aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/lib/histogram/histogram.cc
blob: 6d1e3c9cf2406d060d07865820ae276ce04e9430 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "tensorflow/core/lib/histogram/histogram.h"
#include <float.h>
#include <math.h>
#include "tensorflow/core/framework/summary.pb.h"

#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/port.h"
namespace tensorflow {
namespace histogram {

static std::vector<double>* InitDefaultBucketsInner() {
  std::vector<double> buckets;
  std::vector<double> neg_buckets;
  // Make buckets whose range grows by 10% starting at 1.0e-12 up to 1.0e20
  double v = 1.0e-12;
  while (v < 1.0e20) {
    buckets.push_back(v);
    neg_buckets.push_back(-v);
    v *= 1.1;
  }
  buckets.push_back(DBL_MAX);
  neg_buckets.push_back(-DBL_MAX);
  std::reverse(neg_buckets.begin(), neg_buckets.end());
  std::vector<double>* result = new std::vector<double>;
  result->insert(result->end(), neg_buckets.begin(), neg_buckets.end());
  result->push_back(0.0);
  result->insert(result->end(), buckets.begin(), buckets.end());
  return result;
}

static gtl::ArraySlice<double> InitDefaultBuckets() {
  static std::vector<double>* default_bucket_limits = InitDefaultBucketsInner();
  return *default_bucket_limits;
}

Histogram::Histogram() : bucket_limits_(InitDefaultBuckets()) { Clear(); }

// Create a histogram with a custom set of bucket limits,
// specified in "custom_buckets[0..custom_buckets.size()-1]"
Histogram::Histogram(gtl::ArraySlice<double> custom_bucket_limits)
    : custom_bucket_limits_(custom_bucket_limits.begin(),
                            custom_bucket_limits.end()),
      bucket_limits_(custom_bucket_limits_) {
#ifndef NDEBUG
  DCHECK_GT(bucket_limits_.size(), 0);
  // Verify that the bucket boundaries are strictly increasing
  for (size_t i = 1; i < bucket_limits_.size(); i++) {
    DCHECK_GT(bucket_limits_[i], bucket_limits_[i - 1]);
  }
#endif
  Clear();
}

bool Histogram::DecodeFromProto(const HistogramProto& proto) {
  if ((proto.bucket_size() != proto.bucket_limit_size()) ||
      (proto.bucket_size() == 0)) {
    return false;
  }
  min_ = proto.min();
  max_ = proto.max();
  num_ = proto.num();
  sum_ = proto.sum();
  sum_squares_ = proto.sum_squares();
  custom_bucket_limits_.clear();
  custom_bucket_limits_.insert(custom_bucket_limits_.end(),
                               proto.bucket_limit().begin(),
                               proto.bucket_limit().end());
  bucket_limits_ = custom_bucket_limits_;
  buckets_.clear();
  buckets_.insert(buckets_.end(), proto.bucket().begin(), proto.bucket().end());
  return true;
}

void Histogram::Clear() {
  min_ = bucket_limits_[bucket_limits_.size() - 1];
  max_ = -DBL_MAX;
  num_ = 0;
  sum_ = 0;
  sum_squares_ = 0;
  buckets_.resize(bucket_limits_.size());
  for (size_t i = 0; i < bucket_limits_.size(); i++) {
    buckets_[i] = 0;
  }
}

void Histogram::Add(double value) {
  int b =
      std::upper_bound(bucket_limits_.begin(), bucket_limits_.end(), value) -
      bucket_limits_.begin();

  buckets_[b] += 1.0;
  if (min_ > value) min_ = value;
  if (max_ < value) max_ = value;
  num_++;
  sum_ += value;
  sum_squares_ += (value * value);
}

double Histogram::Median() const { return Percentile(50.0); }

// Linearly map the variable x from [x0, x1] unto [y0, y1]
double Histogram::Remap(double x, double x0, double x1, double y0,
                        double y1) const {
  return y0 + (x - x0) / (x1 - x0) * (y1 - y0);
}

// Pick tight left-hand-side and right-hand-side bounds and then
// interpolate a histogram value at percentile p
double Histogram::Percentile(double p) const {
  if (num_ == 0.0) return 0.0;

  double threshold = num_ * (p / 100.0);
  double cumsum_prev = 0;
  for (size_t i = 0; i < buckets_.size(); i++) {
    double cumsum = cumsum_prev + buckets_[i];

    // Find the first bucket whose cumsum >= threshold
    if (cumsum >= threshold) {
      // Prevent divide by 0 in remap which happens if cumsum == cumsum_prev
      // This should only get hit when p == 0, cumsum == 0, and cumsum_prev == 0
      if (cumsum == cumsum_prev) {
        continue;
      }

      // Calculate the lower bound of interpolation
      double lhs = (i == 0 || cumsum_prev == 0) ? min_ : bucket_limits_[i - 1];
      lhs = std::max(lhs, min_);

      // Calculate the upper bound of interpolation
      double rhs = bucket_limits_[i];
      rhs = std::min(rhs, max_);

      double weight = Remap(threshold, cumsum_prev, cumsum, lhs, rhs);
      return weight;
    }

    cumsum_prev = cumsum;
  }
  return max_;
}

double Histogram::Average() const {
  if (num_ == 0.0) return 0;
  return sum_ / num_;
}

double Histogram::StandardDeviation() const {
  if (num_ == 0.0) return 0;
  double variance = (sum_squares_ * num_ - sum_ * sum_) / (num_ * num_);
  return sqrt(variance);
}

std::string Histogram::ToString() const {
  std::string r;
  char buf[200];
  snprintf(buf, sizeof(buf), "Count: %.0f  Average: %.4f  StdDev: %.2f\n", num_,
           Average(), StandardDeviation());
  r.append(buf);
  snprintf(buf, sizeof(buf), "Min: %.4f  Median: %.4f  Max: %.4f\n",
           (num_ == 0.0 ? 0.0 : min_), Median(), max_);
  r.append(buf);
  r.append("------------------------------------------------------\n");
  const double mult = num_ > 0 ? 100.0 / num_ : 0.0;
  double sum = 0;
  for (size_t b = 0; b < buckets_.size(); b++) {
    if (buckets_[b] <= 0.0) continue;
    sum += buckets_[b];
    snprintf(buf, sizeof(buf), "[ %10.2g, %10.2g ) %7.0f %7.3f%% %7.3f%% ",
             ((b == 0) ? -DBL_MAX : bucket_limits_[b - 1]),  // left
             bucket_limits_[b],                              // right
             buckets_[b],                                    // count
             mult * buckets_[b],                             // percentage
             mult * sum);                                    // cum percentage
    r.append(buf);

    // Add hash marks based on percentage; 20 marks for 100%.
    int marks = static_cast<int>(20 * (buckets_[b] / num_) + 0.5);
    r.append(marks, '#');
    r.push_back('\n');
  }
  return r;
}

void Histogram::EncodeToProto(HistogramProto* proto,
                              bool preserve_zero_buckets) const {
  proto->Clear();
  proto->set_min(min_);
  proto->set_max(max_);
  proto->set_num(num_);
  proto->set_sum(sum_);
  proto->set_sum_squares(sum_squares_);
  for (size_t i = 0; i < buckets_.size();) {
    double end = bucket_limits_[i];
    double count = buckets_[i];
    i++;
    if (!preserve_zero_buckets && count <= 0.0) {
      // Find run of empty buckets and collapse them into one
      while (i < buckets_.size() && buckets_[i] <= 0.0) {
        end = bucket_limits_[i];
        count = buckets_[i];
        i++;
      }
    }
    proto->add_bucket_limit(end);
    proto->add_bucket(count);
  }
  if (proto->bucket_size() == 0.0) {
    // It's easier when we restore if we always have at least one bucket entry
    proto->add_bucket_limit(DBL_MAX);
    proto->add_bucket(0.0);
  }
}

// ThreadSafeHistogram implementation.
bool ThreadSafeHistogram::DecodeFromProto(const HistogramProto& proto) {
  mutex_lock l(mu_);
  return histogram_.DecodeFromProto(proto);
}

void ThreadSafeHistogram::Clear() {
  mutex_lock l(mu_);
  histogram_.Clear();
}

void ThreadSafeHistogram::Add(double value) {
  mutex_lock l(mu_);
  histogram_.Add(value);
}

void ThreadSafeHistogram::EncodeToProto(HistogramProto* proto,
                                        bool preserve_zero_buckets) const {
  mutex_lock l(mu_);
  histogram_.EncodeToProto(proto, preserve_zero_buckets);
}

double ThreadSafeHistogram::Median() const {
  mutex_lock l(mu_);
  return histogram_.Median();
}

double ThreadSafeHistogram::Percentile(double p) const {
  mutex_lock l(mu_);
  return histogram_.Percentile(p);
}

double ThreadSafeHistogram::Average() const {
  mutex_lock l(mu_);
  return histogram_.Average();
}

double ThreadSafeHistogram::StandardDeviation() const {
  mutex_lock l(mu_);
  return histogram_.StandardDeviation();
}

std::string ThreadSafeHistogram::ToString() const {
  mutex_lock l(mu_);
  return histogram_.ToString();
}

}  // namespace histogram
}  // namespace tensorflow