aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/sparse_sparse_binary_op_shared.cc
blob: 09cb2a6a71c7c0f0ebc9cbc2e7b1951705890a41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// SparseSparseBinaryOpShared is the shared code for binary coefficient-wise
// (cwise) operations of the following form:
//
//   sparse_t <binary cwise op> sparse_t -> new sparse_t
//
// The output SparseTensor may store up to "a_nnz + b_nnz" elements.

// IMPLEMENTATION DETAILS (not part of the interface specification).
//
// This kernel implements the "union" semantics on the non-zeros: namely, any
// non-zero from either side participate in the calculations, and any resultant
// zeros will NOT be excluded from the output storage.
//
// (In the future, we could always add a pruning op the prunes away the zeros,
// if desirable.)

// See docs of all registered ops in ../ops/sparse_ops.cc.

#define EIGEN_USE_THREADS

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_util.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/cwise_ops.h"
#include "tensorflow/core/kernels/cwise_ops_common.h"
#include "tensorflow/core/util/sparse/sparse_tensor.h"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;

namespace {
// Unions the sparse indices and outputs corresponding values: namely, if a
// non-zero appear in one side, it will participate in the calculation, where
// the counterpart on the other side is either a value or an implicit zero.
//
// On exit, outputs the augmented values in "{a,b}_augmented_values", and fills
// "entries_to_copy" with "(from_a?, index)" pairs.  All three vectors have the
// same size.
//
// The input and output sparse tensors are assumed ordered in the canonical
// row-major order.
template <typename T>
void UnionSparseIndicesAndValues(
    typename TTypes<int64>::ConstMatrix a_indices_mat,
    typename TTypes<T>::ConstFlat a_values, int64 a_nnz,
    typename TTypes<int64>::ConstMatrix b_indices_mat,
    typename TTypes<T>::ConstFlat b_values, int64 b_nnz, int num_dims,
    std::vector<T> *a_augmented_values, std::vector<T> *b_augmented_values,
    std::vector<std::pair<bool, int64>> *entries_to_copy) {
  entries_to_copy->reserve(a_nnz + b_nnz);
  a_augmented_values->reserve(a_nnz);
  b_augmented_values->reserve(b_nnz);

  int64 i = 0, j = 0;
  const T kZero = T(0);
  while (i < a_nnz && j < b_nnz) {
    switch (sparse::DimComparator::cmp(a_indices_mat, b_indices_mat, i, j,
                                       num_dims)) {
      case -1:
        entries_to_copy->emplace_back(true, i);
        a_augmented_values->push_back(a_values(i));
        b_augmented_values->push_back(kZero);
        ++i;
        break;
      case 0:
        entries_to_copy->emplace_back(true, i);
        a_augmented_values->push_back(a_values(i));
        b_augmented_values->push_back(b_values(j));
        ++i;
        ++j;
        break;
      case 1:
        entries_to_copy->emplace_back(false, j);
        a_augmented_values->push_back(kZero);
        b_augmented_values->push_back(b_values(j));
        ++j;
        break;
    }
  }
  // Handles leftovers; at most one loop runs.
  while (i < a_nnz) {
    entries_to_copy->emplace_back(/* is_a */ true, i);
    a_augmented_values->push_back(a_values(i++));
    b_augmented_values->push_back(kZero);
  }
  while (j < b_nnz) {
    entries_to_copy->emplace_back(/* is_a */ false, j);
    a_augmented_values->push_back(kZero);
    b_augmented_values->push_back(b_values(j++));
  }
}
}  // anonymous namespace

// Device: CPUDevice.  GPU kernel is not supported currently.
// T: dtype of the SparseTensor's.
// Functor: binary cwise operation to perform on the corresponding operand
// values.  See cwise_ops.h for a list of possible functors to register with.
template <typename Device, typename T, typename Functor>
class SparseSparseBinaryOpShared : public OpKernel {
 public:
  explicit SparseSparseBinaryOpShared(OpKernelConstruction *ctx)
      : OpKernel(ctx) {}

  void Compute(OpKernelContext *ctx) override {
    const Tensor *a_indices_t, *a_values_t, *a_shape_t, *b_indices_t,
        *b_values_t, *b_shape_t;
    OP_REQUIRES_OK(ctx, ctx->input("a_indices", &a_indices_t));
    OP_REQUIRES_OK(ctx, ctx->input("a_values", &a_values_t));
    OP_REQUIRES_OK(ctx, ctx->input("a_shape", &a_shape_t));
    OP_REQUIRES_OK(ctx, ctx->input("b_indices", &b_indices_t));
    OP_REQUIRES_OK(ctx, ctx->input("b_values", &b_values_t));
    OP_REQUIRES_OK(ctx, ctx->input("b_shape", &b_shape_t));

    // Validations.
    OP_REQUIRES(
        ctx,
        TensorShapeUtils::IsMatrix(a_indices_t->shape()) &&
            TensorShapeUtils::IsMatrix(b_indices_t->shape()),
        errors::InvalidArgument("Inputs a_indices and b_indices should be "
                                "matrices but received shapes: ",
                                a_indices_t->shape().DebugString(), ", ",
                                b_indices_t->shape().DebugString()));
    OP_REQUIRES(ctx,
                TensorShapeUtils::IsVector(a_values_t->shape()) &&
                    TensorShapeUtils::IsVector(b_values_t->shape()),
                errors::InvalidArgument(
                    "Inputs a_values and b_values should be vectors "
                    "but received shapes: ",
                    a_values_t->shape().DebugString(), " and ",
                    b_values_t->shape().DebugString()));

    const int64 a_nnz = a_indices_t->dim_size(0);
    const int64 b_nnz = b_indices_t->dim_size(0);
    const auto a_values = a_values_t->vec<T>();
    const auto b_values = b_values_t->vec<T>();

    OP_REQUIRES(
        ctx, a_values.size() == a_nnz && b_values.size() == b_nnz,
        errors::InvalidArgument("Expected ", a_nnz, " and ", b_nnz,
                                " non-empty input values, got ",
                                a_values.size(), " and ", b_values.size()));

    OP_REQUIRES(ctx,
                TensorShapeUtils::IsVector(a_shape_t->shape()) &&
                    TensorShapeUtils::IsVector(b_shape_t->shape()),
                errors::InvalidArgument(
                    "Input shapes should be a vector but received shapes ",
                    a_shape_t->shape().DebugString(), " and ",
                    b_shape_t->shape().DebugString()));
    OP_REQUIRES(ctx, a_shape_t->IsSameSize(*b_shape_t),
                errors::InvalidArgument(
                    "Operands do not have the same ranks; got shapes: ",
                    a_shape_t->SummarizeValue(10), " and ",
                    b_shape_t->SummarizeValue(10)));
    const auto a_shape = a_shape_t->flat<int64>();
    const auto b_shape = b_shape_t->flat<int64>();
    for (int i = 0; i < a_shape_t->NumElements(); ++i) {
      OP_REQUIRES(ctx, a_shape(i) == b_shape(i),
                  errors::InvalidArgument("Operands' shapes do not match: got ",
                                          a_shape(i), " and ", b_shape(i),
                                          " for dimension ", i));
    }

    const int num_dims = a_indices_t->dim_size(1);
    const auto a_indices_mat = a_indices_t->matrix<int64>();
    const auto b_indices_mat = b_indices_t->matrix<int64>();
    std::vector<T> a_augmented_values, b_augmented_values;
    std::vector<std::pair<bool, int64>> entries_to_copy;  // from_a?, idx
    UnionSparseIndicesAndValues(a_indices_mat, a_values, a_nnz, b_indices_mat,
                                b_values, b_nnz, num_dims, &a_augmented_values,
                                &b_augmented_values, &entries_to_copy);

    // Allocates and fills output tensors.
    const int64 sum_nnz = a_augmented_values.size();
    Tensor *output_indices_t, *output_values_t;
    OP_REQUIRES_OK(ctx,
                   ctx->allocate_output(0, TensorShape({sum_nnz, num_dims}),
                                        &output_indices_t));
    OP_REQUIRES_OK(
        ctx, ctx->allocate_output(1, TensorShape({sum_nnz}), &output_values_t));
    auto output_indices_mat = output_indices_t->matrix<int64>();

    for (int64 i = 0; i < sum_nnz; ++i) {
      const bool from_a = entries_to_copy[i].first;
      const int64 idx = entries_to_copy[i].second;
      output_indices_mat.chip<0>(i) =
          from_a ? a_indices_mat.chip<0>(idx) : b_indices_mat.chip<0>(idx);
    }

    // Performs the functor operation using Eigen.
    //
    // Note that the two stack-allocated std::vector's may not be aligned. Using
    // allocate_temp() would've given us aligned storage, but we do not know
    // their sizes in advance, so we couldn't use allocate_temp() anyway.
    //
    // TODO(zongheng): measure if it's worthwile to somehow force alignment.
    using UnalignedTensorMap =
        Eigen::TensorMap<Eigen::Tensor<const T, 1, Eigen::RowMajor>,
                         Eigen::Unaligned>;
    auto a_augmented_values_t =
        UnalignedTensorMap(a_augmented_values.data(), sum_nnz);
    auto b_augmented_values_t =
        UnalignedTensorMap(b_augmented_values.data(), sum_nnz);
    output_values_t->flat<T>().device(ctx->eigen_device<Device>()) =
        a_augmented_values_t.binaryExpr(b_augmented_values_t,
                                        typename Functor::func());
  }
};

#define REGISTER_KERNELS(T)                                                  \
  REGISTER_KERNEL_BUILDER(                                                   \
      Name("SparseSparseMinimum").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
      SparseSparseBinaryOpShared<CPUDevice, T, functor::minimum<T>>)         \
                                                                             \
  REGISTER_KERNEL_BUILDER(                                                   \
      Name("SparseSparseMaximum").Device(DEVICE_CPU).TypeConstraint<T>("T"), \
      SparseSparseBinaryOpShared<CPUDevice, T, functor::maximum<T>>)

TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS

}  // namespace tensorflow