aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/split_v_op.cc
blob: 5c19a45fb18abdacb5f89f623f9690b43bdfa1e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/array_ops.cc.

#define EIGEN_USE_THREADS

#if GOOGLE_CUDA
#define EIGEN_USE_GPU
#endif  // GOOGLE_CUDA

#include <numeric>

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/kernels/split_lib.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#include "tensorflow/core/util/work_sharder.h"
#if GOOGLE_CUDA
#include "tensorflow/core/common_runtime/gpu/gpu_event_mgr.h"
#include "tensorflow/core/kernels/cuda_device_array.h"
#include "tensorflow/core/platform/stream_executor.h"
#endif  // GOOGLE_CUDA

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;

template <typename Device, typename T, typename Tlen>
class SplitVOpBase : public OpKernel {
 public:
  explicit SplitVOpBase(OpKernelConstruction* c) : OpKernel(c) {}

  void ComputeEasyCases(OpKernelContext* context, bool* done,
                        std::vector<Tlen>* split_sizes_vec) {
    const int32 num_split = context->num_outputs();
    const Tensor& input = context->input(0);
    const TensorShape& input_shape = input.shape();
    const Tensor& split_tensor = context->input(1);
    const Tensor& split_dim_tensor = context->input(2);

    OP_REQUIRES(context, split_dim_tensor.NumElements() == 1,
                errors::InvalidArgument("split_dim_tensor must have "
                                        "exactly one element."));

    const int32 split_dim_orig = split_dim_tensor.flat<int32>()(0);
    const int32 split_dim =
        split_dim_orig < 0 ? split_dim_orig + input.dims() : split_dim_orig;

    OP_REQUIRES(
        context,
        split_tensor.dims() == 1 && split_tensor.NumElements() == num_split,
        errors::InvalidArgument("size of the split_tensor must be 1-D and have "
                                "the same elements as outputs got ",
                                split_tensor.dims(), " -D and ",
                                split_tensor.NumElements(), " elements"));

    auto split_sizes_d = split_tensor.vec<Tlen>();

    split_sizes_vec->resize(split_sizes_d.size());

    std::copy(split_sizes_d.data(), split_sizes_d.data() + split_sizes_d.size(),
              split_sizes_vec->begin());

    OP_REQUIRES(
        context, num_split > 0,
        errors::InvalidArgument(
            "Number of ways to split should be > 0, but got ", num_split));

    OP_REQUIRES(
        context, 0 <= split_dim && split_dim < input.dims(),
        errors::InvalidArgument("-input rank(-", input.dims(),
                                ") <= split_dim < input rank (", input.dims(),
                                "), but got ", split_dim_orig));

    Tlen input_size_split_dim = input_shape.dim_size(split_dim);

    // Special case 1: num_split == 1. Nothing to do.
    if (num_split == 1) {
      context->set_output(0, context->input(0));
      OP_REQUIRES(
          context, (*split_sizes_vec)[0] == input_size_split_dim,
          errors::InvalidArgument("If there is only one output, it must have "
                                  "the same size as the input. Input size: ",
                                  input_size_split_dim,
                                  " output size: ", (*split_sizes_vec)[0]));
      *done = true;
      return;
    }

    // Determine sizes of output, in case of a -1 input value
    int neg_one_dim = -1;
    Tlen determined_size = 0;
    for (int d = 0; d < split_sizes_vec->size(); ++d) {
      Tlen size = (*split_sizes_vec)[d];

      if (size == -1) {
        OP_REQUIRES(context, neg_one_dim == -1,
                    errors::InvalidArgument("There can only be one -1 in the "
                                            "input."));
        neg_one_dim = d;
      } else {
        determined_size += size;
      }
    }

    OP_REQUIRES(
        context,
        (neg_one_dim == -1 && determined_size == input_size_split_dim) ||
            (neg_one_dim >= 0 && determined_size <= input_size_split_dim),
        errors::InvalidArgument("Determined shape must either match "
                                "input shape along split_dim exactly if "
                                "fully specified, or be less than the size of "
                                "the input along split_dim if not fully "
                                "specified.  Got: ",
                                determined_size));

    if (neg_one_dim >= 0) {
      (*split_sizes_vec)[neg_one_dim] = input_size_split_dim - determined_size;
    }

    // Special case 2: split along the 1st dimension. We can share the
    // underlying buffer.
    //
    // Apply this optimization conservatively: if input is aligned,
    // the resulting tensors must be aligned. It's conservative
    // because if the immediate consumer of the resulting tensors are
    // not using eigen for computation, its perfectly fine to avoid
    // the copying.
    if ((split_dim == 0) && IsInnerDimsSizeAligned<T>(input_shape)) {
      Tlen start = 0;
      for (int i = 0; i < num_split; ++i) {
        context->set_output(i,
                            input.Slice(start, start + (*split_sizes_vec)[i]));
        start += (*split_sizes_vec)[i];
      }
      *done = true;
      return;
    }
  }

  template <typename IndexType>
  std::tuple<IndexType, IndexType, IndexType> SetDims(
      const TensorShape& input_shape, const int32 split_dim) const {
    static_assert(std::is_integral<IndexType>::value,
                  "IndexType must be an integer type");
    int32 prefix_dim_size = 1;
    for (int i = 0; i < split_dim; ++i) {
      prefix_dim_size *= input_shape.dim_size(i);
    }

    // Caller must ensure that dim_size and suffix_dim_size are <
    // std::numeric_limits<IndexType>::max()
    IndexType split_dim_size =
        static_cast<IndexType>(input_shape.dim_size(split_dim));

    IndexType suffix_dim_size = 1;
    for (int i = split_dim + 1; i < input_shape.dims(); ++i) {
      suffix_dim_size *= static_cast<IndexType>(input_shape.dim_size(i));
    }
    return std::make_tuple(prefix_dim_size, split_dim_size, suffix_dim_size);
  }
};

template <typename T, typename Tlen, typename InputReshapedType, int NDims>
class SplitVOpCPUImpl {
 public:
  template <typename MakeSizesType, typename ReshapeResultType>
  void operator()(OpKernelContext* context,
                  const InputReshapedType& input_reshaped,
                  const std::vector<int64>& split_start_points,
                  const TensorShape& input_shape, int32 split_dim,
                  Eigen::DenseIndex prefix_dim_size,
                  Eigen::DenseIndex split_dim_size,
                  Eigen::DenseIndex suffix_dim_size,
                  std::vector<Tlen>& split_sizes_vec,
                  const MakeSizesType& make_sizes,
                  const ReshapeResultType& reshape_result) const {
    Eigen::DSizes<Eigen::DenseIndex, NDims> indices;
    for (int i = 0; i < NDims; ++i) {
      indices[i] = 0;
    }
    const auto num_threads =
        context->device()->tensorflow_cpu_worker_threads()->num_threads;
    // TODO(jewillco): Tune heuristic further.
    const auto input_element_count = input_shape.num_elements();
    const int num_split = split_start_points.size();
    const bool use_parallelism_between_outputs =
        (num_split >= 4 &&
         input_element_count >= std::max(num_threads, num_split) * 4096 &&
         input_element_count < num_split * 180 * 1024);

    auto range_output_func = [&indices, context, &input_shape, split_dim,
                              &split_sizes_vec, &split_start_points,
                              use_parallelism_between_outputs, &input_reshaped,
                              &make_sizes,
                              &reshape_result](int64 start, int64 limit) {
      for (int64 i = start; i < limit; ++i) {
        TensorShape output_shape(input_shape);
        output_shape.set_dim(split_dim, split_sizes_vec[i]);
        Tensor* result = nullptr;
        OP_REQUIRES_OK(context,
                       context->allocate_output(i, output_shape, &result));

        const auto sizes = make_sizes(split_sizes_vec[i]);

        if (sizes.TotalSize() > 0) {
          auto result_shaped = reshape_result(result, split_sizes_vec[i]);

          auto current_indices = indices;
          current_indices[NDims - 2] = split_start_points[i];
          if (use_parallelism_between_outputs) {
            // Use sequential implementation for single output.
            result_shaped = input_reshaped.slice(current_indices, sizes);
          } else {
            // This implementation may be parallel internally.
            functor::Split<CPUDevice, T, NDims>()(
                context->eigen_device<CPUDevice>(), result_shaped,
                input_reshaped, current_indices, sizes);
          }
        }
      }
    };
    if (use_parallelism_between_outputs) {
      // Run in parallel, disabling parallelism in functor.
      Shard(num_split,
            context->device()->tensorflow_cpu_worker_threads()->workers,
            num_split, input_element_count / num_split, range_output_func);
    } else {
      // Run sequentially, but allow internal parallelism in functor.
      range_output_func(0, num_split);
    }
  }
};

template <typename T, typename Tlen>
class SplitVOpCPU : public SplitVOpBase<CPUDevice, T, Tlen> {
 public:
  typedef SplitVOpBase<CPUDevice, T, Tlen> Base;
  explicit SplitVOpCPU(OpKernelConstruction* c) : Base(c) {}

  void Compute(OpKernelContext* context) override {
    bool done = false;
    std::vector<Tlen> split_sizes_vec;
    Base::ComputeEasyCases(context, &done, &split_sizes_vec);
    if (!context->status().ok() || done) {
      return;
    }
    const int32 num_split = Base::num_outputs();
    const Tensor& input = context->input(0);
    const TensorShape& input_shape = input.shape();
    const int32 split_dim_orig = context->input(2).flat<int32>()(0);
    const int32 split_dim =
        split_dim_orig < 0 ? split_dim_orig + input.dims() : split_dim_orig;

    // Android also uses int32 indexing, so check here also.
    OP_REQUIRES(
        context,
        FastBoundsCheck(input.NumElements(),
                        std::numeric_limits<Eigen::DenseIndex>::max()),
        errors::InvalidArgument("Split requires input size < ",
                                std::numeric_limits<Eigen::DenseIndex>::max()));

    Eigen::DenseIndex prefix_dim_size;
    Eigen::DenseIndex split_dim_size;
    Eigen::DenseIndex suffix_dim_size;

    std::tie(prefix_dim_size, split_dim_size, suffix_dim_size) =
        Base::template SetDims<Eigen::DenseIndex>(input_shape, split_dim);
    std::vector<int64> split_start_points(num_split);
    for (int i = 0; i < num_split; ++i) {
      if (i == 0) {
        split_start_points[i] = 0;
      } else {
        split_start_points[i] =
            split_start_points[i - 1] + split_sizes_vec[i - 1];
      }
    }

    if (prefix_dim_size == 1) {
      auto input_reshaped =
          input.shaped<T, 2>({split_dim_size, suffix_dim_size});
      auto make_sizes = [&](Eigen::DenseIndex split_size) {
        return Eigen::DSizes<Eigen::DenseIndex, 2>{split_size, suffix_dim_size};
      };
      auto reshape_result = [&](Tensor* result, Tlen split_size) {
        return result->shaped<T, 2>({split_size, suffix_dim_size});
      };
      SplitVOpCPUImpl<T, Tlen, decltype(input_reshaped), 2>{}(
          context, input_reshaped, split_start_points, input_shape, split_dim,
          prefix_dim_size, split_dim_size, suffix_dim_size, split_sizes_vec,
          make_sizes, reshape_result);
    } else {
      auto input_reshaped = input.shaped<T, 3>(
          {prefix_dim_size, split_dim_size, suffix_dim_size});
      auto make_sizes = [&](Eigen::DenseIndex split_size) {
        return Eigen::DSizes<Eigen::DenseIndex, 3>{prefix_dim_size, split_size,
                                                   suffix_dim_size};
      };
      auto reshape_result = [&](Tensor* result, Tlen split_size) {
        return result->shaped<T, 3>(
            {prefix_dim_size, split_size, suffix_dim_size});
      };
      SplitVOpCPUImpl<T, Tlen, decltype(input_reshaped), 3>{}(
          context, input_reshaped, split_start_points, input_shape, split_dim,
          prefix_dim_size, split_dim_size, suffix_dim_size, split_sizes_vec,
          make_sizes, reshape_result);
    }
  }
};

#if GOOGLE_CUDA

template <typename T, typename IntType>
struct SplitVOpGPULaunch {
  void Run(const Eigen::GpuDevice& d, bool fixed, const T* input,
           int total_cols, int total_rows,
           const CudaDeviceArrayStruct<IntType>& output_scan,
           const CudaDeviceArrayStruct<T*>& output_ptr_data);
};

// Partial specialization for GPU
template <typename T, typename Tlen>
class SplitVOpGPU : public SplitVOpBase<GPUDevice, T, Tlen> {
 public:
  typedef SplitVOpBase<GPUDevice, T, Tlen> Base;
  explicit SplitVOpGPU(OpKernelConstruction* c) : Base(c) {}

  void Compute(OpKernelContext* context) override {
    bool done = false;
    std::vector<Tlen> split_sizes_vec;
    Base::ComputeEasyCases(context, &done, &split_sizes_vec);
    if (!context->status().ok() || done) {
      return;
    }
    const int32 num_split = Base::num_outputs();
    const Tensor& input = context->input(0);
    const TensorShape& input_shape = input.shape();
    const int32 split_dim_orig = context->input(2).flat<int32>()(0);
    const int32 split_dim =
        split_dim_orig < 0 ? split_dim_orig + input.dims() : split_dim_orig;
    OP_REQUIRES(
        context,
        FastBoundsCheck(input.NumElements(), std::numeric_limits<int32>::max()),
        errors::InvalidArgument("Split on GPU requires input size "
                                "< max int32"));

    int32 prefix_dim_size;
    int32 split_dim_size;
    int32 suffix_dim_size;
    std::tie(prefix_dim_size, split_dim_size, suffix_dim_size) =
        Base::template SetDims<int32>(input_shape, split_dim);

    // use the same approach as concat (see documentation there)
    // reshape to 2D

    if (num_split > 16) {
      CudaDeviceArrayOnHost<T*> ptrs(context, num_split);
      OP_REQUIRES_OK(context, ptrs.Init());

      CudaDeviceArrayOnHost<Tlen> offsets(context, num_split + 1);
      OP_REQUIRES_OK(context, offsets.Init());

      Tlen offset = 0;
      int entry = split_sizes_vec[0];
      bool fixed_size =
          std::all_of(split_sizes_vec.begin(), split_sizes_vec.end(),
                      [&entry](int n) { return n == entry; });

      for (int i = 0; i < num_split; ++i) {
        TensorShape output_shape(input_shape);
        output_shape.set_dim(split_dim, split_sizes_vec[i]);
        Tensor* result = nullptr;
        OP_REQUIRES_OK(context,
                       context->allocate_output(i, output_shape, &result));
        ptrs.Set(i, result->flat<T>().data());
        offsets.Set(i, offset);
        offset += split_sizes_vec[i] * suffix_dim_size;
      }
      offsets.Set(num_split, offset);
      OP_REQUIRES_OK(context, ptrs.Finalize());
      OP_REQUIRES_OK(context, offsets.Finalize());

      if (input.NumElements() > 0) {
        SplitVOpGPULaunch<T, Tlen>().Run(
            context->eigen_device<GPUDevice>(), fixed_size,
            input.flat<T>().data(), prefix_dim_size,
            input.NumElements() / prefix_dim_size, offsets.data(), ptrs.data());
        OP_REQUIRES(
            context, context->op_device_context()->stream()->ok(),
            errors::Internal("Launch of gpu kernel for SplitVOp failed"));
      }
    } else {
      Eigen::DenseIndex prefix_dim_size;
      Eigen::DenseIndex split_dim_size;
      Eigen::DenseIndex suffix_dim_size;

      std::tie(prefix_dim_size, split_dim_size, suffix_dim_size) =
          Base::template SetDims<Eigen::DenseIndex>(input_shape, split_dim);
      auto input_reshaped = input.shaped<T, 2>(
          {prefix_dim_size, split_dim_size * suffix_dim_size});

      Eigen::DSizes<Eigen::DenseIndex, 2> indices{0, 0};

      for (int i = 0; i < num_split; ++i) {
        TensorShape output_shape(input_shape);
        output_shape.set_dim(split_dim, split_sizes_vec[i]);
        Tensor* result = nullptr;
        OP_REQUIRES_OK(context,
                       context->allocate_output(i, output_shape, &result));

        Eigen::DSizes<Eigen::DenseIndex, 2> sizes{
            prefix_dim_size, split_sizes_vec[i] * suffix_dim_size};

        if (sizes.TotalSize() > 0) {
          auto result_shaped = result->shaped<T, 2>(
              {prefix_dim_size, split_sizes_vec[i] * suffix_dim_size});

          functor::SplitCustom<GPUDevice, T>()(
              context->eigen_device<GPUDevice>(), result_shaped, input_reshaped,
              indices, sizes);
        }
        indices[1] += split_sizes_vec[i] * suffix_dim_size;
      }
    }
  }
};
#endif  // GOOGLE_CUDA

#define REGISTER_SPLIT(type, len_type)                          \
  REGISTER_KERNEL_BUILDER(Name("SplitV")                        \
                              .Device(DEVICE_CPU)               \
                              .TypeConstraint<len_type>("Tlen") \
                              .TypeConstraint<type>("T")        \
                              .HostMemory("size_splits")        \
                              .HostMemory("split_dim"),         \
                          SplitVOpCPU<type, len_type>);

#define REGISTER_SPLIT_LEN(type) \
  REGISTER_SPLIT(type, int32);   \
  REGISTER_SPLIT(type, int64);

TF_CALL_ALL_TYPES(REGISTER_SPLIT_LEN);

#undef REGISTER_SPLIT_LEN
#undef REGISTER_SPLIT

#if GOOGLE_CUDA

#define REGISTER_GPU(type, len_type)                            \
  REGISTER_KERNEL_BUILDER(Name("SplitV")                        \
                              .Device(DEVICE_GPU)               \
                              .TypeConstraint<len_type>("Tlen") \
                              .TypeConstraint<type>("T")        \
                              .HostMemory("size_splits")        \
                              .HostMemory("split_dim"),         \
                          SplitVOpGPU<type, len_type>);

#define REGISTER_GPU_LEN(type) \
  REGISTER_GPU(type, int32);   \
  REGISTER_GPU(type, int64);

TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU_LEN);
TF_CALL_complex64(REGISTER_GPU_LEN);
TF_CALL_complex128(REGISTER_GPU_LEN);
REGISTER_GPU_LEN(bfloat16);
#undef REGISTER_GPU_LEN
#undef REGISTER_GPU

// special GPU kernel for int32

#define REGISTER_GPU_int32(len_type)                            \
  REGISTER_KERNEL_BUILDER(Name("SplitV")                        \
                              .Device(DEVICE_GPU)               \
                              .TypeConstraint<int32>("T")       \
                              .TypeConstraint<len_type>("Tlen") \
                              .HostMemory("size_splits")        \
                              .HostMemory("split_dim")          \
                              .HostMemory("value")              \
                              .HostMemory("output"),            \
                          SplitVOpCPU<int32, len_type>);

REGISTER_GPU_int32(int32);
REGISTER_GPU_int32(int64);

#undef REGISTER_GPU_int32

#endif  // GOOGLE_CUDA

}  // end namespace tensorflow