aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/shape_ops.cc
blob: 7cb1da89830975430a479b45fa0fe998b56c8065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// See docs in ../ops/array_ops.cc.

#include <unordered_set>

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/public/tensor.h"
#include "tensorflow/core/public/tensor_shape.h"

namespace tensorflow {

class ShapeOp : public OpKernel {
 public:
  explicit ShapeOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    const Tensor& inp = ctx->input(0);
    const int rank = inp.dims();
    Tensor* out = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({rank}), &out));
    auto vec = out->vec<int32>();
    for (int i = 0; i < rank; ++i) vec(i) = inp.dim_size(i);
  }

  bool IsExpensive() override { return false; }
};
REGISTER_KERNEL_BUILDER(Name("Shape").Device(DEVICE_CPU).HostMemory("output"),
                        ShapeOp);

#define REGISTER_GPU_KERNEL(type)                         \
  REGISTER_KERNEL_BUILDER(Name("Shape")                   \
                              .Device(DEVICE_GPU)         \
                              .HostMemory("output")       \
                              .TypeConstraint<type>("T"), \
                          ShapeOp)
TF_CALL_REAL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL);
#undef REGISTER_GPU_KERNEL

// A special GPU kernel for int32.
// TODO(b/25387198): Also enable int32 in device memory. This kernel
// registration requires all int32 inputs and outputs to be in host memory.
REGISTER_KERNEL_BUILDER(Name("Shape")
                            .Device(DEVICE_GPU)
                            .HostMemory("input")
                            .HostMemory("output")
                            .TypeConstraint<int32>("T"),
                        ShapeOp);

class RankOp : public OpKernel {
 public:
  explicit RankOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    const Tensor& inp = ctx->input(0);
    const int rank = inp.dims();
    Tensor* out = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &out));
    out->scalar<int32>()() = rank;
  }

  bool IsExpensive() override { return false; }
};
REGISTER_KERNEL_BUILDER(Name("Rank").Device(DEVICE_CPU).HostMemory("output"),
                        RankOp);

#define REGISTER_GPU_KERNEL(type)                        \
  REGISTER_KERNEL_BUILDER(Name("Rank")                   \
                              .Device(DEVICE_GPU)        \
                              .TypeConstraint<type>("T") \
                              .HostMemory("output"),     \
                          RankOp);
TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL);
#undef REGISTER_GPU_KERNEL

// A special GPU kernel for int32.
// TODO(b/25387198): Also enable int32 in device memory. This kernel
// registration requires all int32 inputs and outputs to be in host memory.
REGISTER_KERNEL_BUILDER(Name("Rank")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int32>("T")
                            .HostMemory("input")
                            .HostMemory("output"),
                        RankOp);

class SizeOp : public OpKernel {
 public:
  explicit SizeOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    const Tensor& inp = ctx->input(0);
    const int64 size = inp.NumElements();
    Tensor* out = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &out));
    // TODO(josh11b): switch output to int64?
    out->scalar<int32>()() = size;
  }

  bool IsExpensive() override { return false; }
};
REGISTER_KERNEL_BUILDER(Name("Size").Device(DEVICE_CPU).HostMemory("output"),
                        SizeOp);

#define REGISTER_GPU_KERNEL(type)                        \
  REGISTER_KERNEL_BUILDER(Name("Size")                   \
                              .Device(DEVICE_GPU)        \
                              .TypeConstraint<type>("T") \
                              .HostMemory("output"),     \
                          SizeOp);
TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL);
#undef REGISTER_GPU_KERNEL

// A special GPU kernel for int32.
// TODO(b/25387198): Also enable int32 in device memory. This kernel
// registration requires all int32 inputs and outputs to be in host memory.
REGISTER_KERNEL_BUILDER(Name("Size")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int32>("T")
                            .HostMemory("input")
                            .HostMemory("output"),
                        SizeOp);

class ExpandDimsOp : public OpKernel {
 public:
  explicit ExpandDimsOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

  void Compute(OpKernelContext* ctx) override {
    int dim = ctx->input(1).flat<int>()(0);
    OP_REQUIRES(
        ctx, (dim >= -1 - ctx->input(0).dims() && dim <= ctx->input(0).dims()),
        errors::InvalidArgument("Tried to expand dim index ", dim,
                                " for tensor with ", ctx->input(0).dims(),
                                " dimensions."));

    auto existing_dims = ctx->input(0).shape().dim_sizes();
    std::vector<int64> new_shape(existing_dims.size());
    for (size_t i = 0; i < new_shape.size(); ++i) {
      new_shape[i] = existing_dims[i];
    }

    // We emulate numpy's interpretation of the dim axis when
    // -input.dims() >= dim <= input.dims().
    if (dim < 0) {
      dim += existing_dims.size() + 1;
    }

    // Clamp to the end if needed.
    dim = std::min<int32>(dim, existing_dims.size());
    new_shape.emplace(new_shape.begin() + dim, 1);
    const TensorShape output_shape(new_shape);

    Tensor* output = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, {0}, &output));
    if (!output->CopyFrom(ctx->input(0), output_shape)) {
      // This should never happen, since the sizes of the input and output
      // should always be the same (we only expand the dimension with 1).
      ctx->SetStatus(
          errors::Internal("Could not expand dimension with input shape ",
                           ctx->input(0).shape().DebugString(),
                           " and output shape ", output_shape.DebugString()));
    }
  }
};
REGISTER_KERNEL_BUILDER(Name("ExpandDims").Device(DEVICE_CPU).HostMemory("dim"),
                        ExpandDimsOp);

#define REGISTER_GPU_KERNEL(type)                        \
  REGISTER_KERNEL_BUILDER(Name("ExpandDims")             \
                              .Device(DEVICE_GPU)        \
                              .TypeConstraint<type>("T") \
                              .HostMemory("dim"),        \
                          ExpandDimsOp);
TF_CALL_NUMBER_TYPES_NO_INT32(REGISTER_GPU_KERNEL);
#undef REGISTER_GPU_KERNEL

REGISTER_KERNEL_BUILDER(Name("ExpandDims")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int32>("T")
                            .HostMemory("input")
                            .HostMemory("dim")
                            .HostMemory("output"),
                        ExpandDimsOp);

class SqueezeOp : public OpKernel {
 public:
  explicit SqueezeOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
    std::vector<int32> squeeze_dims;
    OP_REQUIRES_OK(ctx, ctx->GetAttr("squeeze_dims", &squeeze_dims));
    squeeze_dims_.insert(squeeze_dims.begin(), squeeze_dims.end());
  }

  void Compute(OpKernelContext* ctx) override {
    auto existing_dims = ctx->input(0).shape().dim_sizes();
    std::vector<int64> new_shape;

    std::unordered_set<int32> wrapped_squeeze_dims;
    wrapped_squeeze_dims.reserve(squeeze_dims_.size());
    // Validate squeeze dims against the input.
    for (int32 dim : squeeze_dims_) {
      OP_REQUIRES(
          ctx, (dim >= -ctx->input(0).dims() && dim < ctx->input(0).dims()),
          errors::InvalidArgument("Tried to squeeze dim index ", dim,
                                  " for tensor with ", ctx->input(0).dims(),
                                  " dimensions."));
      // If dim is < 0, we wrap around (-1 means the last element).
      if (dim < 0) {
        dim = existing_dims.size() + dim;
      }

      wrapped_squeeze_dims.insert(dim);
    }

    for (size_t i = 0; i < existing_dims.size(); ++i) {
      auto existing_dim = existing_dims[i];

      // If squeeze_set is non-empty, only squeeze those dimensions.
      if (!wrapped_squeeze_dims.empty()) {
        if (wrapped_squeeze_dims.count(i) > 0) {
          OP_REQUIRES(ctx, existing_dim == 1,
                      errors::InvalidArgument("Tried to explicitly squeeze "
                                              "dimension ",
                                              i, " but dimension was not 1: ",
                                              existing_dim));
        } else {
          // This dimension is not being squeezed.
          new_shape.push_back(existing_dim);
        }
      } else {
        // Copy over all non-1-length dimensions.
        if (existing_dim != 1) {
          new_shape.push_back(existing_dim);
        }
      }
    }

    const TensorShape output_shape(new_shape);
    Tensor* output = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, {0}, &output));
    if (!output->CopyFrom(ctx->input(0), output_shape)) {
      // This should never happen, since the sizes of the input and
      // output should always be the same.
      ctx->SetStatus(errors::Internal("Could not squeeze input with shape ",
                                      ctx->input(0).shape().DebugString(),
                                      " and output shape ",
                                      output_shape.DebugString()));
    }
  }

 private:
  std::unordered_set<int32> squeeze_dims_;
};

REGISTER_KERNEL_BUILDER(Name("Squeeze").Device(DEVICE_CPU), SqueezeOp);

#define REGISTER_GPU_KERNEL(type)                                   \
  REGISTER_KERNEL_BUILDER(                                          \
      Name("Squeeze").Device(DEVICE_GPU).TypeConstraint<type>("T"), \
      SqueezeOp);
TF_CALL_NUMBER_TYPES(REGISTER_GPU_KERNEL);
#undef REGISTER_GPU_KERNEL

}  // namespace tensorflow