aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/split_op.cc
blob: c4f312f3f63229819c6cef10e7c37e7cc1def960 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/array_ops.cc.

#define EIGEN_USE_THREADS

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/kernels/ops_util.h"
#include "tensorflow/core/kernels/split_lib.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/gtl/array_slice.h"
#if GOOGLE_CUDA
#include "tensorflow/core/common_runtime/gpu/gpu_event_mgr.h"
#include "tensorflow/core/kernels/cuda_device_array.h"
#include "tensorflow/core/platform/stream_executor.h"
#endif  // GOOGLE_CUDA

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;
#ifdef TENSORFLOW_USE_SYCL
typedef Eigen::SyclDevice SYCLDevice;
#endif // TENSORFLOW_USE_SYCL

template <typename Device, typename T>
class SplitOpBase : public OpKernel {
 public:
  explicit SplitOpBase(OpKernelConstruction* c) : OpKernel(c) {}

  void ComputeEasyCases(OpKernelContext* context, bool* done) {
    const Tensor& input = context->input(1);
    const TensorShape& input_shape = input.shape();
    const int32 split_dim_orig = context->input(0).flat<int32>()(0);
    const int32 split_dim =
        split_dim_orig < 0 ? split_dim_orig + input.dims() : split_dim_orig;
    const int32 num_split = num_outputs();

    OP_REQUIRES(
        context, 0 <= split_dim && split_dim < input_shape.dims(),
        errors::InvalidArgument("-input rank(-", input.dims(),
                                ") <= split_dim < input rank (", input.dims(),
                                "), but got ", split_dim_orig));

    OP_REQUIRES(
        context, num_split > 0,
        errors::InvalidArgument(
            "Number of ways to split should be > 0, but got ", num_split));

    OP_REQUIRES(context, input_shape.dim_size(split_dim) % num_split == 0,
                errors::InvalidArgument(
                    "Number of ways to split should evenly divide the split "
                    "dimension, but got split_dim ",
                    split_dim, " (size = ", input_shape.dim_size(split_dim),
                    ") ", "and num_split ", num_split));
    // Special case 1: num_split == 1. Nothing to do.
    if (num_split == 1) {
      VLOG(1) << "Split identity";
      context->set_output(0, context->input(1));
      *done = true;
      return;
    }

    // Special case 2: split along the 1st dimension. We can share the
    // underlying buffer.
    //
    // Apply this optimization conservatively: if input is aligned,
    // the resulting tensors must be aligned. It's conservative
    // because if the immediate consumer of the resulting tensors are
    // not using eigen for computation, its perfectly fine to avoid
    // the copying.
    if ((split_dim == 0) && IsInnerDimsSizeAligned<T>(input_shape)) {
      VLOG(1) << "Slice dim 0: " << input_shape.DebugString();
      const int64 delta = input_shape.dim_size(0) / num_split;
      for (int i = 0; i < num_split; ++i) {
        context->set_output(i, input.Slice(i * delta, (i + 1) * delta));
      }
      *done = true;
      return;
    }
  }

  template <typename IndexType>
  std::tuple<IndexType, IndexType, IndexType> SetDims(
      const TensorShape& input_shape, int32 split_dim) const {
    static_assert(std::is_integral<IndexType>::value,
                  "IndexType must be an integer type");
    int32 prefix_dim_size = 1;
    for (int i = 0; i < split_dim; ++i) {
      prefix_dim_size *= input_shape.dim_size(i);
    }

    // Caller must ensure that dim_size and suffix_dim_size are <
    // std::numeric_limits<IndexType>::max()
    IndexType split_dim_size =
        static_cast<IndexType>(input_shape.dim_size(split_dim));

    IndexType suffix_dim_size = 1;
    for (int i = split_dim + 1; i < input_shape.dims(); ++i) {
      suffix_dim_size *= static_cast<IndexType>(input_shape.dim_size(i));
    }
    return std::make_tuple(prefix_dim_size, split_dim_size, suffix_dim_size);
  }
};

template <typename T>
class SplitOpCPU : public SplitOpBase<CPUDevice, T> {
 public:
  typedef SplitOpBase<CPUDevice, T> Base;
  explicit SplitOpCPU(OpKernelConstruction* c) : Base(c) {}

  void Compute(OpKernelContext* context) override {
    bool done = false;
    Base::ComputeEasyCases(context, &done);
    if (!context->status().ok() || done) {
      return;
    }
    const int32 num_split = Base::num_outputs();
    const Tensor& input = context->input(1);
    const TensorShape& input_shape = input.shape();
    const int32 split_dim_orig = context->input(0).flat<int32>()(0);
    const int32 split_dim =
        split_dim_orig < 0 ? split_dim_orig + input.dims() : split_dim_orig;

    // Android also uses int32 indexing, so check here also.
    OP_REQUIRES(
        context, FastBoundsCheck(input.NumElements(),
                                 std::numeric_limits<Eigen::DenseIndex>::max()),
        errors::InvalidArgument("Split requires input size < ",
                                std::numeric_limits<Eigen::DenseIndex>::max()));

    Eigen::DenseIndex prefix_dim_size;
    Eigen::DenseIndex split_dim_size;
    Eigen::DenseIndex suffix_dim_size;

    std::tie(prefix_dim_size, split_dim_size, suffix_dim_size) =
        Base::template SetDims<Eigen::DenseIndex>(input_shape, split_dim);
    auto input_reshaped =
        input.shaped<T, 3>({prefix_dim_size, split_dim_size, suffix_dim_size});

    const int64 split_dim_output_size = split_dim_size / num_split;
    TensorShape output_shape(input_shape);
    output_shape.set_dim(split_dim, split_dim_output_size);

    Eigen::DSizes<Eigen::DenseIndex, 3> indices{0, 0, 0};
    Eigen::DSizes<Eigen::DenseIndex, 3> sizes{
        prefix_dim_size, split_dim_output_size, suffix_dim_size};

    for (int i = 0; i < num_split; ++i) {
      Tensor* result = nullptr;
      OP_REQUIRES_OK(context,
                     context->allocate_output(i, output_shape, &result));
      if (prefix_dim_size * split_dim_output_size * suffix_dim_size > 0) {
        Eigen::DSizes<Eigen::DenseIndex, 3> slice_indices;
        Eigen::DSizes<Eigen::DenseIndex, 3> slice_sizes;
        for (int j = 0; j < 3; ++j) {
          slice_indices[j] = indices[j];
          slice_sizes[j] = sizes[j];
        }

        auto result_shaped = result->shaped<T, 3>(
            {prefix_dim_size, split_dim_output_size, suffix_dim_size});

        functor::Split<CPUDevice, T>()(context->eigen_device<CPUDevice>(),
                                       result_shaped, input_reshaped,
                                       slice_indices, slice_sizes);
      }
      indices[1] += split_dim_output_size;
    }
  }
};

#if GOOGLE_CUDA

template <typename T>
struct SplitOpGPULaunch {
  void Run(const Eigen::GpuDevice& d, const T* input, int32 prefix_dim_size,
           int32 split_dim_size, int32 suffix_dim_size,
           const CudaDeviceArrayStruct<T*>& output_ptr_data);
};

// Partial specialization for GPU
template <typename T>
class SplitOpGPU : public SplitOpBase<GPUDevice, T> {
 public:
  typedef SplitOpBase<GPUDevice, T> Base;
  explicit SplitOpGPU(OpKernelConstruction* c) : Base(c) {}

  void Compute(OpKernelContext* context) override {
    bool done = false;
    Base::ComputeEasyCases(context, &done);
    if (!context->status().ok() || done) {
      return;
    }
    const Tensor& input = context->input(1);
    const TensorShape& input_shape = input.shape();
    const int32 split_dim_orig = context->input(0).flat<int32>()(0);
    const int32 split_dim =
        split_dim_orig < 0 ? split_dim_orig + input.dims() : split_dim_orig;
    const int32 num_split = Base::num_outputs();
    OP_REQUIRES(context, FastBoundsCheck(input.NumElements(),
                                         std::numeric_limits<int32>::max()),
                errors::InvalidArgument("Split on GPU requires input size "
                                        "< max int32"));
    int32 prefix_dim_size;
    int32 split_dim_size;
    int32 suffix_dim_size;
    std::tie(prefix_dim_size, split_dim_size, suffix_dim_size) =
        Base::template SetDims<int32>(input_shape, split_dim);

    const int32 split_dim_output_size = split_dim_size / num_split;
    TensorShape output_shape(input_shape);
    output_shape.set_dim(split_dim, split_dim_output_size);

    CudaDeviceArrayOnHost<T*> ptrs(context, num_split);
    OP_REQUIRES_OK(context, ptrs.Init());

    for (int i = 0; i < num_split; ++i) {
      Tensor* result = nullptr;
      OP_REQUIRES_OK(context,
                     context->allocate_output(i, output_shape, &result));
      ptrs.Set(i, result->flat<T>().data());
    }
    if (prefix_dim_size * split_dim_output_size * suffix_dim_size == 0) {
      return;
    }
    OP_REQUIRES_OK(context, ptrs.Finalize());

    SplitOpGPULaunch<T>().Run(context->eigen_device<GPUDevice>(),
                              input.flat<T>().data(), prefix_dim_size,
                              split_dim_size, suffix_dim_size, ptrs.data());
    OP_REQUIRES(context, context->op_device_context()->stream()->ok(),
                errors::Internal("Launch of gpu kernel for SplitOp failed"));
  }
};
#endif  // GOOGLE_CUDA

#ifdef TENSORFLOW_USE_SYCL
template <typename T>
class SplitOpSYCL : public SplitOpBase<SYCLDevice, T> {
 public:
  typedef SplitOpBase<SYCLDevice, T> Base;
  explicit SplitOpSYCL(OpKernelConstruction* c) : Base(c) {}

  void Compute(OpKernelContext* context) override {
    bool done = false;
    Base::ComputeEasyCases(context, &done);
    if (!context->status().ok() || done) {
      return;
    }
    const Tensor& input = context->input(1);
    const TensorShape& input_shape = input.shape();
    const int32 split_dim_orig = context->input(0).flat<int32>()(0);
    const int32 split_dim =
        split_dim_orig < 0 ? split_dim_orig + input.dims() : split_dim_orig;
    const int32 num_split = Base::num_outputs();

    // Android also uses int32 indexing, so check here also.
    OP_REQUIRES(
        context, FastBoundsCheck(input.NumElements(),
                                 std::numeric_limits<Eigen::DenseIndex>::max()),
        errors::InvalidArgument("Split requires input size < ",
                                std::numeric_limits<Eigen::DenseIndex>::max()));

    Eigen::DenseIndex prefix_dim_size;
    Eigen::DenseIndex split_dim_size;
    Eigen::DenseIndex suffix_dim_size;

    std::tie(prefix_dim_size, split_dim_size, suffix_dim_size) =
        Base::template SetDims<Eigen::DenseIndex>(input_shape, split_dim);
    auto input_reshaped =
        input.shaped<T, 3>({prefix_dim_size, split_dim_size, suffix_dim_size});

    const int64 split_dim_output_size = split_dim_size / num_split;
    TensorShape output_shape(input_shape);
    output_shape.set_dim(split_dim, split_dim_output_size);

    Eigen::DSizes<Eigen::DenseIndex, 3> indices{0, 0, 0};
    Eigen::DSizes<Eigen::DenseIndex, 3> sizes{
        prefix_dim_size, split_dim_output_size, suffix_dim_size};

    for (int i = 0; i < num_split; ++i) {
      Tensor* result = nullptr;
      OP_REQUIRES_OK(context,
                     context->allocate_output(i, output_shape, &result));
      if (prefix_dim_size * split_dim_output_size * suffix_dim_size > 0) {
        Eigen::DSizes<Eigen::DenseIndex, 3> slice_indices;
        Eigen::DSizes<Eigen::DenseIndex, 3> slice_sizes;
        for (int j = 0; j < 3; ++j) {
          slice_indices[j] = indices[j];
          slice_sizes[j] = sizes[j];
        }

        auto result_shaped = result->shaped<T, 3>(
            {prefix_dim_size, split_dim_output_size, suffix_dim_size});

        functor::Split<SYCLDevice, T>()(context->eigen_device<SYCLDevice>(),
                                       result_shaped, input_reshaped,
                                       slice_indices, slice_sizes);
      }
      indices[1] += split_dim_output_size;
    }
  }
};
#endif // TENSORFLOW_USE_SYCL

#define REGISTER_SPLIT(type)                             \
  REGISTER_KERNEL_BUILDER(Name("Split")                  \
                              .Device(DEVICE_CPU)        \
                              .TypeConstraint<type>("T") \
                              .HostMemory("split_dim"),  \
                          SplitOpCPU<type>)

TF_CALL_ALL_TYPES(REGISTER_SPLIT);
REGISTER_SPLIT(quint8);

#undef REGISTER_SPLIT

#if GOOGLE_CUDA

#define REGISTER_GPU(type)                               \
  REGISTER_KERNEL_BUILDER(Name("Split")                  \
                              .Device(DEVICE_GPU)        \
                              .TypeConstraint<type>("T") \
                              .HostMemory("split_dim"),  \
                          SplitOpGPU<type>)

TF_CALL_GPU_NUMBER_TYPES(REGISTER_GPU);
TF_CALL_complex64(REGISTER_GPU);
TF_CALL_complex128(REGISTER_GPU);
#undef REGISTER_GPU

#endif  // GOOGLE_CUDA

#ifdef TENSORFLOW_USE_SYCL
#define REGISTER_SYCL(type)                               \
  REGISTER_KERNEL_BUILDER(Name("Split")                   \
                              .Device(DEVICE_SYCL)        \
                              .TypeConstraint<type>("T")  \
                              .HostMemory("split_dim"),   \
                          SplitOpSYCL<type>)

TF_CALL_GPU_NUMBER_TYPES_NO_HALF(REGISTER_SYCL);
#undef REGISTER_SYCL

#endif  // TENSORFLOW_USE_SYCL

}  // end namespace tensorflow