aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/xsmm_conv2d.cc
blob: 7936cbcd46f071228d682771969f167f1709cbb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// Make this file empty (or nearly empty) so that it can be compiled even when
// libxsmm is not available.

#ifndef TENSORFLOW_USE_LIBXSMM
void dummy_xsmm_conv2d_ensure_file_is_not_empty(void);
#else

#define USE_EIGEN_TENSOR
#define EIGEN_USE_THREADS

#include "tensorflow/core/kernels/xsmm_conv2d.h"

#include <stdlib.h>
#include <cstring>
#if 0
#include <omp.h>
#endif

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/lib/core/blocking_counter.h"
#include "tensorflow/core/lib/core/threadpool.h"

#include "libxsmm_main.h"  // TODO(bsteiner): API to avoid incl. header from src/
#include "include/libxsmm_cpuid.h"
#include "include/libxsmm_malloc.h"

namespace tensorflow {

// Xsmm*Conv2D are wrappers for libxsmm direct convolutions.

// Returns true if convolution can be computed efficiently by XsmmConv2D,
// returns false otherwise.
bool CanUseXsmmConv2D(const libxsmm_dnn_conv_desc& desc,
                      TensorFormat data_format) {
  int VECTOR_SIZE;
  int arch = libxsmm_cpuid_x86();

  if (arch == LIBXSMM_X86_AVX512_CORE) {
    VECTOR_SIZE = 16;
  } else if (arch == LIBXSMM_X86_AVX2) {
    VECTOR_SIZE = 8;
  } else {
    VLOG(1) << "Cannot use XSMM convolutions: unsupported architecture!";
    return false;
  }

  if (data_format != FORMAT_NHWC) {
    VLOG(1) << "Cannot use XSMM convolutions: unsupported format!";
    return false;
  }
  if (desc.K % VECTOR_SIZE != 0) {
    VLOG(1) << "Cannot use XSMM convolutions: output features count not"
               " divisible by vector size!";
    return false;
  }
  VLOG(2) << "Can use XSMM convolutions.";
  return true;
}

typedef Eigen::ThreadPoolDevice CPUDevice;

namespace functor {

static void chk_libxsmm_err(libxsmm_dnn_err_t status, string msg) {
  if (status != LIBXSMM_DNN_SUCCESS) {
    VLOG(0) << msg << " failed: " << libxsmm_dnn_get_error(status);
  }
}

LIBXSMM_INLINE void copy_RSCK_to_custom(const float* rsck, float* kcrs, int R,
                                        int S, int C, int K, int blocksifm,
                                        int blocksofm, int ifmblock,
                                        int ofmblock, int start, int end) {
  LIBXSMM_VLA_DECL(4, const float, input, rsck, S, C, K);
  LIBXSMM_VLA_DECL(6, float, output, kcrs, blocksifm, R, S, ifmblock, ofmblock);
  int r, s, k, c, v1, v2;

  for (k = start; k < end; k++) {
    for (c = 0; c < blocksifm; c++) {
      for (r = 0; r < R; r++) {
        for (s = 0; s < S; s++) {
          for (v1 = c * ifmblock; v1 < std::min(C, (c + 1) * ifmblock); v1++) {
            for (v2 = k * ofmblock; v2 < std::min(K, (k + 1) * ofmblock); v2++)
              LIBXSMM_VLA_ACCESS(6, output, k, c, r, s, v1 - c * ifmblock,
                                 v2 - k * ofmblock, blocksifm, R, S, ifmblock,
                                 ofmblock) =
                  LIBXSMM_VLA_ACCESS(4, input, r, s, v1, v2, S, C, K);
            for (v2 = K; v2 < (k + 1) * ofmblock; v2++)
              LIBXSMM_VLA_ACCESS(6, output, k, c, r, s, v1 - c * ifmblock,
                                 v2 - k * ofmblock, blocksifm, R, S, ifmblock,
                                 ofmblock) = 0.0f;
          }
          for (v1 = C; v1 < (c + 1) * ifmblock; v1++) {
            for (v2 = k * ofmblock; v2 < (k + 1) * ofmblock; v2++)
              LIBXSMM_VLA_ACCESS(6, output, k, c, r, s, v1 - c * ifmblock,
                                 v2 - k * ofmblock, blocksifm, R, S, ifmblock,
                                 ofmblock) = 0.0f;
          }
        }
      }
    }
  }
}

class libxsmm_dnn_conv_desc_wrap {
 public:
  const libxsmm_dnn_conv_desc d;

  libxsmm_dnn_conv_desc_wrap(const libxsmm_dnn_conv_desc& d_) : d(d_) {}
  bool operator==(const libxsmm_dnn_conv_desc_wrap& w) const {
    return (d.N == w.d.N && d.C == w.d.C && d.H == w.d.H && d.W == w.d.W &&
            d.K == w.d.K && d.R == w.d.R && d.S == w.d.S && d.u == w.d.u &&
            d.v == w.d.v && d.pad_h == w.d.pad_h && d.pad_w == w.d.pad_w);
  }
};

struct HashFunction {
  std::size_t operator()(const libxsmm_dnn_conv_desc_wrap& w) const {
    // unsigned char ptr[sizeof(&w.d)];

    // memcpy(ptr, (unsigned char *)&w.d, sizeof(&w.d))

    //
    /*
    std::ostringstream N,C,H,W,K,R,S,u,v,padh,padw;

    N << w.d.N; C << w.d.C;
    H << w.d.H; W << w.d.W;
    K << w.d.K; R << w.d.R;
    S << w.d.S; u << w.d.u;
    v << w.d.v; padh << w.d.pad_h_in;
    padw << w.d.pad_w_in;
 
 
    std::string out_ =   N.str() + C.str()\
                       + H.str() + W.str()\
                       + K.str() + R.str()\
                       + S.str() + u.str()\
                       + v.str() + padh.str()\
                       + padw.str();
    //
    //
    */
    return (std::hash<unsigned long long>()((unsigned long long)&(w.d)));
  }
};

class handles {
 public:
  libxsmm_dnn_layer* find(const libxsmm_dnn_conv_desc_wrap& w) {
    std::unordered_map<libxsmm_dnn_conv_desc_wrap, libxsmm_dnn_layer*,
                       HashFunction>::iterator i = libxsmm_handles.find(w);
    if (i == libxsmm_handles.end()) {
      libxsmm_dnn_err_t status;
      libxsmm_dnn_layer* libxsmm_handle =
          libxsmm_dnn_create_conv_layer(w.d, &status);
      chk_libxsmm_err(status, "Create handle");
      libxsmm_handles.insert(std::make_pair(w, libxsmm_handle));
      return libxsmm_handle;
    } else {
      return i->second;
    }
  }
  ~handles() {
    std::unordered_map<libxsmm_dnn_conv_desc_wrap, libxsmm_dnn_layer*,
                       HashFunction>::iterator i;
    for (i = libxsmm_handles.begin(); i != libxsmm_handles.end(); i++)
      chk_libxsmm_err(libxsmm_dnn_destroy_conv_layer(i->second),
                      "Destroy handle");
  }

 private:
  std::unordered_map<libxsmm_dnn_conv_desc_wrap, libxsmm_dnn_layer*,
                     HashFunction>
      libxsmm_handles;
};

static handles libxsmm_handles;

// #define LIBXSMM_DETAILED_TIMING

template <typename InputPtr, typename FilterPtr, typename OutputPtr>
static bool CallLibxsmmConvGeneric(OpKernelContext* ctx,
                                   const libxsmm_dnn_conv_desc& desc,
                                   libxsmm_dnn_compute_kind kind,
                                   InputPtr input, FilterPtr filter,
                                   OutputPtr output) {
#if defined(LIBXSMM_DETAILED_TIMING)
  unsigned long long l_tick1, l_tick2, l_tick3, l_tick4, l_tick5, l_tick6,
      l_tick7, l_tick8, l_tick9, l_tick10;
  l_tick1 = libxsmm_timer_tick();
#endif
  // setup scoped allocator, which adopts the allocator from the context
  const libxsmm_tf_allocator<libxsmm_scratch_allocator> tf_allocator(*ctx);
  libxsmm_dnn_err_t status;
  libxsmm_dnn_layer* libxsmm_handle;
  libxsmm_dnn_conv_desc_wrap w(desc);
  void* scratch;

  // if(kind == LIBXSMM_DNN_COMPUTE_KIND_FWD)
  libxsmm_handle = libxsmm_handles.find(w);
  // else{
  //  libxsmm_handle = libxsmm_dnn_create_conv_layer(desc, &status);
  //  chk_libxsmm_err(status, "Create handle");
  //}

  status = libxsmm_dnn_get_codegen_success(libxsmm_handle, kind);
  if (status == LIBXSMM_DNN_WARN_FALLBACK) {
    chk_libxsmm_err(libxsmm_dnn_destroy_conv_layer(libxsmm_handle),
                    "Destroy handle");
    return false;  // Use non-libxsmm code
  }
  chk_libxsmm_err(status, "Check codegen status");

  libxsmm_dnn_buffer* libxsmm_input;
  libxsmm_dnn_buffer* libxsmm_output;
  libxsmm_dnn_filter* libxsmm_filter;

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick2 = libxsmm_timer_tick();
#endif

  int ifmblock = (libxsmm_handle->ifmblock);
  int ofmblock = (libxsmm_handle->ofmblock);

  int blocksifm =
      desc.C % ifmblock == 0 ? desc.C / ifmblock : desc.C / ifmblock + 1;
  int blocksofm =
      desc.K % ofmblock == 0 ? desc.K / ofmblock : desc.K / ofmblock + 1;
  float* native_filter =
      (float*)libxsmm_aligned_scratch(blocksofm * blocksifm * desc.R * desc.S *
                                          ifmblock * ofmblock * sizeof(float),
                                      2097152);

  const DeviceBase::CpuWorkerThreads* worker_threads =
      ctx->device()->tensorflow_cpu_worker_threads();

  int num_threads = worker_threads->num_threads;

#if 1
  if (kind == LIBXSMM_DNN_COMPUTE_KIND_FWD ||
      kind == LIBXSMM_DNN_COMPUTE_KIND_BWD) {
    if (blocksofm > num_threads) {
      int work = blocksofm;
      BlockingCounter count(num_threads);
      for (int i = 0; i < num_threads; ++i) {
        worker_threads->workers->Schedule([=, &count]() {
          int start = work / num_threads * i;
          int end = (start + work / num_threads) > work
                        ? work
                        : start + work / num_threads;
          copy_RSCK_to_custom(filter, native_filter, desc.R, desc.S, desc.C,
                              desc.K, blocksifm, blocksofm, ifmblock, ofmblock,
                              start, end);
          count.DecrementCount();
        });
      }
      count.Wait();
    } else {
      int work = blocksofm;
      int num_threads = work;

      BlockingCounter count(num_threads);
      for (int i = 0; i < num_threads; ++i) {
        worker_threads->workers->Schedule([=, &count]() {
          int start = i;
          int end = i + 1;
          copy_RSCK_to_custom(filter, native_filter, desc.R, desc.S, desc.C,
                              desc.K, blocksifm, blocksofm, ifmblock, ofmblock,
                              start, end);
          count.DecrementCount();
        });
      }
      count.Wait();
    }
  } else if (kind == LIBXSMM_DNN_COMPUTE_KIND_UPD) {
    // Added: for weight update
    libxsmm_filter =
        libxsmm_dnn_link_filter(libxsmm_handle, LIBXSMM_DNN_FILTER, filter,
                                LIBXSMM_DNN_TENSOR_FORMAT_RSCK_PTR, &status);
    chk_libxsmm_err(status,
                    "Link filter");  // weight update is in RSCK as
                                     // filter should be returned in RSCK
                                     // format
  }
#else
  memset(native_filter, 0,
         blocksofm * blocksifm * desc.R * desc.S * ifmblock * ofmblock *
             sizeof(float));
#endif

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick3 = libxsmm_timer_tick();
#endif

  libxsmm_input =
      libxsmm_dnn_link_buffer(libxsmm_handle, LIBXSMM_DNN_INPUT, input,
                              LIBXSMM_DNN_TENSOR_FORMAT_NHWC_PTR, &status);
  chk_libxsmm_err(status, "Link input buffer");
  libxsmm_output =
      libxsmm_dnn_link_buffer(libxsmm_handle, LIBXSMM_DNN_OUTPUT, output,
                              LIBXSMM_DNN_TENSOR_FORMAT_NHWC_PTR, &status);
  chk_libxsmm_err(status, "Link output buffer");
  if (kind == LIBXSMM_DNN_COMPUTE_KIND_FWD ||
      kind == LIBXSMM_DNN_COMPUTE_KIND_BWD) {
    libxsmm_filter = libxsmm_dnn_link_filter(
        libxsmm_handle, LIBXSMM_DNN_FILTER, native_filter,
        LIBXSMM_DNN_TENSOR_FORMAT_LIBXSMM_PTR, &status);
    chk_libxsmm_err(status, "Link filter");
  }
  if (kind == LIBXSMM_DNN_COMPUTE_KIND_FWD) {
    chk_libxsmm_err(libxsmm_dnn_zero_buffer(libxsmm_output), "Zero output");

    chk_libxsmm_err(libxsmm_dnn_bind_buffer(libxsmm_handle, libxsmm_input,
                                            LIBXSMM_DNN_REGULAR_INPUT),
                    "Bind input forward");
    chk_libxsmm_err(libxsmm_dnn_bind_buffer(libxsmm_handle, libxsmm_output,
                                            LIBXSMM_DNN_REGULAR_OUTPUT),
                    "Bind output forward");
    chk_libxsmm_err(libxsmm_dnn_bind_filter(libxsmm_handle, libxsmm_filter,
                                            LIBXSMM_DNN_REGULAR_FILTER),
                    "Bind filter forward");
  } else if (kind == LIBXSMM_DNN_COMPUTE_KIND_BWD) {
    chk_libxsmm_err(libxsmm_dnn_zero_buffer(libxsmm_input), "Zero input");

    chk_libxsmm_err(libxsmm_dnn_bind_buffer(libxsmm_handle, libxsmm_input,
                                            LIBXSMM_DNN_GRADIENT_INPUT),
                    "Bind input backward");
    chk_libxsmm_err(libxsmm_dnn_bind_buffer(libxsmm_handle, libxsmm_output,
                                            LIBXSMM_DNN_GRADIENT_OUTPUT),
                    "Bind output backward");
    chk_libxsmm_err(libxsmm_dnn_bind_filter(libxsmm_handle, libxsmm_filter,
                                            LIBXSMM_DNN_REGULAR_FILTER),
                    "Bind filter backward");
  } else if (kind == LIBXSMM_DNN_COMPUTE_KIND_UPD) {
    chk_libxsmm_err(libxsmm_dnn_zero_filter(libxsmm_filter), "Zero filter");

    chk_libxsmm_err(libxsmm_dnn_bind_buffer(libxsmm_handle, libxsmm_input,
                                            LIBXSMM_DNN_REGULAR_INPUT),
                    "Bind input weight update");
    chk_libxsmm_err(libxsmm_dnn_bind_buffer(libxsmm_handle, libxsmm_output,
                                            LIBXSMM_DNN_GRADIENT_OUTPUT),
                    "Bind output weight update");
    chk_libxsmm_err(libxsmm_dnn_bind_filter(libxsmm_handle, libxsmm_filter,
                                            LIBXSMM_DNN_GRADIENT_FILTER),
                    "Bind filter weight update");
  } else {
    /* shouldn't happen */
  }

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick4 = libxsmm_timer_tick();
#endif

  /* bind scratch */
  scratch = (void*)libxsmm_aligned_scratch(
      libxsmm_dnn_get_scratch_size(libxsmm_handle, LIBXSMM_DNN_COMPUTE_KIND_ALL,
                                   &status),
      2097152);
  chk_libxsmm_err(status, "scratch allocation");
  chk_libxsmm_err(libxsmm_dnn_bind_scratch(
                      libxsmm_handle, LIBXSMM_DNN_COMPUTE_KIND_ALL, scratch),
                  "binding scratch");

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick5 = libxsmm_timer_tick();
#endif

  if (kind == LIBXSMM_DNN_COMPUTE_KIND_BWD) {
    libxsmm_dnn_transpose_filter(libxsmm_handle, LIBXSMM_DNN_FILTER);
  }

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick6 = libxsmm_timer_tick();
#endif

#if 1
  BlockingCounter counter(num_threads);

  for (int i = 0; i < num_threads; ++i) {
    worker_threads->workers->Schedule([=, &counter]() {
      chk_libxsmm_err(libxsmm_dnn_execute_st(libxsmm_handle, kind, 0, i),
                      "Worker");
      counter.DecrementCount();
    });
  }
  counter.Wait();
#else
#pragma omp parallel
  {
    chk_libxsmm_err(
        libxsmm_dnn_execute_st(libxsmm_handle, kind, 0, omp_get_thread_num()),
        "Worker");
  }
#endif

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick7 = libxsmm_timer_tick();
#endif

  if (kind == LIBXSMM_DNN_COMPUTE_KIND_UPD) {
    libxsmm_dnn_reduce_wu_filters(libxsmm_handle, LIBXSMM_DNN_GRADIENT_FILTER);
  }

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick8 = libxsmm_timer_tick();
#endif

  /* clean up */
  chk_libxsmm_err(
      libxsmm_dnn_release_scratch(libxsmm_handle, LIBXSMM_DNN_COMPUTE_KIND_ALL),
      "release scratch");
  if (kind == LIBXSMM_DNN_COMPUTE_KIND_FWD) {
    chk_libxsmm_err(
        libxsmm_dnn_release_buffer(libxsmm_handle, LIBXSMM_DNN_REGULAR_INPUT),
        "release input");
    chk_libxsmm_err(
        libxsmm_dnn_release_buffer(libxsmm_handle, LIBXSMM_DNN_REGULAR_OUTPUT),
        "release output");
    chk_libxsmm_err(
        libxsmm_dnn_release_filter(libxsmm_handle, LIBXSMM_DNN_REGULAR_FILTER),
        "release filter");
  } else if (kind == LIBXSMM_DNN_COMPUTE_KIND_BWD) {
    chk_libxsmm_err(
        libxsmm_dnn_release_buffer(libxsmm_handle, LIBXSMM_DNN_GRADIENT_INPUT),
        "release input");
    chk_libxsmm_err(
        libxsmm_dnn_release_buffer(libxsmm_handle, LIBXSMM_DNN_GRADIENT_OUTPUT),
        "release output");
    chk_libxsmm_err(
        libxsmm_dnn_release_filter(libxsmm_handle, LIBXSMM_DNN_REGULAR_FILTER),
        "release filter");
  } else if (kind == LIBXSMM_DNN_COMPUTE_KIND_UPD) {
    chk_libxsmm_err(
        libxsmm_dnn_release_buffer(libxsmm_handle, LIBXSMM_DNN_REGULAR_INPUT),
        "release input");
    chk_libxsmm_err(
        libxsmm_dnn_release_buffer(libxsmm_handle, LIBXSMM_DNN_GRADIENT_OUTPUT),
        "release output");
    chk_libxsmm_err(
        libxsmm_dnn_release_filter(libxsmm_handle, LIBXSMM_DNN_GRADIENT_FILTER),
        "release filter");
  } else {
    /* shouldn't happen */
  }
  chk_libxsmm_err(libxsmm_dnn_destroy_buffer(libxsmm_input), "Destroy input");
  chk_libxsmm_err(libxsmm_dnn_destroy_buffer(libxsmm_output), "Destroy output");
  chk_libxsmm_err(libxsmm_dnn_destroy_filter(libxsmm_filter), "Destroy filter");

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick9 = libxsmm_timer_tick();
#endif

  // if(kind != LIBXSMM_DNN_COMPUTE_KIND_FWD)
  // chk_libxsmm_err(libxsmm_dnn_destroy_conv_layer(libxsmm_handle),
  //               "Destroy handle");

  libxsmm_free(native_filter);
  libxsmm_free(scratch);

#if defined(LIBXSMM_DETAILED_TIMING)
  l_tick10 = libxsmm_timer_tick();
  printf(
      "time for convolution (%i, %i, %i, %i, %i): %f, %f, %f, %f, %f, %f, %f, "
      "%f, %f, %f\n",
      desc.N, desc.C, desc.K, desc.R, desc.S,
      libxsmm_timer_duration(l_tick1, l_tick2),
      libxsmm_timer_duration(l_tick2, l_tick3),
      libxsmm_timer_duration(l_tick3, l_tick4),
      libxsmm_timer_duration(l_tick4, l_tick5),
      libxsmm_timer_duration(l_tick5, l_tick6),
      libxsmm_timer_duration(l_tick6, l_tick7),
      libxsmm_timer_duration(l_tick7, l_tick8),
      libxsmm_timer_duration(l_tick8, l_tick9),
      libxsmm_timer_duration(l_tick9, l_tick10),
      libxsmm_timer_duration(l_tick1, l_tick10));
#endif

  return true;  // Succeeded
}

template <typename T>
struct XsmmFwdConv2D<CPUDevice, T> {
  bool operator()(OpKernelContext* ctx, const libxsmm_dnn_conv_desc& desc,
                  const T* input, const T* filter, T* output) {
    return CallLibxsmmConvGeneric(ctx, desc, LIBXSMM_DNN_COMPUTE_KIND_FWD,
                                  input, filter, output);
  }
};

template <typename T>
struct XsmmBkwInputConv2D<CPUDevice, T> {
  bool operator()(OpKernelContext* ctx, const libxsmm_dnn_conv_desc& desc,
                  T* input, const T* filter, const T* output) {
    return CallLibxsmmConvGeneric(ctx, desc, LIBXSMM_DNN_COMPUTE_KIND_BWD,
                                  input, filter, output);
  }
};

template <typename T>
struct XsmmBkwFilterConv2D<CPUDevice, T> {
  bool operator()(OpKernelContext* ctx, const libxsmm_dnn_conv_desc& desc,
                  const T* input, T* filter, const T* output) {
    return CallLibxsmmConvGeneric(ctx, desc, LIBXSMM_DNN_COMPUTE_KIND_UPD,
                                  input, filter, output);
  }
};

}  // namespace functor

template struct functor::XsmmFwdConv2D<CPUDevice, float>;
template struct functor::XsmmBkwInputConv2D<CPUDevice, float>;
template struct functor::XsmmBkwFilterConv2D<CPUDevice, float>;

}  // namespace tensorflow

#endif  // TENSORFLOW_USE_LIBXSMM