aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/util/cuda_kernel_helper.h
blob: 8fa0dfbed9cabf6dd9de141832b1cdd8e39fa22e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_CORE_UTIL_CUDA_KERNEL_HELPER_H_
#define TENSORFLOW_CORE_UTIL_CUDA_KERNEL_HELPER_H_

#if GOOGLE_CUDA

#include <algorithm>

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "cuda/include/cuda.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/stream_executor.h"
#include "tensorflow/core/platform/types.h"

// Mask for all 32 threads in a warp.
#define CUDA_WARP_ALL 0xFFFFFFFF

#if defined(CUDA_VERSION) && CUDA_VERSION < 9000
// CUDA 9.0 introduces a new, light-weight barrier synchronization primitive
// that operates at the warp-scope. This is required to ensure visibility of
// reads/writes among threads that can make indepenent progress on Volta.
// For previous CUDA versions these synchronizations not necessary, and we
// define an empty function as a convenience for backward compatibility.
__device__ inline void __syncwarp(unsigned mask = CUDA_WARP_ALL) {}

// CUDA 9.0 deprecates the warp-intrinsic functions (shfl, ballot, etc.) in
// favor of synchronizing versions. These ensure that all warp lanes specified
// in mask execute the intrinsic in convergence. Here we provide legacy mappings
// to the less-verbose routines provided in previous versions of CUDA.
#define __ballot_sync(mask, predicate) __ballot(predicate)
#define __shfl_sync(mask, val, srcLane, width) __shfl(val, srcLane, width)
#define __shfl_down_sync(mask, val, delta, width) __shfl_down(val, delta, width)
#define __shfl_up_sync(mask, val, delta, width) __shfl_up(val, delta, width)
#define __shfl_xor_sync(mask, val, laneMask, width) \
  __shfl_xor(val, laneMask, width)
#endif

// Usage of GetCudaLaunchConfig, GetCuda2DLaunchConfig, and
// GetCuda3DLaunchConfig:
//
// There are two versions of GetCudaLaunchConfig and GetCuda2DLaunchConfig, one
// version uses heuristics without any knowledge of the device kernel, the other
// version uses cudaOccupancyMaxPotentialBlockSize to determine the theoretical
// launch parameters that maximize occupancy. Currently, only the maximum
// occupancy version of GetCuda3DLaunchConfig is available.
//
// For large number of work elements, the convention is that each kernel would
// iterate through its assigned range. The return value of GetCudaLaunchConfig
// is struct CudaLaunchConfig, which contains all the information needed for the
// kernel launch, including: virtual number of threads, the number of threads
// per block and number of threads per block used inside <<< >>> of a kernel
// launch. GetCuda2DLaunchConfig and GetCuda3DLaunchConfig does the same thing
// as CudaLaunchConfig. The only difference is the dimension. The macros
// CUDA_1D_KERNEL_LOOP and CUDA_AXIS_KERNEL_LOOP might be used to do inner loop.
//
/* Sample code:

__global__ void MyKernel1D(CudaLaunchConfig config, other_args...) {
  CUDA_1D_KERNEL_LOOP(x, config.virtual_thread_count) {
    do_your_job_here;
  }
}

__global__ void MyKernel2D(Cuda2DLaunchConfig config, other_args...) {
  CUDA_AXIS_KERNEL_LOOP(x, config.virtual_thread_count, x) {
    CUDA_AXIS_KERNEL_LOOP(y, config.virtual_thread_count, y) {
      do_your_job_here;
    }
  }
}

__global__ void MyKernel3D(Cuda3DLaunchConfig config, other_args...) {
  CUDA_AXIS_KERNEL_LOOP(x, config.virtual_thread_count, x) {
    CUDA_AXIS_KERNEL_LOOP(y, config.virtual_thread_count, y) {
      CUDA_AXIS_KERNEL_LOOP(z, config.virtual_thread_count, z) {
        do_your_job_here;
      }
    }
  }
}

void MyDriverFunc(const GPUDevice &d) {
  // use heuristics
  CudaLaunchConfig cfg1 = GetCudaLaunchConfig(10240, d);
  MyKernel1D <<<config.block_count,
                config.thread_per_block, 0, d.stream()>>> (cfg1, other_args...);
  Cuda2DLaunchConfig cfg2 = GetCuda2DLaunchConfig(10240, 10240, d);
  MyKernel2D <<<config.block_count,
                config.thread_per_block, 0, d.stream()>>> (cfg2, other_args...);
  Cuda3DLaunchConfig cfg3 = GetCuda3DLaunchConfig(4096, 4096, 100, d);
  MyKernel3D <<<config.block_count,
                config.thread_per_block, 0, d.stream()>>> (cfg3, other_args...);

  // maximize occupancy
  CudaLaunchConfig cfg4 = GetCudaLaunchConfig(10240, d, MyKernel1D, 0, 0 );
  MyKernel1D <<<config.block_count,
                config.thread_per_block, 0, d.stream()>>> (cfg4, other_args...);
  Cuda2DLaunchConfig cfg5 = GetCuda2DLaunchConfig(10240, 10240, d,
                                                  MyKernel1D, 0, 0);
  MyKernel2D <<<config.block_count,
                config.thread_per_block, 0, d.stream()>>> (cfg5, other_args...);
  Cuda3DLaunchConfig cfg6 = GetCuda3DLaunchConfig(4096, 4096, 100, d,
                                                  MyKernel1D, 0, 0);
  MyKernel3D <<<config.block_count,
                config.thread_per_block, 0, d.stream()>>> (cfg6, other_args...);
}

// See the test for this for more example:
//
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/cuda_kernel_helper_test.cu.cc

*/

#define CUDA_1D_KERNEL_LOOP(i, n)                            \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
       i += blockDim.x * gridDim.x)

#define CUDA_AXIS_KERNEL_LOOP(i, n, axis)                                  \
  for (int i = blockIdx.axis * blockDim.axis + threadIdx.axis; i < n.axis; \
       i += blockDim.axis * gridDim.axis)

#define DIV_UP(a, b) (((a) + (b)-1) / (b))

namespace tensorflow {

typedef Eigen::GpuDevice GPUDevice;

struct CudaLaunchConfig {
  // Logical number of thread that works on the elements. If each logical
  // thread works on exactly a single element, this is the same as the working
  // element count.
  int virtual_thread_count = -1;
  // Number of threads per block.
  int thread_per_block = -1;
  // Number of blocks for Cuda kernel launch.
  int block_count = -1;
};

// Calculate the Cuda launch config we should use for a kernel launch.
// This is assuming the kernel is quite simple and will largely be
// memory-limited.
// REQUIRES: work_element_count > 0.
inline CudaLaunchConfig GetCudaLaunchConfig(int work_element_count,
                                            const GPUDevice& d) {
  CHECK_GT(work_element_count, 0);
  CudaLaunchConfig config;
  const int virtual_thread_count = work_element_count;
  const int physical_thread_count = std::min(
      d.getNumCudaMultiProcessors() * d.maxCudaThreadsPerMultiProcessor(),
      virtual_thread_count);
  const int thread_per_block = std::min(1024, d.maxCudaThreadsPerBlock());
  const int block_count =
      std::min(DIV_UP(physical_thread_count, thread_per_block),
               d.getNumCudaMultiProcessors());

  config.virtual_thread_count = virtual_thread_count;
  config.thread_per_block = thread_per_block;
  config.block_count = block_count;
  return config;
}

// Calculate the Cuda launch config we should use for a kernel launch. This
// variant takes the resource limits of func into account to maximize occupancy.
// REQUIRES: work_element_count > 0.
template <typename DeviceFunc>
inline CudaLaunchConfig GetCudaLaunchConfig(int work_element_count,
                                            const GPUDevice& d, DeviceFunc func,
                                            size_t dynamic_shared_memory_size,
                                            int block_size_limit) {
  CHECK_GT(work_element_count, 0);
  CudaLaunchConfig config;
  int block_count = 0;
  int thread_per_block = 0;

  cudaError_t err = cudaOccupancyMaxPotentialBlockSize(
      &block_count, &thread_per_block, func, dynamic_shared_memory_size,
      block_size_limit);
  CHECK_EQ(err, cudaSuccess);

  block_count =
      std::min(block_count, DIV_UP(work_element_count, thread_per_block));

  config.virtual_thread_count = work_element_count;
  config.thread_per_block = thread_per_block;
  config.block_count = block_count;
  return config;
}

struct Cuda2DLaunchConfig {
  dim3 virtual_thread_count = dim3(0, 0, 0);
  dim3 thread_per_block = dim3(0, 0, 0);
  dim3 block_count = dim3(0, 0, 0);
};

inline Cuda2DLaunchConfig GetCuda2DLaunchConfig(int xdim, int ydim,
                                                const GPUDevice& d) {
  Cuda2DLaunchConfig config;

  if (xdim <= 0 || ydim <= 0) {
    return config;
  }

  const int kThreadsPerBlock = 256;
  int block_cols = std::min(xdim, kThreadsPerBlock);
  // ok to round down here and just do more loops in the kernel
  int block_rows = std::max(kThreadsPerBlock / block_cols, 1);

  const int physical_thread_count =
      d.getNumCudaMultiProcessors() * d.maxCudaThreadsPerMultiProcessor();

  const int max_blocks = std::max(physical_thread_count / kThreadsPerBlock, 1);

  config.virtual_thread_count = dim3(xdim, ydim, 1);
  config.thread_per_block = dim3(block_cols, block_rows, 1);

  int grid_x = std::min(DIV_UP(xdim, block_cols), max_blocks);

  config.block_count = dim3(
      grid_x, std::min(max_blocks / grid_x, std::max(ydim / block_rows, 1)), 1);
  return config;
}

// Calculate the Cuda 2D and 3D launch config we should use for a kernel launch.
// This variant takes the resource limits of func into account to maximize
// occupancy.
using Cuda3DLaunchConfig = Cuda2DLaunchConfig;

template <typename DeviceFunc>
inline Cuda3DLaunchConfig GetCuda3DLaunchConfig(
    int xdim, int ydim, int zdim, const GPUDevice& d, DeviceFunc func,
    size_t dynamic_shared_memory_size, int block_size_limit) {
  Cuda3DLaunchConfig config;

  if (xdim <= 0 || ydim <= 0 || zdim <= 0) {
    return config;
  }

  int dev;
  cudaGetDevice(&dev);
  cudaDeviceProp deviceProp;
  cudaGetDeviceProperties(&deviceProp, dev);
  int xthreadlimit = deviceProp.maxThreadsDim[0];
  int ythreadlimit = deviceProp.maxThreadsDim[1];
  int zthreadlimit = deviceProp.maxThreadsDim[2];
  int xgridlimit = deviceProp.maxGridSize[0];
  int ygridlimit = deviceProp.maxGridSize[1];
  int zgridlimit = deviceProp.maxGridSize[2];

  int block_count = 0;
  int thread_per_block = 0;
  cudaError_t err = cudaOccupancyMaxPotentialBlockSize(
      &block_count, &thread_per_block, func, dynamic_shared_memory_size,
      block_size_limit);
  CHECK_EQ(err, cudaSuccess);

#define MIN3(a, b, c) std::min((a), std::min((b), (c)))
  int threadsx = MIN3(xdim, thread_per_block, xthreadlimit);
  int threadsy =
      MIN3(ydim, std::max(thread_per_block / threadsx, 1), ythreadlimit);
  int threadsz =
      MIN3(zdim, std::max(thread_per_block / (threadsx * threadsy), 1),
           zthreadlimit);

  int blocksx = MIN3(block_count, DIV_UP(xdim, threadsx), xgridlimit);
  int blocksy =
      MIN3(DIV_UP(block_count, blocksx), DIV_UP(ydim, threadsy), ygridlimit);
  int blocksz = MIN3(DIV_UP(block_count, (blocksx * blocksy)),
                     DIV_UP(zdim, threadsz), zgridlimit);
#undef MIN3

  config.virtual_thread_count = dim3(xdim, ydim, zdim);
  config.thread_per_block = dim3(threadsx, threadsy, threadsz);
  config.block_count = dim3(blocksx, blocksy, blocksz);
  return config;
}

template <typename DeviceFunc>
inline Cuda2DLaunchConfig GetCuda2DLaunchConfig(
    int xdim, int ydim, const GPUDevice& d, DeviceFunc func,
    size_t dynamic_shared_memory_size, int block_size_limit) {
  return GetCuda3DLaunchConfig(xdim, ydim, 1, d, func,
                               dynamic_shared_memory_size, block_size_limit);
}

// Returns a raw reference to the current cuda stream.  Required by a
// number of kernel calls (for which StreamInterface* does not work), i.e.
// CUB and certain cublas primitives.
inline const cudaStream_t& GetCudaStream(OpKernelContext* context) {
  const cudaStream_t* ptr = CHECK_NOTNULL(
      reinterpret_cast<const cudaStream_t*>(context->op_device_context()
                                                ->stream()
                                                ->implementation()
                                                ->CudaStreamMemberHack()));
  return *ptr;
}

namespace cuda_helper {

template <typename IntType>
__device__ IntType upper_bound(IntType* first, IntType count, IntType val) {
  IntType* orig = first;
  IntType* it = nullptr;
  IntType step = 0;
  while (count > 0) {
    it = first;
    step = count / 2;
    it += step;
    if (!(val < *it)) {
      first = ++it;
      count -= step + 1;
    } else {
      count = step;
    }
  }

  return first - orig;
}

}  // namespace cuda_helper

template <typename T>
__device__ __host__ inline T ldg(const T* address) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
  return __ldg(address);
#else
  return *address;
#endif
}

template <>
__device__ __host__ inline std::complex<float> ldg(
    const std::complex<float>* address) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
  float2 mem = __ldg(reinterpret_cast<const float2*>(address));
  return std::complex<float>(mem.x, mem.y);
#else
  return *address;
#endif
}

template <>
__device__ __host__ inline std::complex<double> ldg(
    const std::complex<double>* address) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
  double2 mem = __ldg(reinterpret_cast<const double2*>(address));
  return std::complex<double>(mem.x, mem.y);
#else
  return *address;
#endif
}

template <>
__device__ __host__ inline Eigen::half ldg(const Eigen::half* address) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
  return Eigen::half_impl::raw_uint16_to_half(
      __ldg(reinterpret_cast<const uint16_t*>(address)));
#else
  return *address;
#endif
}

template <>
__device__ __host__ inline bool ldg(const bool* address) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
  return *reinterpret_cast<const bool*>(
      __ldg(reinterpret_cast<const char*>(address)));
#else
  return *address;
#endif
}

// CUDA provides atomic ops, but not for all types.  We provide wrappers
// for some ops and provide implementation for all reasonable types.
#define CUDA_ATOMIC_WRAPPER(op, T) \
  __device__ __forceinline__ T CudaAtomic##op(T* address, T val)

#define USE_CUDA_ATOMIC(op, T) \
  CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); }

// For atomicAdd.
USE_CUDA_ATOMIC(Add, int32);
USE_CUDA_ATOMIC(Add, uint32);
USE_CUDA_ATOMIC(Add, uint64);
USE_CUDA_ATOMIC(Add, float);

// For atomicMax.
USE_CUDA_ATOMIC(Max, int32);
USE_CUDA_ATOMIC(Max, uint32);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
USE_CUDA_ATOMIC(Max, uint64);
#else
// The uint64 overload of atomicMax() is only available for __CUDA_ARCH__ >=
// 350.  If not satisfied, we provide a custom implementation using atomicCAS().
CUDA_ATOMIC_WRAPPER(Max, uint64) {
  uint64* address_as_ull = reinterpret_cast<uint64*>(address);
  uint64 old = *address_as_ull, assumed;

  do {
    assumed = old;
    old = atomicCAS(address_as_ull, assumed, max(val, assumed));
  } while (assumed != old);

  return old;
}
#endif

// Custom implementation of atomicAdd for double.
// This implementation is copied from CUDA manual.
CUDA_ATOMIC_WRAPPER(Add, double) {
  uint64* address_as_ull = reinterpret_cast<uint64*>(address);
  uint64 old = *address_as_ull, assumed;

  do {
    assumed = old;
    old = atomicCAS(address_as_ull, assumed,
                    __double_as_longlong(val + __longlong_as_double(assumed)));

    // Note: uses integer comparison to avoid hang in case of NaN
  } while (assumed != old);

  return __longlong_as_double(old);
}

// Custom implementation of atomicAdd for std::complex<float>.
// This implementation performs to atomic additions on the components.
CUDA_ATOMIC_WRAPPER(Add, std::complex<float>) {
#if defined(__CUDA_ARCH__)
#if __CUDA_ARCH__ >= 350
  float2* addr_as_float2 = reinterpret_cast<float2*>(address);
  float2* val_as_float2 = reinterpret_cast<float2*>(&val);
  CudaAtomicAdd(&(addr_as_float2->x), val_as_float2->x);
  CudaAtomicAdd(&(addr_as_float2->y), val_as_float2->y);
#else
  static_assert(sizeof(std::complex<float>) == 2 * sizeof(float),
                "Unable to compile CudaAtomicAdd for complex64 because "
                "sizeof(complex64) != 2*sizeof(float32)");
  float* addr_as_float = reinterpret_cast<float*>(address);
  float* val_as_float = reinterpret_cast<float*>(&val);
  CudaAtomicAdd(addr_as_float, *val_as_float);
  CudaAtomicAdd(addr_as_float + 1, *(val_as_float + 1));
#endif
#endif
  return *address;
}

// Custom implementation of atomicAdd for std::complex<double>.
// This implementation performs to atomic additions on the components
// using the double atomic wrapper above.
CUDA_ATOMIC_WRAPPER(Add, complex128) {
#if defined(__CUDA_ARCH__)
#if __CUDA_ARCH__ >= 350
  double2* addr_as_double2 = reinterpret_cast<double2*>(address);
  double2* val_as_double2 = reinterpret_cast<double2*>(&val);
  CudaAtomicAdd(&(addr_as_double2->x), val_as_double2->x);
  CudaAtomicAdd(&(addr_as_double2->y), val_as_double2->y);
#else
  static_assert(sizeof(std::complex<double>) == 2 * sizeof(double),
                "Unable to compile CudaAtomicAdd for complex128 because "
                "sizeof(complex128) != 2*sizeof(float64)");
  double* addr_as_double = reinterpret_cast<double*>(address);
  double* val_as_double = reinterpret_cast<double*>(&val);
  CudaAtomicAdd(addr_as_double, *val_as_double);
  CudaAtomicAdd(addr_as_double + 1, *(val_as_double + 1));
#endif
#endif
  return *address;
}

// Helper functions for CudaAtomicAdd(half*, half), below.
//
// Note that if __CUDA_ARCH__ >= 530, we could probably use __hadd2()
// for a more efficient implementation, assuming that adding -0.0
// will never harm the neighboring value. In this version, we take special
// care to guarantee the bits of the untouched value are unchanged.
inline __device__ uint32 add_to_low_half(uint32 val, float x) {
  Eigen::half low_half;
  low_half.x = static_cast<uint16>(val & 0xffffu);
  low_half = static_cast<Eigen::half>(static_cast<float>(low_half) + x);
  return (val & 0xffff0000u) | low_half.x;
}

inline __device__ uint32 add_to_high_half(uint32 val, float x) {
  Eigen::half high_half;
  high_half.x = static_cast<uint16>(val >> 16);
  high_half = static_cast<Eigen::half>(static_cast<float>(high_half) + x);
  return (val & 0xffffu) | (high_half.x << 16);
}

// Custom implementation of atomicAdd for half. Note that we don't have
// atomicCAS() for anything less than 32 bits, so we need to include the
// other 16 bits in the operation.
//
// Unlike the other atomic adds, this version is going to be very slow
// under high concurrency, since most threads will be spinning on failing
// their compare-and-swap tests. (The fact that we get false sharing on the
// neighboring fp16 makes this even worse.) If you are doing a large reduction,
// you are much better off with doing the intermediate steps in fp32 and then
// switching to fp16 as late as you can in the calculations.
//
// Note: Assumes little endian.
CUDA_ATOMIC_WRAPPER(Add, Eigen::half) {
  float val_as_float(val);
  intptr_t address_int = reinterpret_cast<intptr_t>(address);
  if ((address_int & 0x2) == 0) {
    // The half is in the first part of the uint32 (lower 16 bits).
    uint32* address_as_uint32 = reinterpret_cast<uint32*>(address);
    assert(((intptr_t)address_as_uint32 & 0x3) == 0);
    uint32 old = *address_as_uint32, assumed;

    do {
      assumed = old;
      old = atomicCAS(address_as_uint32, assumed,
                      add_to_low_half(assumed, val_as_float));

      // Note: uses integer comparison to avoid hang in case of NaN
    } while (assumed != old);

    Eigen::half ret;
    ret.x = old & 0xffffu;
    return ret;
  } else {
    // The half is in the second part of the uint32 (upper 16 bits).
    uint32* address_as_uint32 = reinterpret_cast<uint32*>(address_int - 2);
    assert(((intptr_t)address_as_uint32 & 0x3) == 0);
    uint32 old = *address_as_uint32, assumed;

    do {
      assumed = old;
      old = atomicCAS(address_as_uint32, assumed,
                      add_to_high_half(assumed, val_as_float));

      // Note: uses integer comparison to avoid hang in case of NaN
    } while (assumed != old);

    Eigen::half ret;
    ret.x = old >> 16;
    return ret;
  }
}

template <typename T>
__global__ void SetZero(const int nthreads, T* bottom_diff) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) { *(bottom_diff + index) = T(0); }
}

// For atomicSub.

// Custom implementation for sub by just negating the value.
#define WRAPPED_ATOMIC_SUB(T) \
  CUDA_ATOMIC_WRAPPER(Sub, T) { return CudaAtomicAdd(address, -val); }

WRAPPED_ATOMIC_SUB(uint64);
WRAPPED_ATOMIC_SUB(int32);
WRAPPED_ATOMIC_SUB(uint32);
WRAPPED_ATOMIC_SUB(Eigen::half);
WRAPPED_ATOMIC_SUB(float);
WRAPPED_ATOMIC_SUB(double);

CUDA_ATOMIC_WRAPPER(Sub, complex64) {
  const std::complex<float> Tneg(-val.real(), -val.imag());
  return CudaAtomicAdd(address, Tneg);
}

CUDA_ATOMIC_WRAPPER(Sub, complex128) {
  const std::complex<double> Tneg(-val.real(), -val.imag());
  return CudaAtomicAdd(address, Tneg);
}

#undef WRAPPED_ATOMIC_SUB

// For atomicMul.
CUDA_ATOMIC_WRAPPER(Mul, int32) {
  int32 old = *address, assumed;
  do {
    assumed = old;
    old = atomicCAS(address, assumed, val * assumed);
  } while (assumed != old);
  return old;
}

CUDA_ATOMIC_WRAPPER(Mul, uint32) {
  uint32 old = *address, assumed;
  do {
    assumed = old;
    old = atomicCAS(address, assumed, val * assumed);
  } while (assumed != old);
  return old;
}

CUDA_ATOMIC_WRAPPER(Mul, uint64) {
  uint64 old = *address, assumed;
  do {
    assumed = old;
    old = atomicCAS(address, assumed, val * assumed);
  } while (assumed != old);
  return old;
}

CUDA_ATOMIC_WRAPPER(Mul, float) {
  int32* address_as_int = reinterpret_cast<int32*>(address);
  int32 old = *address_as_int, assumed;
  do {
    assumed = old;
    old = atomicCAS(address_as_int, assumed,
                    __float_as_int(val * __int_as_float(assumed)));
  } while (assumed != old);
  return __int_as_float(old);
}

CUDA_ATOMIC_WRAPPER(Mul, double) {
  uint64* address_as_ull = reinterpret_cast<uint64*>(address);
  uint64 old = *address_as_ull, assumed;
  do {
    assumed = old;
    old = atomicCAS(address_as_ull, assumed,
                    __double_as_longlong(val * __longlong_as_double(assumed)));
  } while (assumed != old);
  return __longlong_as_double(old);
}

// For atomicDiv.
CUDA_ATOMIC_WRAPPER(Div, int32) {
  int32 old = *address, assumed;
  do {
    assumed = old;
    old = atomicCAS(address, assumed, assumed / val);
  } while (assumed != old);
  return old;
}

CUDA_ATOMIC_WRAPPER(Div, uint32) {
  uint32 old = *address, assumed;
  do {
    assumed = old;
    old = atomicCAS(address, assumed, assumed / val);
  } while (assumed != old);
  return old;
}

CUDA_ATOMIC_WRAPPER(Div, uint64) {
  uint64 old = *address, assumed;
  do {
    assumed = old;
    old = atomicCAS(address, assumed, assumed / val);
  } while (assumed != old);
  return old;
}

CUDA_ATOMIC_WRAPPER(Div, float) {
  int32* address_as_int = reinterpret_cast<int32*>(address);
  int32 old = *address_as_int, assumed;
  do {
    assumed = old;
    old = atomicCAS(address_as_int, assumed,
                    __float_as_int(__int_as_float(assumed) / val));
  } while (assumed != old);
  return __int_as_float(old);
}

CUDA_ATOMIC_WRAPPER(Div, double) {
  uint64* address_as_ull = reinterpret_cast<uint64*>(address);
  uint64 old = *address_as_ull, assumed;
  do {
    assumed = old;
    old = atomicCAS(address_as_ull, assumed,
                    __double_as_longlong(__longlong_as_double(assumed) / val));
  } while (assumed != old);
  return __longlong_as_double(old);
}

#undef USE_CUDA_ATOMIC
#undef CUDA_ATOMIC_WRAPPER

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tf_min(const T& x, const T& y) {
  return x > y ? y : x;
}

template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tf_max(const T& x, const T& y) {
  return x < y ? y : x;
}

__device__ EIGEN_ALWAYS_INLINE unsigned CudaBallot(unsigned mask,
                                                   int predicate) {
  return __ballot_sync(mask, predicate);
}

template <typename T>
__device__ EIGEN_ALWAYS_INLINE T CudaShuffle(unsigned mask, T value,
                                             int srcLane,
                                             int width = warpSize) {
  return __shfl_sync(mask, value, srcLane, width);
}

// Variant of the (undocumented) version from the CUDA SDK, but using unsigned
// instead of float for lo and hi (which is incorrect with ftz, for example).
// A bug has been filed with NVIDIA and will be fixed in the next CUDA release.
// TODO(csigg): remove when the bug is fixed in the next CUDA release.
__device__ EIGEN_ALWAYS_INLINE double CudaShuffle(unsigned mask, double value,
                                                  int srcLane,
                                                  int width = warpSize) {
  unsigned lo, hi;
  asm volatile("mov.b64 {%0,%1}, %2;" : "=r"(lo), "=r"(hi) : "d"(value));
  hi = __shfl_sync(mask, hi, srcLane, width);
  lo = __shfl_sync(mask, lo, srcLane, width);
  asm volatile("mov.b64 %0, {%1,%2};" : "=d"(value) : "r"(lo), "r"(hi));
  return value;
}

template <typename T>
__device__ EIGEN_ALWAYS_INLINE T CudaShuffleUp(unsigned mask, T value,
                                               int delta,
                                               int width = warpSize) {
  return __shfl_up_sync(mask, value, delta, width);
}

// Variant of the (undocumented) version from the CUDA SDK, but using unsigned
// instead of float for lo and hi (which is incorrect with ftz, for example).
// A bug has been filed with NVIDIA and will be fixed in the next CUDA release.
// TODO(csigg): remove when the bug is fixed in the next CUDA release.
__device__ EIGEN_ALWAYS_INLINE double CudaShuffleUp(unsigned mask, double value,
                                                    int delta,
                                                    int width = warpSize) {
  unsigned lo, hi;
  asm volatile("mov.b64 {%0,%1}, %2;" : "=r"(lo), "=r"(hi) : "d"(value));
  hi = __shfl_up_sync(mask, hi, delta, width);
  lo = __shfl_up_sync(mask, lo, delta, width);
  asm volatile("mov.b64 %0, {%1,%2};" : "=d"(value) : "r"(lo), "r"(hi));
  return value;
}

template <typename T>
__device__ EIGEN_ALWAYS_INLINE T CudaShuffleDown(unsigned mask, T value,
                                                 int delta,
                                                 int width = warpSize) {
  return __shfl_down_sync(mask, value, delta, width);
}

// Variant of the (undocumented) version from the CUDA SDK, but using unsigned
// instead of float for lo and hi (which is incorrect with ftz, for example).
// A bug has been filed with NVIDIA and will be fixed in the next CUDA release.
// TODO(csigg): remove when the bug is fixed in the next CUDA release.
__device__ EIGEN_ALWAYS_INLINE double CudaShuffleDown(unsigned mask,
                                                      double value, int delta,
                                                      int width = warpSize) {
  unsigned lo, hi;
  asm volatile("mov.b64 {%0,%1}, %2;" : "=r"(lo), "=r"(hi) : "d"(value));
  hi = __shfl_down_sync(mask, hi, delta, width);
  lo = __shfl_down_sync(mask, lo, delta, width);
  asm volatile("mov.b64 %0, {%1,%2};" : "=d"(value) : "r"(lo), "r"(hi));
  return value;
}

template <typename T>
__device__ EIGEN_ALWAYS_INLINE T CudaShuffleXor(unsigned mask, T value,
                                                int laneMask,
                                                int width = warpSize) {
  return __shfl_xor_sync(mask, value, laneMask, width);
}

// Variant of the (undocumented) version from the CUDA SDK, but using unsigned
// instead of float for lo and hi (which is incorrect with ftz, for example).
// A bug has been filed with NVIDIA and will be fixed in the next CUDA release.
// TODO(csigg): remove when the bug is fixed in the next CUDA release.
__device__ EIGEN_ALWAYS_INLINE double CudaShuffleXor(unsigned mask,
                                                     double value, int laneMask,
                                                     int width = warpSize) {
  unsigned lo, hi;
  asm volatile("mov.b64 {%0,%1}, %2;" : "=r"(lo), "=r"(hi) : "d"(value));
  hi = __shfl_xor_sync(mask, hi, laneMask, width);
  lo = __shfl_xor_sync(mask, lo, laneMask, width);
  asm volatile("mov.b64 %0, {%1,%2};" : "=d"(value) : "r"(lo), "r"(hi));
  return value;
}

}  // namespace tensorflow

#undef DIV_UP

#endif  // GOOGLE_CUDA

#endif  // TENSORFLOW_CORE_UTIL_CUDA_KERNEL_HELPER_H_