aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/lib/io/table_builder.cc
blob: b786888b300fdee7ea8035aa5a79ac85c896449d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "tensorflow/core/lib/io/table_builder.h"

#include <assert.h>
#include "tensorflow/core/lib/io/block_builder.h"
#include "tensorflow/core/lib/io/format.h"
#include "tensorflow/core/lib/io/table_options.h"
#include "tensorflow/core/lib/core/coding.h"
#include "tensorflow/core/lib/hash/crc32c.h"
#include "tensorflow/core/public/env.h"
#include "tensorflow/core/lib/core/errors.h"

namespace tensorflow {
namespace table {

namespace {

void FindShortestSeparator(string* start, const StringPiece& limit) {
  // Find length of common prefix
  size_t min_length = std::min(start->size(), limit.size());
  size_t diff_index = 0;
  while ((diff_index < min_length) &&
         ((*start)[diff_index] == limit[diff_index])) {
    diff_index++;
  }

  if (diff_index >= min_length) {
    // Do not shorten if one string is a prefix of the other
  } else {
    uint8 diff_byte = static_cast<uint8>((*start)[diff_index]);
    if (diff_byte < static_cast<uint8>(0xff) &&
        diff_byte + 1 < static_cast<uint8>(limit[diff_index])) {
      (*start)[diff_index]++;
      start->resize(diff_index + 1);
      assert(StringPiece(*start).compare(limit) < 0);
    }
  }
}

void FindShortSuccessor(string* key) {
  // Find first character that can be incremented
  size_t n = key->size();
  for (size_t i = 0; i < n; i++) {
    const uint8 byte = (*key)[i];
    if (byte != static_cast<uint8>(0xff)) {
      (*key)[i] = byte + 1;
      key->resize(i + 1);
      return;
    }
  }
  // *key is a run of 0xffs.  Leave it alone.
}
}  // namespace

struct TableBuilder::Rep {
  Options options;
  Options index_block_options;
  WritableFile* file;
  uint64 offset;
  Status status;
  BlockBuilder data_block;
  BlockBuilder index_block;
  string last_key;
  int64 num_entries;
  bool closed;  // Either Finish() or Abandon() has been called.

  // We do not emit the index entry for a block until we have seen the
  // first key for the next data block.  This allows us to use shorter
  // keys in the index block.  For example, consider a block boundary
  // between the keys "the quick brown fox" and "the who".  We can use
  // "the r" as the key for the index block entry since it is >= all
  // entries in the first block and < all entries in subsequent
  // blocks.
  //
  // Invariant: r->pending_index_entry is true only if data_block is empty.
  bool pending_index_entry;
  BlockHandle pending_handle;  // Handle to add to index block

  string compressed_output;

  Rep(const Options& opt, WritableFile* f)
      : options(opt),
        index_block_options(opt),
        file(f),
        offset(0),
        data_block(&options),
        index_block(&index_block_options),
        num_entries(0),
        closed(false),
        pending_index_entry(false) {
    index_block_options.block_restart_interval = 1;
  }
};

TableBuilder::TableBuilder(const Options& options, WritableFile* file)
    : rep_(new Rep(options, file)) {}

TableBuilder::~TableBuilder() {
  assert(rep_->closed);  // Catch errors where caller forgot to call Finish()
  delete rep_;
}

void TableBuilder::Add(const StringPiece& key, const StringPiece& value) {
  Rep* r = rep_;
  assert(!r->closed);
  if (!ok()) return;
  if (r->num_entries > 0) {
    assert(key.compare(StringPiece(r->last_key)) > 0);
    // See if this key+value would make our current block overly large.  If
    // so, emit the current block before adding this key/value
    const int kOverlyLargeBlockRatio = 2;
    const size_t this_entry_bytes = key.size() + value.size();
    if (this_entry_bytes >= kOverlyLargeBlockRatio * r->options.block_size) {
      Flush();
    }
  }

  if (r->pending_index_entry) {
    assert(r->data_block.empty());
    FindShortestSeparator(&r->last_key, key);
    string handle_encoding;
    r->pending_handle.EncodeTo(&handle_encoding);
    r->index_block.Add(r->last_key, StringPiece(handle_encoding));
    r->pending_index_entry = false;
  }

  r->last_key.assign(key.data(), key.size());
  r->num_entries++;
  r->data_block.Add(key, value);

  const size_t estimated_block_size = r->data_block.CurrentSizeEstimate();
  if (estimated_block_size >= r->options.block_size) {
    Flush();
  }
}

void TableBuilder::Flush() {
  Rep* r = rep_;
  assert(!r->closed);
  if (!ok()) return;
  if (r->data_block.empty()) return;
  assert(!r->pending_index_entry);
  WriteBlock(&r->data_block, &r->pending_handle);
  if (ok()) {
    r->pending_index_entry = true;
    r->status = r->file->Flush();
  }
}

void TableBuilder::WriteBlock(BlockBuilder* block, BlockHandle* handle) {
  // File format contains a sequence of blocks where each block has:
  //    block_data: uint8[n]
  //    type: uint8
  //    crc: uint32
  assert(ok());
  Rep* r = rep_;
  StringPiece raw = block->Finish();

  StringPiece block_contents;
  CompressionType type = r->options.compression;
  // TODO(postrelease): Support more compression options: zlib?
  switch (type) {
    case kNoCompression:
      block_contents = raw;
      break;

    case kSnappyCompression: {
      string* compressed = &r->compressed_output;
      if (port::Snappy_Compress(raw.data(), raw.size(), compressed) &&
          compressed->size() < raw.size() - (raw.size() / 8u)) {
        block_contents = *compressed;
      } else {
        // Snappy not supported, or compressed less than 12.5%, so just
        // store uncompressed form
        block_contents = raw;
        type = kNoCompression;
      }
      break;
    }
  }
  WriteRawBlock(block_contents, type, handle);
  r->compressed_output.clear();
  block->Reset();
}

void TableBuilder::WriteRawBlock(const StringPiece& block_contents,
                                 CompressionType type, BlockHandle* handle) {
  Rep* r = rep_;
  handle->set_offset(r->offset);
  handle->set_size(block_contents.size());
  r->status = r->file->Append(block_contents);
  if (r->status.ok()) {
    char trailer[kBlockTrailerSize];
    trailer[0] = type;
    uint32 crc = crc32c::Value(block_contents.data(), block_contents.size());
    crc = crc32c::Extend(crc, trailer, 1);  // Extend crc to cover block type
    core::EncodeFixed32(trailer + 1, crc32c::Mask(crc));
    r->status = r->file->Append(StringPiece(trailer, kBlockTrailerSize));
    if (r->status.ok()) {
      r->offset += block_contents.size() + kBlockTrailerSize;
    }
  }
}

Status TableBuilder::status() const { return rep_->status; }

Status TableBuilder::Finish() {
  Rep* r = rep_;
  Flush();
  assert(!r->closed);
  r->closed = true;

  BlockHandle metaindex_block_handle, index_block_handle;

  // Write metaindex block
  if (ok()) {
    BlockBuilder meta_index_block(&r->options);
    // TODO(postrelease): Add stats and other meta blocks
    WriteBlock(&meta_index_block, &metaindex_block_handle);
  }

  // Write index block
  if (ok()) {
    if (r->pending_index_entry) {
      FindShortSuccessor(&r->last_key);
      string handle_encoding;
      r->pending_handle.EncodeTo(&handle_encoding);
      r->index_block.Add(r->last_key, StringPiece(handle_encoding));
      r->pending_index_entry = false;
    }
    WriteBlock(&r->index_block, &index_block_handle);
  }

  // Write footer
  if (ok()) {
    Footer footer;
    footer.set_metaindex_handle(metaindex_block_handle);
    footer.set_index_handle(index_block_handle);
    string footer_encoding;
    footer.EncodeTo(&footer_encoding);
    r->status = r->file->Append(footer_encoding);
    if (r->status.ok()) {
      r->offset += footer_encoding.size();
    }
  }
  return r->status;
}

void TableBuilder::Abandon() {
  Rep* r = rep_;
  assert(!r->closed);
  r->closed = true;
}

uint64 TableBuilder::NumEntries() const { return rep_->num_entries; }

uint64 TableBuilder::FileSize() const { return rep_->offset; }

}  // namespace table
}  // namespace tensorflow