aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/summary_image_op.cc
blob: 29b21ee7353fe03ce87bc03dad72b05ca8fd4311 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// Operators that deal with SummaryProtos (encoded as DT_STRING tensors) as
// inputs or outputs in various ways.

// See docs in ../ops/summary_ops.cc.

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/summary.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/png/png_io.h"
#include "tensorflow/core/platform/logging.h"

namespace tensorflow {

class SummaryImageOp : public OpKernel {
 public:
  typedef Eigen::Tensor<uint8, 2, Eigen::RowMajor> Uint8Image;

  explicit SummaryImageOp(OpKernelConstruction* context) : OpKernel(context) {
    int64 max_images_tmp;
    OP_REQUIRES_OK(context, context->GetAttr("max_images", &max_images_tmp));
    OP_REQUIRES(context, max_images_tmp < (1LL << 31),
                errors::InvalidArgument("max_images must be < 2^31"));
    max_images_ = static_cast<int32>(max_images_tmp);
    const TensorProto* proto;
    OP_REQUIRES_OK(context, context->GetAttr("bad_color", &proto));
    OP_REQUIRES_OK(context, context->device()->MakeTensorFromProto(
                                *proto, AllocatorAttributes(), &bad_color_));
    OP_REQUIRES(context, bad_color_.dtype() == DT_UINT8,
                errors::InvalidArgument("bad_color must be uint8, got ",
                                        DataTypeString(bad_color_.dtype())));
    OP_REQUIRES(
        context, TensorShapeUtils::IsVector(bad_color_.shape()),
        errors::InvalidArgument("bad_color must be a vector, got shape ",
                                bad_color_.shape().DebugString()));
  }

  void Compute(OpKernelContext* c) override {
    const Tensor& tags = c->input(0);
    const Tensor& tensor = c->input(1);
    OP_REQUIRES(c, IsLegacyScalar(tags.shape()),
                errors::InvalidArgument("Tags must be a scalar"));
    OP_REQUIRES(c,
                tensor.dims() == 4 &&
                    (tensor.dim_size(3) == 1 || tensor.dim_size(3) == 3 ||
                     tensor.dim_size(3) == 4),
                errors::InvalidArgument(
                    "Tensor must be 4-D with last dim 1, 3, or 4, not ",
                    tensor.shape().DebugString()));
    const string& base_tag = tags.scalar<string>()();

    OP_REQUIRES(c,
                tensor.dim_size(0) < (1LL << 31) &&
                    tensor.dim_size(1) < (1LL << 31) &&
                    tensor.dim_size(2) < (1LL << 31) &&
                    (tensor.dim_size(1) * tensor.dim_size(2)) < (1LL << 29),
                errors::InvalidArgument("Tensor too large for summary ",
                                        tensor.shape().DebugString()));

    // The casts and h * w cannot overflow because of the limits above.
    const int batch_size = static_cast<int>(tensor.dim_size(0));
    const int h = static_cast<int>(tensor.dim_size(1));
    const int w = static_cast<int>(tensor.dim_size(2));
    const int hw = h * w;  // Compact these two dims for simplicity
    const int depth = static_cast<int>(tensor.dim_size(3));

    Summary s;
    if (tensor.dtype() == DT_UINT8) {
      // For uint8 input, no normalization is necessary
      auto ith_image = [&tensor, batch_size, hw, depth](int i) {
        auto values = tensor.shaped<uint8, 3>({batch_size, hw, depth});
        return typename TTypes<uint8>::ConstMatrix(
            &values(i, 0, 0), Eigen::DSizes<Eigen::DenseIndex, 2>(hw, depth));
      };
      OP_REQUIRES_OK(
          c, AddImages(base_tag, batch_size, w, h, depth, ith_image, &s));
    } else if (tensor.dtype() == DT_HALF) {
      NormalizeAndAddImages<Eigen::half>(c, tensor, h, w, hw, depth, batch_size,
                                         base_tag, &s);
    } else if (tensor.dtype() == DT_FLOAT) {
      NormalizeAndAddImages<float>(c, tensor, h, w, hw, depth, batch_size,
                                   base_tag, &s);
    } else {  // tensor.dtype() = DT_DOUBLE
      NormalizeAndAddImages<double>(c, tensor, h, w, hw, depth, batch_size,
                                    base_tag, &s);
    }

    Tensor* summary_tensor = nullptr;
    OP_REQUIRES_OK(c, c->allocate_output(0, TensorShape({}), &summary_tensor));
    CHECK(s.SerializeToString(&summary_tensor->scalar<string>()()));
  }

  template <class T>
  void NormalizeAndAddImages(OpKernelContext* c, const Tensor& tensor, int h,
                             int w, int hw, int depth, int batch_size,
                             const string& base_tag, Summary* s) {
    // For float and half images, nans and infs are replaced with bad_color.
    OP_REQUIRES(c, bad_color_.dim_size(0) >= depth,
                errors::InvalidArgument(
                    "expected depth <= bad_color.size, got depth = ", depth,
                    ", bad_color.size = ", bad_color_.dim_size(0)));
    auto bad_color_full = bad_color_.vec<uint8>();
    typename TTypes<uint8>::ConstVec bad_color(bad_color_full.data(), depth);

    // Float images must be scaled and translated.
    Uint8Image image(hw, depth);
    auto ith_image = [&tensor, &image, bad_color, batch_size, hw,
                      depth](int i) {
      auto tensor_eigen = tensor.template shaped<T, 3>({batch_size, hw, depth});
      typename TTypes<T>::ConstMatrix values(
          &tensor_eigen(i, 0, 0),
          Eigen::DSizes<Eigen::DenseIndex, 2>(hw, depth));
      NormalizeFloatImage<T>(hw, depth, values, bad_color, &image);
      return image;
    };
    OP_REQUIRES_OK(c,
                   AddImages(base_tag, batch_size, w, h, depth, ith_image, s));
  }

  // Add the sequence of images specified by ith_image to the summary.
  //
  // Factoring this loop out into a helper function lets ith_image behave
  // differently in the float and uint8 cases: the float case needs a temporary
  // buffer which can be shared across calls to ith_image, but the uint8 case
  // does not.
  Status AddImages(const string& tag, int batch_size, int w, int h, int depth,
                   const std::function<Uint8Image(int)>& ith_image,
                   Summary* s) {
    const int N = std::min<int>(max_images_, batch_size);
    for (int i = 0; i < N; ++i) {
      Summary::Value* v = s->add_value();
      // The tag depends on the number of requested images (not the number
      // produced.)
      //
      // Note that later on avisu uses "/" to figure out a consistent naming
      // convention for display, so we append "/image" to guarantee that the
      // image(s) won't be displayed in the global scope with no name.
      if (max_images_ > 1) {
        v->set_tag(strings::StrCat(tag, "/image/", i));
      } else {
        v->set_tag(strings::StrCat(tag, "/image"));
      }

      auto image = ith_image(i);
      Summary::Image* si = v->mutable_image();
      si->set_height(h);
      si->set_width(w);
      si->set_colorspace(depth);
      const int channel_bits = 8;
      const int compression = -1;  // Use zlib default
      if (!png::WriteImageToBuffer(
              image.data(), w, h, w * depth, depth, channel_bits, compression,
              si->mutable_encoded_image_string(), nullptr)) {
        return errors::Internal("PNG encoding failed");
      }
    }
    return Status::OK();
  }

  template <class T>
  static void NormalizeFloatImage(int hw, int depth,
                                  typename TTypes<T>::ConstMatrix values,
                                  typename TTypes<uint8>::ConstVec bad_color,
                                  Uint8Image* image) {
    if (!image->size()) return;  // Nothing to do for empty images

    // Rescale the image to uint8 range.
    //
    // We are trying to generate an RGB image from a float/half tensor.  We do
    // not have any info about the expected range of values in the tensor
    // but the generated image needs to have all RGB values within [0, 255].
    //
    // We use two different algorithms to generate these values.  If the
    // tensor has only positive values we scale them all by 255/max(values).
    // If the tensor has both negative and positive values we scale them by
    // the max of their absolute values and center them around 127.
    //
    // This works for most cases, but does not respect the relative dynamic
    // range across different instances of the tensor.

    // Compute min and max ignoring nonfinite pixels
    float image_min = std::numeric_limits<float>::infinity();
    float image_max = -image_min;
    for (int i = 0; i < hw; i++) {
      bool finite = true;
      for (int j = 0; j < depth; j++) {
        if (!Eigen::numext::isfinite(values(i, j))) {
          finite = false;
          break;
        }
      }
      if (finite) {
        for (int j = 0; j < depth; j++) {
          float value(values(i, j));
          image_min = std::min(image_min, value);
          image_max = std::max(image_max, value);
        }
      }
    }

    // Pick an affine transform into uint8
    const float kZeroThreshold = 1e-6;
    T scale, offset;
    if (image_min < 0) {
      float max_val = std::max(std::abs(image_min), std::abs(image_max));
      scale = T(max_val < kZeroThreshold ? 0.0f : 127.0f / max_val);
      offset = T(128.0f);
    } else {
      scale = T(image_max < kZeroThreshold ? 0.0f : 255.0f / image_max);
      offset = T(0.0f);
    }

    // Transform image, turning nonfinite values to bad_color
    for (int i = 0; i < hw; i++) {
      bool finite = true;
      for (int j = 0; j < depth; j++) {
        if (!Eigen::numext::isfinite(values(i, j))) {
          finite = false;
          break;
        }
      }
      if (finite) {
        image->chip<0>(i) = (values.template chip<0>(i) * scale + offset)
                                .template cast<uint8>();
      } else {
        image->chip<0>(i) = bad_color;
      }
    }
  }

 private:
  int32 max_images_;
  Tensor bad_color_;
};

REGISTER_KERNEL_BUILDER(Name("ImageSummary").Device(DEVICE_CPU),
                        SummaryImageOp);

}  // namespace tensorflow