aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/sparse_matmul_op_test.cc
blob: ebc6d8fa4ec5422925e57c25856e0007702299b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/kernels/sparse_matmul_op.h"
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h"
#include "tensorflow/core/framework/bfloat16.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/types.pb.h"
#include "tensorflow/core/graph/node_builder.h"
#include "tensorflow/core/lib/random/simple_philox.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/platform/test_benchmark.h"

namespace tensorflow {
random::PhiloxRandom philox(1, 1);
random::SimplePhilox rnd(&philox);
using Eigen::operator==;

template <typename T>
void Sparsify(Tensor* t, float sparsity) {
  const int64 N = t->NumElements();
  CHECK_LE(sparsity, 1);
  auto flat = t->flat<T>();
  if (sparsity == 1) {
    flat.setZero();
    return;
  }
  static const uint32 K = 10000;
  for (int64 i = 0; i < N; ++i) {
    if (rnd.Uniform(K) < sparsity * K) {
      flat(i) = T(0);
    } else if (flat(i) == T(0)) {
      flat(i) = T(1);
    }
  }
}

Node* SparseMatMulNode(Graph* g, Node* in0, Node* in1, bool transpose_a,
                       bool transpose_b, bool a_sparse, bool b_sparse) {
  Node* ret;
  TF_CHECK_OK(NodeBuilder(g->NewName("n"), "SparseMatMul")
                  .Input(in0)
                  .Input(in1)
                  .Attr("transpose_a", transpose_a)
                  .Attr("transpose_b", transpose_b)
                  .Attr("a_is_sparse", a_sparse)
                  .Attr("b_is_sparse", b_sparse)
                  .Finalize(g, &ret));
  return ret;
}

template <typename TA, typename TB>
static Graph* SparseMatMulHelper(Graph* g, int m, int n, int d,
                                 float sparsity_a, float sparsity_b,
                                 bool transpose_a, bool transpose_b) {
  bool a_sparse = (sparsity_a > 0);
  bool b_sparse = (sparsity_b > 0);

  auto left_shape = transpose_a ? TensorShape({d, m}) : TensorShape({m, d});
  Tensor left(DataTypeToEnum<TA>::value, left_shape);
  left.flat<TA>().setRandom();
  Sparsify<TA>(&left, sparsity_a);

  auto right_shape = transpose_b ? TensorShape({n, d}) : TensorShape({d, n});
  Tensor right(DataTypeToEnum<TB>::value, right_shape);
  right.flat<TB>().setRandom();
  Sparsify<TB>(&right, sparsity_b);

  SparseMatMulNode(g, test::graph::Constant(g, left),
                   test::graph::Constant(g, right), transpose_a, transpose_b,
                   a_sparse, b_sparse);
  return g;
}

template <typename TA, typename TB>
static Graph* SparseMatMul(int m, int n, int d, float sparsity_a,
                           float sparsity_b, bool transpose_a,
                           bool transpose_b) {
  Graph* g = new Graph(OpRegistry::Global());
  return SparseMatMulHelper<TA, TB>(g, m, n, d, sparsity_a, sparsity_b,
                                    transpose_a, transpose_b);
}

static Graph* ReplicatedSparseMatMul(int m, int n, int d, float sparsity_1,
                                     float sparsity_2, int copies) {
  Graph* g = new Graph(OpRegistry::Global());
  for (int i = 0; i < copies; ++i) {
    SparseMatMulHelper<float, float>(g, m, n, d, sparsity_1, sparsity_2, false,
                                     false);
  }
  return g;
}

#define BM_SPARSE(M, K, N, S1, S2, TRA, TRB, TA, TB)                           \
  static void                                                                  \
      BM_Sparse##_##M##_##K##_##N##_##S1##_##S2##_##TRA##_##TRB##_##TA##_##TB( \
          int iters) {                                                         \
    testing::StopTiming();                                                     \
    testing::ItemsProcessed(static_cast<int64>(iters) * M * K * N * 2);        \
    auto label = strings::Printf("tr_a: %d tr_b: %d sp_a: %0.2f sp_b: %0.2f",  \
                                 TRA, TRB, S1 / 100.0, S2 / 100.0);            \
    testing::SetLabel(label);                                                  \
    testing::UseRealTime();                                                    \
    auto g = SparseMatMul<TA, TB>(M, N, K, S1 / 100.0, S2 / 100.0, TRA, TRB);  \
    testing::StartTiming();                                                    \
    test::Benchmark("cpu", g).Run(iters);                                      \
  }                                                                            \
  BENCHMARK(                                                                   \
      BM_Sparse##_##M##_##K##_##N##_##S1##_##S2##_##TRA##_##TRB##_##TA##_##TB);

#define BM_SPARSE_REPLICATED(M, K, N, S1, S2, Copies)                          \
  static void BM_Sparse_replicated##_##M##_##K##_##N##_##S1##_##S2##_##Copies( \
      int iters) {                                                             \
    testing::StopTiming();                                                     \
    testing::ItemsProcessed(static_cast<int64>(iters) * M * K * N * Copies *   \
                            2);                                                \
    auto label = strings::Printf("copies: %d sp_a: %0.2f sp_b: %0.2f",         \
                                 (Copies), S1 / 100.0, S2 / 100.0);            \
    testing::SetLabel(label);                                                  \
    testing::UseRealTime();                                                    \
    auto g =                                                                   \
        ReplicatedSparseMatMul(M, N, K, S1 / 100.0, S2 / 100.0, (Copies));     \
    testing::StartTiming();                                                    \
    test::Benchmark("cpu", g).Run(iters);                                      \
  }                                                                            \
  BENCHMARK(BM_Sparse_replicated##_##M##_##K##_##N##_##S1##_##S2##_##Copies);

#define BM_SPARSE_FLOAT(M, K, N, S1, S2, TRA, TRB) \
  BM_SPARSE(M, K, N, S1, S2, TRA, TRB, float, float)
#define BM_SPARSE_BFLOAT16(M, K, N, S1, S2, TRA, TRB) \
  BM_SPARSE(M, K, N, S1, S2, TRA, TRB, bfloat16, bfloat16)
#define BM_SPARSE_FLOAT_BFLOAT16(M, K, N, S1, S2, TRA, TRB) \
  BM_SPARSE(M, K, N, S1, S2, TRA, TRB, float, bfloat16)
#define BM_SPARSE_BFLOAT16_FLOAT(M, K, N, S1, S2, TRA, TRB) \
  BM_SPARSE(M, K, N, S1, S2, TRA, TRB, bfloat16, float)

// Test sparse b
BM_SPARSE_FLOAT(2048, 2048, 2048, 0, 0, false, false);
BM_SPARSE_FLOAT(2048, 2048, 2048, 1, 0, false, false);
BM_SPARSE_FLOAT(2048, 2048, 2048, 50, 0, false, false);
BM_SPARSE_FLOAT(2048, 2048, 2048, 85, 0, false, false);
BM_SPARSE_FLOAT(2048, 2048, 2048, 99, 0, false, false);
// Test sparse a
BM_SPARSE_FLOAT(2048, 2048, 2048, 0, 50, false, false);
BM_SPARSE_FLOAT(2048, 2048, 2048, 0, 85, false, false);
// Test transposing
BM_SPARSE_FLOAT(2048, 2048, 2048, 85, 0, true, false);
BM_SPARSE_FLOAT(2048, 2048, 2048, 85, 0, false, true);
BM_SPARSE_FLOAT(2048, 2048, 2048, 85, 0, true, true);
BM_SPARSE_FLOAT(2048, 2048, 2048, 0, 85, true, false);
BM_SPARSE_FLOAT(2048, 2048, 2048, 0, 85, false, true);
BM_SPARSE_FLOAT(2048, 2048, 2048, 0, 85, true, true);

// Test smaller sizes
BM_SPARSE_FLOAT(1024, 1024, 1024, 0, 0, false, false);
BM_SPARSE_FLOAT(1024, 1024, 1024, 1, 0, false, false);
BM_SPARSE_FLOAT(1024, 1024, 1024, 85, 0, false, false);
BM_SPARSE_FLOAT(256, 256, 256, 1, 0, false, false);
BM_SPARSE_FLOAT(512, 512, 512, 1, 0, false, false);
BM_SPARSE_FLOAT(2560, 400, 1024, 85, 0, false, false);
BM_SPARSE_FLOAT(2560, 400, 1024, 85, 0, true, false);

BM_SPARSE_FLOAT(400, 800, 2560, 85, 0, false, false);
BM_SPARSE_FLOAT(400, 2560, 1024, 85, 0, false, false);
BM_SPARSE_FLOAT(400, 1024, 256, 85, 0, false, false);
BM_SPARSE_FLOAT(400, 256, 1, 85, 0, false, false);

BM_SPARSE_REPLICATED(400, 800, 2560, 85, 0, 6);
BM_SPARSE_REPLICATED(400, 2560, 1024, 85, 0, 6);
BM_SPARSE_REPLICATED(400, 1024, 256, 85, 0, 6);
BM_SPARSE_REPLICATED(400, 256, 1, 85, 0, 6);

BM_SPARSE_FLOAT(2048, 1792, 1024, 85, 0, false, false);
BM_SPARSE_FLOAT(2048, 1024, 768, 85, 0, false, false);
BM_SPARSE_FLOAT(2048, 768, 512, 85, 0, false, false);
BM_SPARSE_FLOAT(2048, 512, 256, 85, 0, false, false);

BM_SPARSE_FLOAT(2049, 1792, 1024, 85, 0, false, false);
BM_SPARSE_FLOAT(2049, 1024, 768, 85, 0, false, false);
BM_SPARSE_FLOAT(2049, 768, 512, 85, 0, false, false);
BM_SPARSE_FLOAT(2049, 512, 256, 85, 0, false, false);

BM_SPARSE_REPLICATED(2048, 1792, 1024, 85, 0, 6);
BM_SPARSE_REPLICATED(2048, 1024, 768, 85, 0, 6);
BM_SPARSE_REPLICATED(2048, 768, 512, 85, 0, 6);
BM_SPARSE_REPLICATED(2048, 512, 256, 85, 0, 6);

// Test bfloat16
BM_SPARSE_BFLOAT16(2048, 2048, 2048, 0, 0, false, false);
BM_SPARSE_BFLOAT16(2048, 2048, 2048, 1, 0, false, false);
BM_SPARSE_BFLOAT16(2048, 2048, 2048, 85, 0, false, false);
BM_SPARSE_BFLOAT16(2048, 2048, 2048, 99, 0, false, false);
BM_SPARSE_BFLOAT16_FLOAT(2048, 2048, 2048, 85, 0, false, false);
BM_SPARSE_BFLOAT16_FLOAT(2048, 2048, 2048, 99, 0, false, false);
BM_SPARSE_FLOAT_BFLOAT16(2048, 2048, 2048, 85, 0, false, false);
BM_SPARSE_FLOAT_BFLOAT16(2048, 2048, 2048, 99, 0, false, false);

static Graph* MultiSparseMatMul(int m, int n, int d, float sparsity_1,
                                float sparsity_2, int copies) {
  Graph* g = new Graph(OpRegistry::Global());
  for (int i = 0; i < copies; ++i) {
    SparseMatMulHelper<float, float>(g, d, n, m, sparsity_1, sparsity_2, true,
                                     false);
    SparseMatMulHelper<float, float>(g, m, d, n, sparsity_2, 0, false, true);
  }
  return g;
}

#define BM_SPARSE_MULTI(M, K, N, S1, S2, Copies)                             \
  static void BM_Sparse_Multi##_##M##_##K##_##N##_##S1##_##S2##_##Copies(    \
      int iters) {                                                           \
    testing::StopTiming();                                                   \
    testing::ItemsProcessed(static_cast<int64>(iters) * M * K * N * 2 * 2 *  \
                            Copies);                                         \
    auto label = strings::Printf("%d_%d_%d_%d_%0.2f_%0.2f", M, K, N, Copies, \
                                 S1 / 100.0, S2 / 100.0);                    \
    testing::SetLabel(label);                                                \
    testing::UseRealTime();                                                  \
    auto g = MultiSparseMatMul(M, N, K, S1 / 100.0, S2 / 100.0, Copies);     \
    testing::StartTiming();                                                  \
    test::Benchmark("cpu", g).Run(iters);                                    \
  }                                                                          \
  BENCHMARK(BM_Sparse_Multi##_##M##_##K##_##N##_##S1##_##S2##_##Copies);

BM_SPARSE_MULTI(1024, 2140, 4096, 0, 82, 1);
BM_SPARSE_MULTI(1024, 4096, 2048, 83, 83, 1);
BM_SPARSE_MULTI(400, 800, 2560, 85, 85, 1);
BM_SPARSE_MULTI(400, 2560, 1024, 85, 85, 1);
BM_SPARSE_MULTI(400, 1024, 256, 85, 85, 1);
BM_SPARSE_MULTI(400, 256, 1, 85, 85, 1);

BM_SPARSE_MULTI(2048, 1792, 1024, 85, 85, 1);
BM_SPARSE_MULTI(2048, 1024, 768, 85, 85, 1);
BM_SPARSE_MULTI(2048, 768, 512, 85, 85, 1);
BM_SPARSE_MULTI(2048, 512, 256, 85, 85, 1);

BM_SPARSE_MULTI(2048, 1792, 1024, 85, 85, 3);
BM_SPARSE_MULTI(2048, 1024, 768, 85, 85, 3);
BM_SPARSE_MULTI(2048, 768, 512, 85, 85, 3);
BM_SPARSE_MULTI(2048, 512, 256, 85, 85, 3);

BM_SPARSE_MULTI(2048, 1792, 1024, 85, 85, 6);
BM_SPARSE_MULTI(2048, 1024, 768, 85, 85, 6);
BM_SPARSE_MULTI(2048, 768, 512, 85, 85, 6);
BM_SPARSE_MULTI(2048, 512, 256, 85, 85, 6);

}  // end namespace tensorflow

namespace Eigen {
namespace internal {

class SparseMatmulOpTest : public ::testing::Test {
 protected:
  SparseMatmulOpTest()
      : PacketSize(Eigen::internal::packet_traits<float>::size) {
    typedef typename NumTraits<float>::Real RealFloat;

    for (int i = 0; i < kMaxPacketSize; ++i) {
      data1[i] = internal::random<float>() / RealFloat(PacketSize);
      data2[i] = internal::random<float>() / RealFloat(PacketSize);
      data3[i] = internal::random<float>() / RealFloat(PacketSize);
    }
    for (int i = kMaxPacketSize; i < kMaxPacketSize * 2; ++i) {
      data3[i] = internal::random<float>() / RealFloat(PacketSize);
    }

    // zero out lower 16-bits of mantissa of data3 values
    // copy bfloat representation to data3_bfloat16
    for (int i = 0; i < kMaxPacketSize * 2; ++i) {
      uint16_t* data3_p = reinterpret_cast<uint16_t*>(&data3[i]);
      uint16_t* data3_bfloat16_p =
          reinterpret_cast<uint16_t*>(data3_bfloat16) + i;
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
      data3_p[1] = 0;
      data3_bfloat16_p[0] = data3_p[0];
#else
      data3_p[0] = 0;
      data3_bfloat16_p[0] = data3_p[1];
#endif
    }
  }

  bool areApprox(const float* a, const float* b, int size) {
    for (int i = 0; i < size; ++i) {
      if (a[i] != b[i] && !internal::isApprox(a[i], b[i])) {
        auto ma = Map<const Matrix<float, 1, Dynamic> >(a, size);
        auto mb = Map<const Matrix<float, 1, Dynamic> >(b, size);
        std::cout << "[" << ma << "]"
                  << " != [" << mb << "], differences: [" << (mb - ma) << "]\n";
        return false;
      }
    }
    return true;
  }

#ifdef EIGEN_VECTORIZE_AVX512
  static const int kMaxPacketSize = 16;
#elif defined EIGEN_VECTORIZE_AVX || defined EIGEN_VECTORIZE_AVX2
  static const int kMaxPacketSize = 8;
#else
  static const int kMaxPacketSize = 4;
#endif
  typedef typename Eigen::internal::packet_traits<float>::type Packet;
  const int PacketSize;
  // float values
  EIGEN_ALIGN_MAX float data1[kMaxPacketSize];
  // output of intrinsics
  EIGEN_ALIGN_MAX float data2[kMaxPacketSize];
  // float values with only 7 mantissa bits (bfloat representable)
  EIGEN_ALIGN_MAX float data3[kMaxPacketSize * 2];
  // bfloat16 representation of data3
  EIGEN_ALIGN_MAX float data3_bfloat16[kMaxPacketSize];
  EIGEN_ALIGN_MAX float ref[kMaxPacketSize];
};

TEST_F(SparseMatmulOpTest, BroadcastPacketTest) {
  for (int i = 0; i < PacketSize; ++i) ref[i] = data1[0];
  internal::pstoreu(data2, internal::pbroadcast_first<Packet>(
                               internal::ploadu<Packet>(data1)));
  ASSERT_TRUE(areApprox(ref, data2, PacketSize));
  if (PacketSize > 1) {
    for (int i = 0; i < PacketSize; ++i) ref[i] = data1[1];
    internal::pstoreu(data2, internal::pbroadcast_second<Packet>(
                                 internal::ploadu<Packet>(data1)));
    ASSERT_TRUE(areApprox(ref, data2, PacketSize));

    if (PacketSize > 2) {
      for (int i = 0; i < PacketSize; ++i) ref[i] = data1[2];
      internal::pstoreu(data2, internal::pbroadcast_third<Packet>(
                                   internal::ploadu<Packet>(data1)));
      ASSERT_TRUE(areApprox(ref, data2, PacketSize));

      if (PacketSize > 3) {
        for (int i = 0; i < PacketSize; ++i) ref[i] = data1[3];
        internal::pstoreu(data2, internal::pbroadcast_fourth<Packet>(
                                     internal::ploadu<Packet>(data1)));
        ASSERT_TRUE(areApprox(ref, data2, PacketSize));
      }
    }
  }
}

TEST_F(SparseMatmulOpTest, InterleavePacketTest) {
  if (PacketSize == 8) {  // AVX
    for (int i = 0; i < PacketSize / 4; ++i) ref[i] = data1[i];
    for (int i = PacketSize / 4; i < PacketSize / 2; ++i)
      ref[i] = data1[i + PacketSize / 4];
    for (int i = PacketSize / 2; i < 3 * PacketSize / 4; ++i)
      ref[i] = data1[i - PacketSize / 4];
    for (int i = 3 * PacketSize / 4; i < PacketSize; ++i) ref[i] = data1[i];
  } else {
    // No interleaving done for smaller packets
    for (int i = 0; i < PacketSize; ++i) ref[i] = data1[i];
  }

  internal::pstoreu(data2, internal::pinterleave4x64<Packet>(
                               internal::ploadu<Packet>(data1)));
  ASSERT_TRUE(areApprox(ref, data2, PacketSize));
}

TEST_F(SparseMatmulOpTest, Bfloat16ExpandTest) {
  if (PacketSize == 8) {  // AVX
    for (int i = 0; i < PacketSize / 2; ++i) {
      ref[i] = data3[i];
    }
    for (int i = 0; i < PacketSize / 2; ++i) {
      ref[i + PacketSize / 2] = data3[i + PacketSize];
    }
  } else {
    for (int i = 0; i < PacketSize; ++i) {
      ref[i] = data3[i];
    }
  }
  internal::pstoreu(data2, internal::pexpand_bf16_l<Packet>(
                               internal::ploadu<Packet>(data3_bfloat16)));
  ASSERT_TRUE(areApprox(ref, data2, PacketSize));

  if (PacketSize == 8) {  // AVX
    for (int i = 0; i < PacketSize / 2; ++i) {
      ref[i] = data3[i + PacketSize / 2];
    }
    for (int i = 0; i < PacketSize / 2; ++i) {
      ref[i + PacketSize / 2] = data3[i + 3 * PacketSize / 2];
    }
  } else {
    for (int i = 0; i < PacketSize; ++i) {
      ref[i] = data3[i + PacketSize];
    }
  }

  internal::pstoreu(data2, internal::pexpand_bf16_u<Packet>(
                               internal::ploadu<Packet>(data3_bfloat16)));
  ASSERT_TRUE(areApprox(ref, data2, PacketSize));
}

TEST_F(SparseMatmulOpTest, Bfloat16LoadTest) {
  if (PacketSize >= 4) {
    for (int i = 0; i < 4; ++i) ref[i] = data3[i];
    internal::pstoreu(data2, internal::pload4bf16<Packet>(data3_bfloat16));
    ASSERT_TRUE(areApprox(ref, data2, 4));

    internal::pstoreu(data2, internal::pload2bf16<Packet>(data3_bfloat16));
    ASSERT_TRUE(areApprox(ref, data2, 2));
  }
}

}  // namespace internal
}  // namespace Eigen