aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/ops/array_ops.cc
blob: 8afe80e4f1c794219a59ba2f936d259991c95e3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
/* Copyright 2015 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/framework/op.h"

namespace tensorflow {

REGISTER_OP("Pack")
    .Input("values: N * T")
    .Output("output: T")
    .Attr("N: int >= 1")
    .Attr("T: type")
    .Doc(R"doc(
Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor.

Packs the `N` tensors in `values` into a tensor with rank one higher than each
tensor in `values` and shape `[N] + values[0].shape`. The output satisfies
`output[i, ...] = values[i][...]`.

This is the opposite of `unpack`.

values: Must be of same shape and type.
output: The packed tensor.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Unpack")
    .Input("value: T")
    .Output("output: num * T")
    .Attr("num: int >= 0")
    .Attr("T: type")
    .Doc(R"doc(
Unpacks the outer dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors.

Unpacks `num` tensors from `value` by chipping it along the first dimension.
The i'th tensor in `output` is the slice `value[i, ...]`. Each tensor in
`output` has shape `value.shape[1:]`.

This is the opposite of `pack`.

value: 1-D or higher, with first dimension `num`.
output: The list of tensors unpacked from `value`.
)doc");

// --------------------------------------------------------------------------
// TODO(josh11b): Remove the >= 2 constraint, once we can rewrite the graph
// in the N == 1 case to remove the node.
REGISTER_OP("Concat")
    .Input("concat_dim: int32")
    .Input("values: N * T")
    .Output("output: T")
    .Attr("N: int >= 2")
    .Attr("T: type")
    .Doc(R"doc(
Concatenates tensors along one dimension.

concat_dim: 0-D.  The dimension along which to concatenate.  Must be in the
  range [0, rank(values)).
values: The `N` Tensors to concatenate. Their ranks and types must match,
  and their sizes must match in all dimensions except `concat_dim`.
output: A `Tensor` with the concatenation of values stacked along the
  `concat_dim` dimension.  This tensor's shape matches that of `values` except
  in `concat_dim` where it has the sum of the sizes.
)doc");

REGISTER_OP("ConcatOffset")
    .Input("concat_dim: int32")
    .Input("shape: N * int32")
    .Output("offset: N * int32")
    .Attr("N: int >= 2")
    .Doc(R"doc(
Computes offsets of concat inputs within its output.

For example:

```prettyprint
# 'x' is [2, 2, 7]
# 'y' is [2, 3, 7]
# 'z' is [2, 5, 7]
concat_offset(2, [x, y, z]) => [0, 0, 0], [0, 2, 0], [0, 5, 0]
```

concat_dim: The dimension along which to concatenate.
shape: The `N` int32 vectors representing shape of tensors being concatenated.
output: The `N` int32 vectors representing the starting offset
        of input tensors within the concatenated output.

This is typically used by gradient computations for a concat operation.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Split")
    .Input("split_dim: int32")
    .Input("value: T")
    .Output("output: num_split * T")
    .Attr("num_split: int >= 1")
    .Attr("T: type")
    .Doc(R"doc(
Splits a tensor into `num_split` tensors along one dimension.

split_dim: 0-D.  The dimension along which to split.  Must be in the range
  `[0, rank(value))`.
num_split: The number of ways to split.  Must evenly divide
  `value.shape[split_dim]`.
value: The tensor to split.
output: They are identically shaped tensors, whose shape matches that of `value`
  except along `split_dim`, where their sizes are
  `values.shape[split_dim] / num_split`.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Const")
    .Output("output: dtype")
    .Attr("value: tensor")
    .Attr("dtype: type")
    .Doc(R"doc(
Returns a constant tensor.

value: Attr `value` is the tensor to return.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("ZerosLike")
    .Input("x: T")
    .Output("y: T")
    .Attr("T: type")
    .Doc(R"doc(
Returns a tensor of zeros with the same shape and type as x.

x: a tensor of type T.
y: a tensor of the same shape and type as x but filled with zeros.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Diag")
    .Input("diagonal: T")
    .Output("output: T")
    .Attr("T: {float, double, int32, int64}")
    .Doc(R"doc(
Returns a diagonal tensor with a given diagonal values.

Given a `diagonal`, this operation returns a tensor with the `diagonal` and
everything else padded with zeros. The diagonal is computed as follows:

Assume `diagonal` has dimensions [D1,..., Dk], then the output is a tensor of
rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where:

`output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik]` and 0 everywhere else.

For example:

```prettyprint
# 'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
                       [0, 2, 0, 0]
                       [0, 0, 3, 0]
                       [0, 0, 0, 4]]
```

diagonal: Rank k tensor where k is at most 3.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Reverse")
    .Input("tensor: T")
    .Input("dims: bool")
    .Output("output: T")
    .Attr("T: {uint8, int8, int32, bool, float, double}")
    .Doc(R"Doc(
Reverses specific dimensions of a tensor.

Given a `tensor`, and a `bool` tensor `dims` representing the dimensions
of `tensor`, this operation reverses each dimension i of `tensor` where
`dims[i]` is `True`.

`tensor` can have up to 8 dimensions. The number of dimensions
of `tensor` must equal the number of elements in `dims`. In other words:

`rank(tensor) = size(dims)`

For example:

```prettyprint
# tensor 't' is [[[[ 0,  1,  2,  3],
#                  [ 4,  5,  6,  7],
#                  [ 8,  9, 10, 11]],
#                 [[12, 13, 14, 15],
#                  [16, 17, 18, 19],
#                  [20, 21, 22, 23]]]]
# tensor 't' shape is [1, 2, 3, 4]

# 'dims' is [False, False, False, True]
reverse(t, dims) ==> [[[[ 3,  2,  1,  0],
                        [ 7,  6,  5,  4],
                        [ 11, 10, 9, 8]],
                       [[15, 14, 13, 12],
                        [19, 18, 17, 16],
                        [23, 22, 21, 20]]]]

# 'dims' is [False, True, False, False]
reverse(t, dims) ==> [[[[12, 13, 14, 15],
                        [16, 17, 18, 19],
                        [20, 21, 22, 23]
                       [[ 0,  1,  2,  3],
                        [ 4,  5,  6,  7],
                        [ 8,  9, 10, 11]]]]

# 'dims' is [False, False, True, False]
reverse(t, dims) ==> [[[[8, 9, 10, 11],
                        [4, 5, 6, 7],
                        [0, 1, 2, 3]]
                       [[20, 21, 22, 23],
                        [16, 17, 18, 19],
                        [12, 13, 14, 15]]]]
```

tensor: Up to 8-D.
dims: 1-D. The dimensions to reverse.
output: The same shape as `tensor`.
)Doc");

// --------------------------------------------------------------------------
REGISTER_OP("EditDistance")
    .Input("hypothesis_indices: int64")
    .Input("hypothesis_values: T")
    .Input("hypothesis_shape: int64")
    .Input("truth_indices: int64")
    .Input("truth_values: T")
    .Input("truth_shape: int64")
    .Attr("normalize: bool = True")
    .Attr("T: type")
    .Output("output: float")
    .Doc(R"doc(
Computes the (possibly normalized) Levenshtein Edit Distance.

The inputs are variable-length sequences provided by SparseTensors
  (hypothesis_indices, hypothesis_values, hypothesis_shape)
and
  (truth_indices, truth_values, truth_shape).

The inputs are:

hypothesis_indices: The indices of the hypothesis list SparseTensor.
  This is an N x R int64 matrix.
hypothesis_values: The values of the hypothesis list SparseTensor.
  This is an N-length vector.
hypothesis_shape: The shape of the hypothesis list SparseTensor.
  This is an R-length vector.
truth_indices: The indices of the truth list SparseTensor.
  This is an M x R int64 matrix.
truth_values: The values of the truth list SparseTensor.
  This is an M-length vector.
truth_shape: The shape of the truth list SparseTensor.
  This is an R-length vector.
truth_shape: truth indices, vector.
normalize: boolean (if true, edit distances are normalized by length of truth).

The output is:

output: A dense float tensor with rank R - 1.

For the example input:

    // hypothesis represents a 2x1 matrix with variable-length values:
    //   (0,0) = ["a"]
    //   (1,0) = ["b"]
    hypothesis_indices = [[0, 0, 0],
                          [1, 0, 0]]
    hypothesis_values = ["a", "b"]
    hypothesis_shape = [2, 1, 1]

    // truth represents a 2x2 matrix with variable-length values:
    //   (0,0) = []
    //   (0,1) = ["a"]
    //   (1,0) = ["b", "c"]
    //   (1,1) = ["a"]
    truth_indices = [[0, 1, 0],
                     [1, 0, 0],
                     [1, 0, 1],
                     [1, 1, 0]]
    truth_values = ["a", "b", "c", "a"]
    truth_shape = [2, 2, 2]
    normalize = true

The output will be:

    // output is a 2x2 matrix with edit distances normalized by truth lengths.
    output = [[inf, 1.0],  // (0,0): no truth, (0,1): no hypothesis
              [0.5, 1.0]]  // (1,0): addition, (1,1): no hypothesis
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Fill")
    .Input("dims: int32")
    .Input("value: T")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"doc(
Creates a tensor filled with a scalar value.

This operation creates a tensor of shape `dims` and fills it with `value`.

For example:

```prettyprint
# Output tensor has shape [2, 3].
fill([2, 3], 9) ==> [[9, 9, 9]
                     [9, 9, 9]]
```

dims: 1-D. Represents the shape of the output tensor.
value: 0-D (scalar). Value to fill the returned tensor.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Gather")
    .Input("params: Tparams")
    .Input("indices: Tindices")
    .Attr("validate_indices: bool = true")
    .Output("output: Tparams")
    .Attr("Tparams: type")
    .Attr("Tindices: {int32,int64}")
    .Doc(R"doc(
Gather slices from `params` according to `indices`.

`indices` must be an integer tensor of any dimension (usually 0-D or 1-D).
Produces an output tensor with shape `indices.shape + params.shape[1:]` where:

    # Scalar indices
    output[:, ..., :] = params[indices, :, ... :]

    # Vector indices
    output[i, :, ..., :] = params[indices[i], :, ... :]

    # Higher rank indices
    output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :]

If `indices` is a permutation and `len(indices) == params.shape[0]` then
this operation will permute `params` accordingly.

<div style="width:70%; margin:auto; margin-bottom:10px; margin-top:20px;">
<img style="width:100%" src="../../images/Gather.png" alt>
</div>
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Identity")
    .Input("input: T")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"Doc(
Return a tensor with the same shape and contents as the input tensor or value.
)Doc");

// --------------------------------------------------------------------------
REGISTER_OP("RefIdentity")
    .Input("input: Ref(T)")
    .Output("output: Ref(T)")
    .Attr("T: type")
    .Doc(R"Doc(
Return the same ref tensor as the input ref tensor.
)Doc");

// --------------------------------------------------------------------------
REGISTER_OP("StopGradient")
    .Input("input: T")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"Doc(
Stops gradient computation.

When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the contribution of
its inputs to be taken into account.  Normally, the gradient generator adds ops
to a graph to compute the derivatives of a specified 'loss' by recursively
finding out inputs that contributed to its computation.  If you insert this op
in the graph it inputs are masked from the gradient generator.  They are not
taken into account for computing gradients.

This is useful any time you want to compute a value with TensorFlow but need
to pretend that the value was a constant. Some examples include:

*  The *EM* algorithm where the *M-step* should not involve backpropagation
   through the output of the *E-step*.
*  Contrastive divergence training of Boltzmann machines where, when
   differentiating the energy function, the training must not backpropagate
   through the graph that generated the samples from the model.
*  Adversarial training, where no backprop should happen through the adversarial
   example generation process.
)Doc");

// --------------------------------------------------------------------------
REGISTER_OP("CheckNumerics")
    .Input("tensor: T")
    .Output("output: T")
    .Attr("T: {float, double}")
    .Attr("message: string")
    .Doc(R"doc(
Checks a tensor for NaN and Inf values.

When run, reports an `InvalidArgument` error if `tensor` has any values
that are not a number (NaN) or infinity (Inf). Otherwise, passes `tensor` as-is.

message: Prefix of the error message.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Reshape")
    .Input("tensor: T")
    .Input("shape: int32")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"Doc(
Reshapes a tensor.

Given `tensor`, this operation returns a tensor that has the same values
as `tensor` with shape `shape`.

If one component of `shape` is the special value -1, the size of that dimension
is computed so that the total size remains constant.  In particular, a `shape`
of `[-1]` flattens into 1-D.  At most one component of `shape` can be -1.

If `shape` is 1-D or higher, then the operation returns a tensor with shape
`shape` filled with the values of `tensor`. In this case, the number of elements
implied by `shape` must be the same as the number of elements in `tensor`.

For example:

```prettyprint
# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3]
                        [4, 5, 6]
                        [7, 8, 9]]

# tensor 't' is [[[1, 1], [2, 2]]
#                [[3, 3], [4, 4]]]
# tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2]
                        [3, 3, 4, 4]]

# tensor 't' is [[[1, 1, 1],
#                 [2, 2, 2]],
#                [[3, 3, 3],
#                 [4, 4, 4]],
#                [[5, 5, 5],
#                 [6, 6, 6]]]
# tensor 't' has shape [3, 2, 3]
# pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]
# -1 can also be used with higher dimensional shapes
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
                         [4, 4, 4, 5, 5, 5, 6, 6, 6]]

# tensor 't' is [7]
# shape `[]` reshapes to a scalar
reshape(t, []) ==> 7
```

shape: Defines the shape of the output tensor.
)Doc");

// --------------------------------------------------------------------------
REGISTER_OP("InvertPermutation")
    .Input("x: int32")
    .Output("y: int32")
    .Doc(R"doc(
Computes the inverse permutation of a tensor.

This operation computes the inverse of an index permutation. It takes a 1-D
integer tensor `x`, which represents the indices of a zero-based array, and
swaps each value with its index position. In other words, for an output tensor
`y` and an input tensor `x`, this operation computes the following:

`y[x[i]] = i for i in [0, 1, ..., len(x) - 1]`

The values must include 0. There can be no duplicate values or negative values.

For example:

```prettyprint
# tensor `x` is [3, 4, 0, 2, 1]
invert_permutation(x) ==> [2, 4, 3, 0, 1]
```

x: 1-D.
y: 1-D.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Transpose")
    .Input("x: T")
    .Input("perm: int32")
    .Output("y: T")
    .Attr("T: type")
    .Doc(R"doc(
Shuffle dimensions of x according to a permutation.

The output `y` has the same rank as `x`. The shapes of `x` and `y` satisfy:
  `y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]`
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Unique")
    .Input("x: T")
    .Output("y: T")
    .Output("idx: int32")
    .Attr("T: type")
    .Doc(R"doc(
Finds unique elements in a 1-D tensor.

This operation returns a tensor `y` containing all of the unique elements of `x`
sorted in the same order that they occur in `x`. This operation also returns a
tensor `idx` the same size as `x` that contains the index of each value of `x`
in the unique output `y`. In other words:

`y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]`

For example:

```prettyprint
# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx = unique(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
```

x: 1-D.
y: 1-D.
idx: 1-D.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("UniqueWithCounts")
    .Input("x: T")
    .Output("y: T")
    .Output("idx: int32")
    .Output("count: int32")
    .Attr("T: type")
    .Doc(R"doc(
Finds unique elements in a 1-D tensor.

This operation returns a tensor `y` containing all of the unique elements of `x`
sorted in the same order that they occur in `x`. This operation also returns a
tensor `idx` the same size as `x` that contains the index of each value of `x`
in the unique output `y`. Finally, it returns a third tensor `count` that
contains the count of each element of `y` in `x`. In other words:

`y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]`

For example:

```prettyprint
# tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8]
y, idx, count = unique_with_counts(x)
y ==> [1, 2, 4, 7, 8]
idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
count ==> [2, 1, 3, 1, 2]
```

x: 1-D.
y: 1-D.
idx: 1-D.
count: 1-D.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Shape")
    .Input("input: T")
    .Output("output: int32")
    .Attr("T: type")
    .Doc(R"doc(
Returns the shape of a tensor.

This operation returns a 1-D integer tensor representing the shape of `input`.

For example:

```prettyprint
# 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape(t) ==> [2, 2, 3]
```

)doc");

REGISTER_OP("ShapeN")
    .Input("input: N * T")
    .Output("output: N * int32")
    .Attr("N: int32")
    .Attr("T: type")
    .Doc(R"doc(
Returns shape of tensors.

This operation returns N 1-D integer tensors representing shape of `input[i]s`.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("ReverseSequence")
    .Input("input: T")
    .Input("seq_lengths: int64")
    .Output("output: T")
    .Attr("seq_dim: int")
    .Attr("batch_dim: int = 0")
    .Attr("T: type")
    .Doc(R"doc(
Reverses variable length slices.

This op first slices `input` along the dimension `batch_dim`, and for each
slice `i`, reverses the first `seq_lengths[i]` elements along
the dimension `seq_dim`.

The elements of `seq_lengths` must obey `seq_lengths[i] < input.dims[seq_dim]`,
and `seq_lengths` must be a vector of length `input.dims[batch_dim]`.

The output slice `i` along dimension `batch_dim` is then given by input
slice `i`, with the first `seq_lengths[i]` slices along dimension
`seq_dim` reversed.

For example:

```prettyprint
# Given this:
batch_dim = 0
seq_dim = 1
input.dims = (4, 8, ...)
seq_lengths = [7, 2, 3, 5]

# then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0, 0:7, :, ...] = input[0, 7:0:-1, :, ...]
output[1, 0:2, :, ...] = input[1, 2:0:-1, :, ...]
output[2, 0:3, :, ...] = input[2, 3:0:-1, :, ...]
output[3, 0:5, :, ...] = input[3, 5:0:-1, :, ...]

# while entries past seq_lens are copied through:
output[0, 7:, :, ...] = input[0, 7:, :, ...]
output[1, 2:, :, ...] = input[1, 2:, :, ...]
output[2, 3:, :, ...] = input[2, 3:, :, ...]
output[3, 2:, :, ...] = input[3, 2:, :, ...]
```

In contrast, if:

```prettyprint
# Given this:
batch_dim = 2
seq_dim = 0
input.dims = (8, ?, 4, ...)
seq_lengths = [7, 2, 3, 5]

# then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0:7, :, 0, :, ...] = input[7:0:-1, :, 0, :, ...]
output[0:2, :, 1, :, ...] = input[2:0:-1, :, 1, :, ...]
output[0:3, :, 2, :, ...] = input[3:0:-1, :, 2, :, ...]
output[0:5, :, 3, :, ...] = input[5:0:-1, :, 3, :, ...]

# while entries past seq_lens are copied through:
output[7:, :, 0, :, ...] = input[7:, :, 0, :, ...]
output[2:, :, 1, :, ...] = input[2:, :, 1, :, ...]
output[3:, :, 2, :, ...] = input[3:, :, 2, :, ...]
output[2:, :, 3, :, ...] = input[2:, :, 3, :, ...]
```

input: The input to reverse.
seq_lengths: 1-D with length `input.dims(batch_dim)` and
  `max(seq_lengths) < input.dims(seq_dim)`
seq_dim: The dimension which is partially reversed.
batch_dim: The dimension along which reversal is performed.
output: The partially reversed input. It has the same shape as `input`.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Rank")
    .Input("input: T")
    .Output("output: int32")
    .Attr("T: type")
    .Doc(R"doc(
Returns the rank of a tensor.

This operation returns an integer representing the rank of `input`.

For example:

```prettyprint
# 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
# shape of tensor 't' is [2, 2, 3]
rank(t) ==> 3
```

**Note**: The rank of a tensor is not the same as the rank of a matrix. The rank
of a tensor is the number of indices required to uniquely select each element
of the tensor. Rank is also known as "order", "degree", or "ndims."
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Size")
    .Input("input: T")
    .Output("output: int32")
    .Attr("T: type")
    .Doc(R"doc(
Returns the size of a tensor.

This operation returns an integer representing the number of elements in
`input`.

For example:

```prettyprint
# 't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
size(t) ==> 12
```

)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Slice")
    .Input("input: T")
    .Input("begin: Index")
    .Input("size: Index")
    .Output("output: T")
    .Attr("T: type")
    .Attr("Index: {int32,int64}")
    .Doc(R"doc(
Return a slice from 'input'.

The output tensor is a tensor with dimensions described by 'size'
whose values are extracted from 'input' starting at the offsets in
'begin'.

*Requirements*:
  0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n)

begin: begin[i] specifies the offset into the 'i'th dimension of
  'input' to slice from.
size: size[i] specifies the number of elements of the 'i'th dimension
  of 'input' to slice. If size[i] is -1, all remaining elements in dimension
  i are included in the slice (i.e. this is equivalent to setting
  size[i] = input.dim_size(i) - begin[i]).
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Tile")
    .Input("input: T")
    .Input("multiples: int32")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"doc(
Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating `input` `multiples` times.
The output tensor's i'th dimension has `input.dims(i) * multiples[i]` elements,
and the values of `input` are replicated `multiples[i]` times along the 'i'th
dimension. For example, tiling `[a b c d]` by `[2]` produces
`[a b c d a b c d]`.

input: 1-D or higher.
multiples: 1-D. Length must be the same as the number of dimensions in `input`
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("TileGrad")
    .Input("input: T")
    .Input("multiples: int32")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"doc(
Returns the gradient of `Tile`.

Since `Tile` takes an input and repeats the input `multiples` times
along each dimension, `TileGrad` takes in `multiples` and aggregates
each repeated tile of `input` into `output`.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Where")
    .Input("input: bool")
    .Output("index: int64")
    .Doc(R"doc(
Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in `input`. The
coordinates are returned in a 2-D tensor where the first dimension (rows)
represents the number of true elements, and the second dimension (columns)
represents the coordinates of the true elements. Keep in mind, the shape of
the output tensor can vary depending on how many true values there are in
`input`. Indices are output in row-major order.

For example:

```prettyprint
# 'input' tensor is [[True, False]
#                    [True, False]]
# 'input' has two true values, so output has two coordinates.
# 'input' has rank of 2, so coordinates have two indices.
where(input) ==> [[0, 0],
                  [1, 0]]

# `input` tensor is [[[True, False]
#                     [True, False]]
#                    [[False, True]
#                     [False, True]]
#                    [[False, False]
#                     [False, True]]]
# 'input' has 5 true values, so output has 5 coordinates.
# 'input' has rank of 3, so coordinates have three indices.
where(input) ==> [[0, 0, 0],
                  [0, 1, 0],
                  [1, 0, 1],
                  [1, 1, 1],
                  [2, 1, 1]]
```

)doc");

// --------------------------------------------------------------------------
REGISTER_OP("BroadcastGradientArgs")
    .Input("s0: int32")
    .Input("s1: int32")
    .Output("r0: int32")
    .Output("r1: int32")
    .Doc(R"doc(
Return the reduction indices for computing gradients of s0 op s1 with broadcast.

This is typically used by gradient computations for a broadcasting operation.
)doc");

// --------------------------------------------------------------------------

REGISTER_OP("Pad")
    .Input("input: T")
    .Input("paddings: int32")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"doc(
Pads a tensor with zeros.

This operation pads a `input` with zeros according to the `paddings` you
specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the
rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates
how many zeros to add before the contents of `input` in that dimension, and
`paddings[D, 1]` indicates how many zeros to add after the contents of `input`
in that dimension.

The padded size of each dimension D of the output is:

`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`

For example:

```prettyprint
# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
                      [0, 0, 1, 1, 0, 0]
                      [0, 0, 2, 2, 0, 0]
                      [0, 0, 0, 0, 0, 0]]
```

)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Placeholder")
    .Output("output: dtype")
    .Attr("dtype: type")
    .Attr("shape: shape = {}")
    .Doc(R"doc(
A placeholder op for a value that will be fed into the computation.

N.B. This operation will fail with an error if it is executed. It is
intended as a way to represent a value that will always be fed, and to
provide attrs that enable the fed value to be checked at runtime.

output: A placeholder tensor that must be replaced using the feed mechanism.
dtype: The type of elements in the tensor.
shape: (Optional) The shape of the tensor. If the shape has 0 dimensions, the
  shape is unconstrained.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("ExpandDims")
    .Input("input: T")
    .Input("dim: int32")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"doc(
Inserts a dimension of 1 into a tensor's shape.

Given a tensor `input`, this operation inserts a dimension of 1 at the
dimension index `dim` of `input`'s shape. The dimension index `dim` starts at
zero; if you specify a negative number for `dim` it is counted backward from
the end.

This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape `[height, width,
channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
which will make the shape `[1, height, width, channels]`.

Other examples:

```prettyprint
# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
```

This operation requires that:

`-1-input.dims() <= dim <= input.dims()`

This operation is related to `squeeze()`, which removes dimensions of
size 1.

dim: 0-D (scalar). Specifies the dimension index at which to
  expand the shape of `input`.
output: Contains the same data as `input`, but its shape has an additional
  dimension of size 1 added.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("Squeeze")
    .Input("input: T")
    .Output("output: T")
    .Attr("T: type")
    .Attr("squeeze_dims: list(int) >= 0 = []")
    .Doc(R"doc(
Removes dimensions of size 1 from the shape of a tensor.

Given a tensor `input`, this operation returns a tensor of the same type with
all dimensions of size 1 removed. If you don't want to remove all size 1
dimensions, you can remove specific size 1 dimensions by specifying
`squeeze_dims`.

For example:

```prettyprint
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t)) ==> [2, 3]
```

Or, to remove specific size 1 dimensions:

```prettyprint
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
```

input: The `input` to squeeze.
squeeze_dims: If specified, only squeezes the dimensions listed. The dimension
  index starts at 0. It is an error to squeeze a dimension that is not 1.
output: Contains the same data as `input`, but has one or more dimensions of
  size 1 removed.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("ListDiff")
    .Input("x: T")
    .Input("y: T")
    .Output("out: T")
    .Output("idx: int32")
    .Attr("T: type")
    .Doc(R"doc(
Computes the difference between two lists of numbers or strings.

Given a list `x` and a list `y`, this operation returns a list `out` that
represents all values that are in `x` but not in `y`. The returned list `out`
is sorted in the same order that the numbers appear in `x` (duplicates are
preserved). This operation also returns a list `idx` that represents the
position of each `out` element in `x`. In other words:

`out[i] = x[idx[i]] for i in [0, 1, ..., len(out) - 1]`

For example, given this input:

```prettyprint
x = [1, 2, 3, 4, 5, 6]
y = [1, 3, 5]
```

This operation would return:

```prettyprint
out ==> [2, 4, 6]
idx ==> [1, 3, 5]
```

x: 1-D. Values to keep.
y: 1-D. Values to remove.
out: 1-D. Values present in `x` but not in `y`.
idx: 1-D. Positions of `x` values preserved in `out`.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("SpaceToDepth")
    .Input("input: T")
    .Output("output: T")
    .Attr("T: type")
    .Attr("block_size: int32 >= 1")
    .Doc(R"doc(
SpaceToDepth for tensors of type T.

Rearranges blocks of spatial data, into depth. More specifically,
this op outputs a copy of the input tensor where values from the `height`
and `width` dimensions are moved to the `depth` dimension.
The attr `block_size` indicates the input block size and how the data is moved.

  * Non-overlapping blocks of size `block_size x block size` are rearranged
    into depth at each location.
  * The depth of the output tensor is `input_depth * block_size * block_size`.
  * The input tensor's height and width must be divisible by block_size.

That is, assuming the input is in the shape:
`[batch, height, width, depth]`,
the shape of the output will be:
`[batch, height/block_size, width/block_size, depth*block_size*block_size]`

This operation requires that the input tensor be of rank 4, and that
`block_size` be >=1 and a divisor of both the input `height` and `width`.

This operation is useful for resizing the activations between convolutions
(but keeping all data), e.g. instead of pooling. It is also useful for training
purely convolutional models.

For example, given this input of shape `[1, 2, 2, 1]`, and block_size of 2:

```prettyprint
x = [[[[1], [2]],
      [[3], [4]]]]
```

This operation will output a tensor of shape `[1, 1, 1, 4]`:

```prettyprint
[[[[1, 2, 3, 4]]]]
```

Here, the input has a batch of 1 and each batch element has shape `[2, 2, 1]`,
the corresponding output will have a single element (i.e. width and height are
both 1) and will have a depth of 4 channels (1 * block_size * block_size).
The output element shape is `[1, 1, 4]`.

For an input tensor with larger depth, here of shape `[1, 2, 2, 3]`, e.g.

```prettyprint
x = [[[[1, 2, 3], [4, 5, 6]],
      [[7, 8, 9], [10, 11, 12]]]]
```

This operation, for block_size of 2, will return the following tensor of shape
`[1, 1, 1, 12]`

```prettyprint
[[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]
```

Similarly, for the following input of shape `[1 4 4 1]`, and a block size of 2:

```prettyprint
x = [[ [1],   [2],  [5],  [6]],
     [ [3],   [4],  [7],  [8]],
     [ [9],  [10], [13],  [14]],
     [ [11], [12], [15],  [16]]]
```

the operator will return the following tensor of shape `[1 2 2 4]`:

```prettyprint
x = [[[[1, 2, 3, 4],
       [5, 6, 7, 8]],
      [[9, 10, 11, 12],
       [13, 14, 15, 16]]]]
```

block_size: The size of the spatial block.
)doc");

// --------------------------------------------------------------------------
REGISTER_OP("DepthToSpace")
    .Input("input: T")
    .Output("output: T")
    .Attr("T: type")
    .Attr("block_size: int32 >= 1")
    .Doc(R"doc(
DepthToSpace for tensors of type T.

Rearranges data from depth into blocks of spatial data.
This is the reverse transformation of SpaceToDepth. More specifically,
this op outputs a copy of the input tensor where values from the `depth`
dimension are moved in spatial blocks to the `height` and `width` dimensions.
The attr `block_size` indicates the input block size and how the data is moved.

  * Chunks of data of size `block_size * block_size` from depth are rearranged
    into non-overlapping blocks of size `block_size x block_size`
  * The width the output tensor is `input_depth * block_size`, whereas the
    height is `input_height * block_size`.
  * The depth of the input tensor must be divisible by
    `block_size * block_size`.

That is, assuming the input is in the shape:
`[batch, height, width, depth]`,
the shape of the output will be:
`[batch, height*block_size, width*block_size, depth/(block_size*block_size)]`

This operation requires that the input tensor be of rank 4, and that
`block_size` be >=1 and that `block_size * block_size` be a divisor of the
input depth.

This operation is useful for resizing the activations between convolutions
(but keeping all data), e.g. instead of pooling. It is also useful for training
purely convolutional models.

For example, given this input of shape `[1, 1, 1, 4]`, and a block size of 2:

```prettyprint
x = [[[[1, 2, 3, 4]]]]

```

This operation will output a tensor of shape `[1, 2, 2, 1]`:

```prettyprint
   [[[[1], [2]],
     [[3], [4]]]]
```

Here, the input has a batch of 1 and each batch element has shape `[1, 1, 4]`,
the corresponding output will have 2x2 elements and will have a depth of
1 channel (1 = `4 / (block_size * block_size)`).
The output element shape is `[2, 2, 1]`.

For an input tensor with larger depth, here of shape `[1, 1, 1, 12]`, e.g.

```prettyprint
x = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]]
```

This operation, for block size of 2, will return the following tensor of shape
`[1, 2, 2, 3]`

```prettyprint
   [[[[1, 2, 3], [4, 5, 6]],
     [[7, 8, 9], [10, 11, 12]]]]

```

Similarly, for the following input of shape `[1 2 2 4]`, and a block size of 2:

```prettyprint
x =  [[[[1, 2, 3, 4],
       [5, 6, 7, 8]],
      [[9, 10, 11, 12],
       [13, 14, 15, 16]]]]
```

the operator will return the following tensor of shape `[1 4 4 1]`:

```prettyprint
x = [[ [1],   [2],  [5],  [6]],
     [ [3],   [4],  [7],  [8]],
     [ [9],  [10], [13],  [14]],
     [ [11], [12], [15],  [16]]]

```

block_size: The size of the spatial block, same as in Space2Depth.
)doc");

REGISTER_OP("Bitcast")
    .Input("input: T")
    .Output("output: type")
    .Attr("T: numbertype")
    .Attr("type: numbertype")
    .Doc(R"doc(
Bitcasts a tensor from one type to another without copying data.

Given a tensor `input`, this operation returns a tensor that has the same buffer
data as `input` with datatype `type`.

If the input datatype `T` is larger than the output datatype `type` then the
shape changes from [...] to [..., sizeof(`T`)/sizeof(`type`)].

If `T` is smaller than `type`, the operator requires that the rightmost
dimension be equal to sizeof(`type`)/sizeof(`T`). The shape then goes from
[..., sizeof(`type`)/sizeof(`T`)] to [...].
)doc");

REGISTER_OP("OneHot")
    .Input("indices: int64")
    .Input("depth: int32")
    .Input("on_value: T")
    .Input("off_value: T")
    .Attr("axis: int = -1")
    .Output("output: T")
    .Attr("T: type")
    .Doc(R"doc(
Returns a one-hot tensor.

The locations represented by indices in `indices` take value `on_value`,
while all other locations take value `off_value`.

If the input `indices` is rank `N`, the output will have rank `N+1`,
The new axis is created at dimension `axis` (default: the new axis is
appended at the end).

If `indices` is a scalar the output shape will be a vector of length `depth`.

If `indices` is a vector of length `features`, the output shape will be:
```
  features x depth if axis == -1
  depth x features if axis == 0
```

If `indices` is a matrix (batch) with shape `[batch, features]`,
the output shape will be:
```
  batch x features x depth if axis == -1
  batch x depth x features if axis == 1
  depth x batch x features if axis == 0
```


Examples
=========

Suppose that

```
  indices = [0, 2, -1, 1]
  depth = 3
  on_value = 5.0
  off_value = 0.0
  axis = -1
```

Then output is `[4 x 3]`:

    ```output =
      [5.0 0.0 0.0]  // one_hot(0)
      [0.0 0.0 5.0]  // one_hot(2)
      [0.0 0.0 0.0]  // one_hot(-1)
      [0.0 5.0 0.0]  // one_hot(1)
    ```

Suppose that

```
  indices = [0, 2, -1, 1]
  depth = 3
  on_value = 0.0
  off_value = 3.0
  axis = 0
```

Then output is `[3 x 4]`:

    ```output =
      [0.0 3.0 3.0 3.0]
      [3.0 3.0 3.0 0.0]
      [3.0 3.0 3.0 3.0]
      [3.0 0.0 3.0 3.0]
    //  ^                one_hot(0)
    //      ^            one_hot(2)
    //          ^        one_hot(-1)
    //              ^    one_hot(1)
    ```
Suppose that

```
  indices = [[0, 2], [1, -1]]
  depth = 3
  on_value = 1.0
  off_value = 0.0
  axis = -1
```

Then output is `[2 x 2 x 3]`:

    ```output =
      [
        [1.0, 0.0, 0.0]  // one_hot(0)
        [0.0, 0.0, 1.0]  // one_hot(2)
      ][
        [0.0, 1.0, 0.0]  // one_hot(1)
        [0.0, 0.0, 0.0]  // one_hot(-1)
      ]```

indices: A tensor of indices.
depth: A scalar defining the depth of the one hot dimension.
on_value: A scalar defining the value to fill in output when `indices[j] = i`.
off_value: A scalar defining the value to fill in output when `indices[j] != i`.
axis: The axis to fill (default: -1, a new inner-most axis).
output: The one-hot tensor.
)doc");

}  // namespace tensorflow