3d_matrix.png">
</div>

Similarly to the 2D example, we can reduce just one dimension. If we reduce
dimension 0, for example, we get a rank-2 array where all values across
dimension 0 were folded into a scalar:

```text
|  4   8  12 |
| 16  20  24 |
```

If we reduce dimension 2, we also get a rank-2 array where all values across
dimension 2 were folded into a scalar:

```text
| 6  15 |
| 6  15 |
| 6  15 |
| 6  15 |
```

Note that the relative order between the remaining dimensions in the input is
preserved in the output, but some dimensions may get assigned new numbers (since
the rank changes).

We can also reduce multiple dimensions. Add-reducing dimensions 0 and 1 produces
the 1D array `| 20 28 36 |`.

Reducing the 3D array over all its dimensions produces the scalar `84`.

## ReducePrecision

See also
[`ComputationBuilder::ReducePrecision`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Models the effect of converting floating-point values to a lower-precision
format (such as IEEE-FP16) and back to the original format.  The number of
exponent and mantissa bits in the lower-precision format can be specified
arbitrarily, although all bit sizes may not be supported on all hardware
implementations.

<b> `ReducePrecision(operand, mantissa_bits, exponent_bits)` </b>

| Arguments           | Type                    | Semantics                    |
| ------------------- | ----------------------- | ---------------------------- |
| `operand`           | `ComputationDataHandle` | array of floating-point type |
:                     :                         : `T`.                         :
| `exponent_bits`     | `int32`                 | number of exponent bits in   |
:                     :                         : lower-precision format       :
| `mantissa_bits`     | `int32`                 | number of mantissa bits in   |
:                     :                         : lower-precision format       :

The result is an array of type `T`.  The input values are rounded to the nearest
value representable with the given number of mantissa bits (using "ties to even"
semantics), and any values that exceed the range specified by the number of
exponent bits are clamped to positive or negative infinity.  `NaN` values are
retained, although they may be converted to canonical `NaN` values.

The lower-precision format must have at least one exponent bit (in order to
distinguish a zero value from an infinity, since both have a zero mantissa), and
must have a non-negative number of mantissa bits.  The number of exponent or
mantissa bits may exceed the corresponding value for type `T`; the corresponding
portion of the conversion is then simply a no-op.


## ReduceWindow

See also
[`ComputationBuilder::ReduceWindow`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Applies a reduction function to all elements in each window of the input
multi-dimensional array, producing an output multi-dimensional array with the
same number of elements as the number of valid positions of the window. A
pooling layer can be expressed as a `ReduceWindow`.

<b> `ReduceWindow(operand, init_value, computation, window_dimensions,
window_strides, padding)` </b>

| Arguments           | Type                    | Semantics                    |
| ------------------- | ----------------------- | ---------------------------- |
| `operand`           | `ComputationDataHandle` | N dimensional array          |
:                     :                         : containing elements of type  :
:                     :                         : T. This is the base area on  :
:                     :                         : which the window is placed.  :
| `init_value`        | `ComputationDataHandle` | Starting value for the       |
:                     :                         : reduction. See [Reduce]      :
:                     :                         : (#reduce) for details.       :
| `computation`       | `Computation`           | Reduction function of type   |
:                     :                         : `T, T -> T`, to apply to all :
:                     :                         : elements in each window      :
| `window_dimensions` | `ArraySlice<int64>`     | array of integers for window |
:                     :                         : dimension values             :
| `window_strides`    | `ArraySlice<int64>`     | array of integers for window |
:                     :                         : stride values                :
| `padding`           | `Padding`               | padding type for window      |
:                     :                         : (Padding\:\:kSame or         :
:                     :                         : Padding\:\:kValid)           :

Below code and figure shows an example of using `ReduceWindow`. Input is a
matrix of size [4x6] and both window_dimensions and window_stride_dimensions are
[2x3].

```
// Create a computation for the reduction (maximum).
Computation max;
{
  ComputationBuilder builder(client_, "max");
  auto y = builder.Parameter(0, ShapeUtil::MakeShape(F32, {}), "y");
  auto x = builder.Parameter(1, ShapeUtil::MakeShape(F32, {}), "x");
  builder.Max(y, x);
  max = builder.Build().ConsumeValueOrDie();
}

// Create a ReduceWindow computation with the max reduction computation.
ComputationBuilder builder(client_, "reduce_window_2x3");
auto shape = ShapeUtil::MakeShape(F32, {4, 6});
auto input = builder.Parameter(0, shape, "input");
builder.ReduceWindow(
    input, *max,
    /*init_val=*/builder.ConstantLiteral(LiteralUtil::MinValue(F32)),
    /*window_dimensions=*/{2, 3},
    /*window_stride_dimensions=*/{2, 3},
    Padding::kValid);
```

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:35%" src="https://www.tensorflow.org/images/ops_reduce_window.png">
</div>

Stride of 1 in a dimension specifies that the position of a window in the
dimension is 1 element away from its adjacent window. In order to specify that
no windows overlap with each other, window_stride_dimensions should be equal to
window_dimensions. The figure below illustrates the use of two different stride
values. Padding is applied to each dimension of the input and the calculations
are the same as though the input came in with the dimensions it has after
padding.

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:75%" src="https://www.tensorflow.org/images/ops_reduce_window_stride.png">
</div>

The evaluation order of the reduction function is arbitrary and may be
non-deterministic. Therefore, the reduction function should not be overly
sensitive to reassociation. See the discussion about associativity in the
context of [`Reduce`](#reduce) for more details.

## Reshape

See also
[`ComputationBuilder::Reshape`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h)
and the [`Collapse`](#collapse) operation.

Reshapes the dimensions of an array into a new configuration.

<b> `Reshape(operand, new_sizes)` </b>
<b> `Reshape(operand, dimensions, new_sizes)` </b>

Arguments    | Type                    | Semantics
------------ | ----------------------- | ---------------------------------------
`operand`    | `ComputationDataHandle` | array of type T
`dimensions` | `int64` vector          | order in which dimensions are collapsed
`new_sizes`  | `int64` vector          | vector of sizes of new dimensions

Conceptually, reshape first flattens an array into a one-dimensional vector of
data values, and then refines this vector into a new shape. The input arguments
are an arbitrary array of type T, a compile-time-constant vector of dimension
indices, and a compile-time-constant vector of dimension sizes for the result.
The values in the `dimension` vector, if given, must be a permutation of all of
T's dimensions; the default if not given is `{0, ..., rank - 1}`. The order of
the dimensions in `dimensions` is from slowest-varying dimension (most major) to
fastest-varying dimension (most minor) in the loop nest which collapses the
input array into a single dimension. The `new_sizes` vector determines the size
of the output array. The value at index 0 in `new_sizes` is the size of
dimension 0, the value at index 1 is the size of dimension 1, and so on. The
product of the `new_size` dimensions must equal the product of the operand's
dimension sizes. When refining the collapsed array into the multidimensional
array defined by `new_sizes`, the dimensions in `new_sizes` are ordered from
slowest varying (most major) and to fastest varying (most minor).

For example, let v be an array of 24 elements:

```
let v = f32[4x2x3] {{{10, 11, 12}, {15, 16, 17}},
                    {{20, 21, 22}, {25, 26, 27}},
                    {{30, 31, 32}, {35, 36, 37}},
                    {{40, 41, 42}, {45, 46, 47}}};

In-order collapse:
let v012_24 = Reshape(v, {0,1,2}, {24});
then v012_24 == f32[24] {10, 11, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27,
                         30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 47};

let v012_83 = Reshape(v, {0,1,2}, {8,3});
then v012_83 == f32[8x3] {{10, 11, 12}, {15, 16, 17},
                          {20, 21, 22}, {25, 26, 27},
                          {30, 31, 32}, {35, 36, 37},
                          {40, 41, 42}, {45, 46, 47}};

Out-of-order collapse:
let v021_24 = Reshape(v, {1,2,0}, {24});
then v012_24 == f32[24]  {10, 20, 30, 40, 11, 21, 31, 41, 12, 22, 32, 42,
                          15, 25, 35, 45, 16, 26, 36, 46, 17, 27, 37, 47};

let v021_83 = Reshape(v, {1,2,0}, {8,3});
then v021_83 == f32[8x3] {{10, 20, 30}, {40, 11, 21},
                          {31, 41, 12}, {22, 32, 42},
                          {15, 25, 35}, {45, 16, 26},
                          {36, 46, 17}, {27, 37, 47}};


let v021_262 = Reshape(v, {1,2,0}, {2,6,2});
then v021_262 == f32[2x6x2] {{{10, 20}, {30, 40},
                              {11, 21}, {31, 41},
                              {12, 22}, {32, 42}},
                             {{15, 25}, {35, 45},
                              {16, 26}, {36, 46},
                              {17, 27}, {37, 47}}};
```

As a special case, reshape can transform a single-element array to a scalar and
vice versa. For example,

```
Reshape(f32[1x1] {{5}}, {0,1}, {}) == 5;
Reshape(5, {}, {1,1}) == f32[1x1] {{5}};
```

## Rev (reverse)

See also
[`ComputationBuilder::Rev`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b>`Rev(operand, dimensions)`</b>

Arguments    | Type                    | Semantics
------------ | ----------------------- | ---------------------
`operand`    | `ComputationDataHandle` | array of type T
`dimensions` | `ArraySlice<int64>`     | dimensions to reverse

Reverses the order of elements in the `operand` array along the specified
`dimensions`, generating an output array of the same shape. Each element of the
operand array at a multidimensional index is stored into the output array at a
transformed index. The multidimensional index is transformed by reversing the
index in each dimension to be reversed (i.e., if a dimension of size N is one of
the reversing dimensions, its index i is transformed into N - 1 - i).

One use for the `Rev` operation is to reverse the convolution weight array along
the two window dimensions during the gradient computation in neural networks.

## RngBernoulli

See also
[`ComputationBuilder::RngBernoulli`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Constructs an output of a given shape with random numbers generated following
the Bernoulli distribution. The parameter needs to be a scalar valued F32
operand while the output shape needs to have elemental type U32.

<b>`RngBernoulli(mean, shape)`</b>

| Arguments | Type                    | Semantics                             |
| --------- | ----------------------- | ------------------------------------- |
| `mean`    | `ComputationDataHandle` | Scalar of type F32 specifying mean of |
:           :                         : generated numbers                     :
| `shape`   | `Shape`                 | Output shape of type U32              |

## RngNormal

See also
[`ComputationBuilder::RngNormal`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Constructs an output of a given shape with random numbers generated following
the $$N(\mu, \sigma)$$ normal distribution. The parameters `mu` and `sigma`, and
output shape have to have elemental type F32. The parameters furthermore have to
be scalar valued.

<b>`RngNormal(mean, sigma, shape)`</b>

| Arguments | Type                    | Semantics                              |
| --------- | ----------------------- | -------------------------------------- |
| `mu`      | `ComputationDataHandle` | Scalar of type F32 specifying mean of  |
:           :                         : generated numbers                      :
| `sigma`   | `ComputationDataHandle` | Scalar of type F32 specifying standard |
:           :                         : deviation of generated numbers         :
| `shape`   | `Shape`                 | Output shape of type F32               |

## RngUniform

See also
[`ComputationBuilder::RngUniform`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Constructs an output of a given shape with random numbers generated following
the uniform distribution over the interval $$[a,b)$$. The parameters and output
shape may be either F32, S32 or U32, but the types have to be consistent.
Furthermore, the parameters need to be scalar valued. If $$b <= a$$ the result
is implementation-defined.

<b>`RngUniform(a, b, shape)`</b>

| Arguments | Type                    | Semantics                         |
| --------- | ----------------------- | --------------------------------- |
| `a`       | `ComputationDataHandle` | Scalar of type T specifying lower |
:           :                         : limit of interval                 :
| `b`       | `ComputationDataHandle` | Scalar of type T specifying upper |
:           :                         : limit of interval                 :
| `shape`   | `Shape`                 | Output shape of type T            |

## SelectAndScatter

See also
[`ComputationBuilder::SelectAndScatter`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

This operation can be considered as a composite operation that first computes
`ReduceWindow` on the `operand` array to select an element from each window, and
then scatters the `source` array to the indices of the selected elements to
construct an output array with the same shape as the operand array. The binary
`select` function is used to select an element from each window by applying it
across each window, and it is called with the property that the first
parameter's index vector is lexicographically less than the second parameter's
index vector. The `select` function returns `true` if the first parameter is
selected and returns `false` if the second parameter is selected, and the
function must hold transitivity (i.e., if `select(a, b)` and `select(b, c)` are
`true`, then `select(a, c)` is also `true`) so that the selected element does
not depend on the order of the elements traversed for a given window.

The function `scatter` is applied at each selected index in the output array. It
takes two scalar parameters:

1.  Current value at the selected index in the output array
2.  The scatter value from `source` that applies to the selected index

It combines the two parameters and returns a scalar value that's used to update
the value at the selected index in the output array. Initially, all indices of
the output array are set to `init_value`.

The output array has the same shape as the `operand` array and the `source`
array must have the same shape as the result of applying a `ReduceWindow`
operation on the `operand` array. `SelectAndScatter` can be used to
backpropagate the gradient values for a pooling layer in a neural network.

<b>`SelectAndScatter(operand, select, window_dimensions, window_strides,
padding, source, init_value, scatter)`</b>

| Arguments           | Type                    | Semantics                    |
| ------------------- | ----------------------- | ---------------------------- |
| `operand`           | `ComputationDataHandle` | array of type T over which   |
:                     :                         : the windows slide            :
| `select`            | `Computation`           | binary computation of type   |
:                     :                         : `T, T -> PRED`, to apply to  :
:                     :                         : all elements in each window; :
:                     :                         : returns `true` if the first  :
:                     :                         : parameter is selected and    :
:                     :                         : returns `false` if the       :
:                     :                         : second parameter is selected :
| `window_dimensions` | `ArraySlice<int64>`     | array of integers for window |
:                     :                         : dimension values             :
| `window_strides`    | `ArraySlice<int64>`     | array of integers for window |
:                     :                         : stride values                :
| `padding`           | `Padding`               | padding type for window      |
:                     :                         : (Padding\:\:kSame or         :
:                     :                         : Padding\:\:kValid)           :
| `source`            | `ComputationDataHandle` | array of type T with the     |
:                     :                         : values to scatter            :
| `init_value`        | `ComputationDataHandle` | scalar value of type T for   |
:                     :                         : the initial value of the     :
:                     :                         : output array                 :
| `scatter`           | `Computation`           | binary computation of type   |
:                     :                         : `T, T -> T`, to apply each   :
:                     :                         : scatter source element with  :
:                     :                         : its destination element      :

The figure below shows examples of using `SelectAndScatter`, with the `select`
function computing the maximal value among its parameters. Note that when the
windows overlap, as in the figure (2) below, an index of the `operand` array may
be selected multiple times by different windows. In the figure, the element of
value 9 is selected by both of the top windows (blue and red) and the binary
addition `scatter` function produces the output element of value 8 (2 + 6).

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%"
    src="https://www.tensorflow.org/images/ops_scatter_to_selected_window_element.png">
</div>

The evaluation order of the `scatter` function is arbitrary and may be
non-deterministic. Therefore, the `scatter` function should not be overly
sensitive to reassociation. See the discussion about associativity in the
context of [`Reduce`](#reduce) for more details.

## Select

See also
[`ComputationBuilder::Select`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Constructs an output array from elements of two input arrays, based on the
values of a predicate array.

<b> `Select(pred, on_true, on_false)` </b>

Arguments  | Type                    | Semantics
---------- | ----------------------- | ------------------
`pred`     | `ComputationDataHandle` | array of type PRED
`on_true`  | `ComputationDataHandle` | array of type T
`on_false` | `ComputationDataHandle` | array of type T

The arrays `on_true` and `on_false` must have the same shape. This is also the
shape of the output array. The array `pred` must have the same dimensionality as
`on_true` and `on_false`, with the `PRED` element type.

For each element `P` of `pred`, the corresponding element of the output array is
taken from `on_true` if the value of `P` is `true`, and from `on_false` if the
value of `P` is `false`. As a restricted form of [broadcasting]
(broadcasting.md), `pred` can be a scalar of type `PRED`. In this case, the
output array is taken wholly from `on_true` if `pred` is `true`, and from
`on_false` if `pred` is `false`.

Example with non-scalar `pred`:

```
let pred: PRED[4] = {true, false, false, true};
let v1: s32[4] = {1, 2, 3, 4};
let v2: s32[4] = {100, 200, 300, 400};
==>
Select(pred, v1, v2) = s32[4]{1, 200, 300, 4};
```

Example with scalar `pred`:

```
let pred: PRED = true;
let v1: s32[4] = {1, 2, 3, 4};
let v2: s32[4] = {100, 200, 300, 400};
==>
Select(pred, v1, v2) = s32[4]{1, 2, 3, 4};
```

Selections between tuples are supported. Tuples are considered to be scalar
types for this purpose. If `on_true` and `on_false` are tuples (which must have
the same shape!) then `pred` has to be a scalar of type `PRED`.

## Slice

See also
[`ComputationBuilder::Slice`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Slicing extracts a sub-array from the input array. The sub-array is of the same
rank as the input and contains the values inside a bounding box within the input
array where the dimensions and indices of the bounding box are given as
arguments to the slice operation.

<b> `Slice(operand, start_indices, limit_indices)` </b>

| Arguments       | Type                    | Semantics                        |
| --------------- | ----------------------- | -------------------------------- |
| `operand`       | `ComputationDataHandle` | N dimensional array of type T    |
| `start_indices` | `ArraySlice<int64>`     | List of N integers containing    |
:                 :                         : the starting indices of the      :
:                 :                         : slice for each dimension. Values :
:                 :                         : must be greater than or equal to :
:                 :                         : zero.                            :
| `limit_indices` | `ArraySlice<int64>`     | List of N integers containing    |
:                 :                         : the ending indices (exclusive)   :
:                 :                         : for the slice for each           :
:                 :                         : dimension. Each value must be    :
:                 :                         : strictly greater than the        :
:                 :                         : respective `start_indices` value :
:                 :                         : for the dimension and less than  :
:                 :                         : or equal to the size of the      :
:                 :                         : dimension.                       :

1-dimensional example:

```
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
Slice(a, {2}, {4}) produces:
  {2.0, 3.0}
```

2-dimensional example:

```
let b =
 { {0.0,  1.0,  2.0},
   {3.0,  4.0,  5.0},
   {6.0,  7.0,  8.0},
   {9.0, 10.0, 11.0} }

Slice(b, {2, 1}, {4, 3}) produces:
  { { 7.0,  8.0},
    {10.0, 11.0} }
```

## DynamicSlice

See also
[`ComputationBuilder::DynamicSlice`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

DynamicSlice extracts a sub-array from the input array at dynamic
`start_indices`. The size of the slice in each dimension is passed in
`size_indices`, which specify the end point of exclusive slice intervals in each
dimension: [start, start + size). The shape of `start_indices` must be rank ==
1, with dimension size equal to the rank of `operand`.
Note: handling of out-of-bounds slice indices (generated by incorrect runtime
calculation of 'start_indices') is currently implementation-defined. Currently,
slice indices are computed modulo input dimension sizes to prevent out-of-bound
array accesses, but this behavior may change in future implementations.

<b> `DynamicSlice(operand, start_indices, size_indices)` </b>

| Arguments       | Type                    | Semantics                        |
| --------------- | ----------------------- | -------------------------------- |
| `operand`       | `ComputationDataHandle` | N dimensional array of type T    |
| `start_indices` | `ComputationDataHandle` | Rank 1 array of N integers       |
:                 :                         : containing the starting indices  :
:                 :                         : of the slice for each dimension. :
:                 :                         : Value must be greater than or    :
:                 :                         : equal to zero.                   :
| `size_indices`  | `ArraySlice<int64>`     | List of N integers containing    |
:                 :                         : the slice size for each          :
:                 :                         : dimension. Each value must be    :
:                 :                         : strictly greater than zero, and  :
:                 :                         : start + size must be less than   :
:                 :                         : or equal to the size of the      :
:                 :                         : dimension to avoid wrapping      :
:                 :                         : modulo dimension size.           :

1-dimensional example:

```
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
let s = {2}

DynamicSlice(a, s, {2}) produces:
  {2.0, 3.0}
```

2-dimensional example:

```
let b =
 { {0.0,  1.0,  2.0},
   {3.0,  4.0,  5.0},
   {6.0,  7.0,  8.0},
   {9.0, 10.0, 11.0} }
let s = {2, 1}

DynamicSlice(b, s, {2, 2}) produces:
  { { 7.0,  8.0},
    {10.0, 11.0} }
```
## DynamicUpdateSlice

See also
[`ComputationBuilder::DynamicUpdateSlice`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

DynamicUpdateSlice generates a result which is the value of the input array
`operand`, with a slice `update` overwritten at `start_indices`.
The shape of `update` determines the shape of the sub-array of the result which
is updated.
The shape of `start_indices` must be rank == 1, with dimension size equal to
the rank of `operand`.
Note: handling of out-of-bounds slice indices (generated by incorrect runtime
calculation of 'start_indices') is currently implementation-defined. Currently,
slice indices are computed modulo update dimension sizes to prevent out-of-bound
array accesses, but this behavior may change in future implementations.

<b> `DynamicUpdateSlice(operand, update, start_indices)` </b>

| Arguments       | Type                    | Semantics                        |
| --------------- | ----------------------- | -------------------------------- |
| `operand`       | `ComputationDataHandle` | N dimensional array of type T    |
| `update`        | `ComputationDataHandle` | N dimensional array of type T    |
:                 :                         : containing the slice update.     :
:                 :                         : Each dimension of update shape    :
:                 :                         : must be strictly greater than    :
:                 :                         : zero, and start + update must be :
:                 :                         : less than operand size for each  :
:                 :                         : dimension to avoid generating    :
:                 :                         : out-of-bounds update indices.    :
| `start_indices` | `ComputationDataHandle` | Rank 1 array of N integers       |
:                 :                         : containing the starting indices  :
:                 :                         : of the slice for each dimension. :
:                 :                         : Value must be greater than or    :
:                 :                         : equal to zero.                   :

1-dimensional example:

```
let a = {0.0, 1.0, 2.0, 3.0, 4.0}
let u = {5.0, 6.0}
let s = {2}

DynamicUpdateSlice(a, u, s) produces:
  {0.0, 1.0, 5.0, 6.0, 4.0}
```

2-dimensional example:

```
let b =
 { {0.0,  1.0,  2.0},
   {3.0,  4.0,  5.0},
   {6.0,  7.0,  8.0},
   {9.0, 10.0, 11.0} }
let u =
 { {12.0,  13.0},
   {14.0,  15.0},
   {16.0,  17.0} }

let s = {1, 1}

DynamicUpdateSlice(b, u, s) produces:
 { {0.0,  1.0,  2.0},
   {3.0, 12.0, 13.0},
   {6.0, 14.0, 15.0},
   {9.0, 16.0, 17.0} }
```

## Sort

See also
[`ComputationBuilder::Sort`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

Sorts the elements in the operand.

<b>`Sort(operand)`</b>

Arguments | Type                    | Semantics
--------- | ----------------------- | -------------------
`operand` | `ComputationDataHandle` | The operand to sort

## Transpose

See also the @{tf.reshape} operation.

<b>`Transpose(operand)`</b>

Arguments     | Type                    | Semantics
---------     | ----------------------- | -------------------------
`operand`     | `ComputationDataHandle` | The operand to transpose.
`permutation` | `ArraySlice<int64>`     | How to permute the dimensions.


Permutes the operand dimensions with the given permutation, so
`∀ i . 0 ≤ i < rank ⇒ input_dimensions[permutation[i]] = output_dimensions[i]`.

This is the same as Reshape(operand, permutation,
                            Permute(permutation, operand.shape.dimensions)).

## Tuple

See also
[`ComputationBuilder::Tuple`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

A tuple containing a variable number of data handles, each of which has its own
shape.

This is analogous to `std::tuple` in C++. Conceptually:

```
let v: f32[10] = f32[10]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
let s: s32 = 5;
let t: (f32[10], s32) = tuple(v, s);
```

Tuples can be deconstructed (accessed) via the [`GetTupleElement`]
(#gettupleelement) operation.

## While

See also
[`ComputationBuilder::While`](https://www.tensorflow.org/code/tensorflow/compiler/xla/client/computation_builder.h).

<b> `While(condition, body, init)` </b>

| Arguments   | Type          | Semantics                                      |
| ----------- | ------------- | ---------------------------------------------- |
| `condition` | `Computation` | Computation of type `T -> PRED` which defines  |
:             :               : the termination condition of the loop.         :
| `body`      | `Computation` | Computation of type `T -> T` which defines the |
:             :               : body of the loop.                              :
| `init`      | `T`           | Initial value for the parameter of `condition` |
:             :               : and `body`.                                    :

Sequentially executes the `body` until the `condition` fails. This is similar to
a typical while loop in many other languages except for the differences and
restrictions listed below.

*   A `While` node returns a value of type `T`, which is the result from the
    last execution of the `body`.
*   The shape of the type `T` is statically determined and must be the same
    across all iterations.
*   `While` nodes are not allowed to be nested. (This restriction may be lifted
    in the future on some targets.)

The T parameters of the computations are initialized with the `init` value in
the first iteration and are automatically updated to the new result from `body`
in each subsequent iteration.

One main use case of the `While` node is to implement the repeated execution of
training in neural networks. Simplified pseudocode is shown below with a graph
that represents the computation. The code can be found in
[`while_test.cc`](https://www.tensorflow.org/code/tensorflow/compiler/xla/tests/while_test.cc).
The type `T` in this example is a `Tuple` consisting of an `int32` for the
iteration count and a `vector[10]` for the accumulator. For 1000 iterations, the
loop keeps adding a constant vector to the accumulator.

```
// Pseudocode for the computation.
init = {0, zero_vector[10]} // Tuple of int32 and float[10].
result = init;
while (result(0) < 1000) {
  iteration = result(0) + 1;
  new_vector = result(1) + constant_vector[10];
  result = {iteration, new_vector};
}
```

<div style="width:95%; margin:auto; margin-bottom:10px; margin-top:20px;">
  <img style="width:100%" src="https://www.tensorflow.org/images/ops_while.png">
</div>