aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/segment_reduction_ops.cc
blob: 2b6a8c5a8801939005a9b43e8476b1097eed7a62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// See docs in ../ops/math_ops.cc.

#define EIGEN_USE_THREADS

#include "tensorflow/core/framework/numeric_op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/public/tensor.h"
#include "third_party/eigen3/Eigen/Core"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/public/status.h"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;

// This operator handles reducing segments along the first dimension.
// See core/ops/math_ops.cc for more details.
template <typename Device, class T, class Index, typename Reducer>
class SegmentReductionOp : public OpKernel {
 public:
  explicit SegmentReductionOp(OpKernelConstruction* context)
      : OpKernel(context) {}

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& segment_ids = context->input(1);

    OP_REQUIRES(context, TensorShapeUtils::IsVector(segment_ids.shape()),
                errors::InvalidArgument("segment_ids should be a vector."));
    const int64 num_indices = segment_ids.NumElements();
    OP_REQUIRES(context, num_indices == input.dim_size(0),
                errors::InvalidArgument(
                    "segment_ids should be the same size as dimension 0 of"
                    " input."));

    auto input_flat = input.flat_outer_dims<T>();
    const int64 num_col = input_flat.dimension(1);

    const auto segment_vec = segment_ids.vec<Index>();
    // Note that the current implementation assumes that segment_vec values are
    // sorted.
    const Index output_rows =
        num_indices > 0 ? segment_vec(num_indices - 1) + 1 : 0;

    TensorShape output_shape = input.shape();
    output_shape.set_dim(0, output_rows);

    // Note that we do not initialize the output buffer with a default value.
    // We require that segment ids be sorted and cover all values (otherwise we
    // return an error).
    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output));
    auto output_flat = output->flat_outer_dims<T>();

#if !defined(EIGEN_HAS_INDEX_LIST)
    Eigen::DSizes<Eigen::DenseIndex, 1> dims_to_reduce;
    dims_to_reduce[0] = 0;
#else
    Eigen::IndexList<Eigen::type2index<0>> dims_to_reduce;
#endif
    Index start = 0, end = 1;
    // TODO(agarwal): if this loop becomes a bottleneck, consider sharding it
    // across threads.
    Eigen::DSizes<Eigen::DenseIndex, 1> out_slice_shape(num_col);
    while (end <= num_indices) {
      if (end < num_indices) {
        if (segment_vec(start) == segment_vec(end)) {
          ++end;
          continue;
        }
        // We have a new segment here.  Verify that the segment ids grow by one
        // each time, so that we cover every possible output value.
        OP_REQUIRES(
            context, segment_vec(start) + 1 == segment_vec(end),
            errors::InvalidArgument("segment ids are not increasing by 1"));
      }

      // Process segment [start, end)
      const T* in_slice_ptr = &input_flat(start, 0);
      typedef Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor>,
                               Eigen::Unaligned> OutT;
      T* out_slice_ptr = &output_flat(segment_vec(start), 0);
      OutT out_slice(out_slice_ptr, out_slice_shape);
      // We don't use out_slice.device(context->egien_device<Device>)
      // because these pieces of work are likely to be very small and
      // the context switching overhead dwarfs any benefit we get from
      // using another thread to do this work.
      if (start == end - 1) {
        typedef Eigen::TensorMap<Eigen::Tensor<const T, 1, Eigen::RowMajor>,
                                 Eigen::Unaligned> InT;
        InT in_slice(in_slice_ptr, out_slice_shape);
        out_slice = in_slice;
      } else {
        Eigen::DSizes<Eigen::DenseIndex, 2> in_slice_shape(end - start,
                                                           num_col);
        typedef Eigen::TensorMap<Eigen::Tensor<const T, 2, Eigen::RowMajor>,
                                 Eigen::Unaligned> InT;
        InT in_slice(in_slice_ptr, in_slice_shape);

        out_slice = in_slice.reduce(dims_to_reduce, Reducer());
      }
      start = end;
      ++end;
    }
  }
};

#define REGISTER_CPU_KERNELS(type, index_type)                 \
  REGISTER_KERNEL_BUILDER(                                     \
      Name("SegmentSum")                                       \
          .Device(DEVICE_CPU)                                  \
          .TypeConstraint<type>("T")                           \
          .TypeConstraint<index_type>("Tindices"),             \
      SegmentReductionOp<CPUDevice, type, index_type,          \
                         Eigen::internal::SumReducer<type>>);  \
  REGISTER_KERNEL_BUILDER(                                     \
      Name("SegmentMean")                                      \
          .Device(DEVICE_CPU)                                  \
          .TypeConstraint<type>("T")                           \
          .TypeConstraint<index_type>("Tindices"),             \
      SegmentReductionOp<CPUDevice, type, index_type,          \
                         Eigen::internal::MeanReducer<type>>); \
  REGISTER_KERNEL_BUILDER(                                     \
      Name("SegmentProd")                                      \
          .Device(DEVICE_CPU)                                  \
          .TypeConstraint<type>("T")                           \
          .TypeConstraint<index_type>("Tindices"),             \
      SegmentReductionOp<CPUDevice, type, index_type,          \
                         Eigen::internal::ProdReducer<type>>); \
  REGISTER_KERNEL_BUILDER(                                     \
      Name("SegmentMin")                                       \
          .Device(DEVICE_CPU)                                  \
          .TypeConstraint<type>("T")                           \
          .TypeConstraint<index_type>("Tindices"),             \
      SegmentReductionOp<CPUDevice, type, index_type,          \
                         Eigen::internal::MinReducer<type>>);  \
  REGISTER_KERNEL_BUILDER(                                     \
      Name("SegmentMax")                                       \
          .Device(DEVICE_CPU)                                  \
          .TypeConstraint<type>("T")                           \
          .TypeConstraint<index_type>("Tindices"),             \
      SegmentReductionOp<CPUDevice, type, index_type,          \
                         Eigen::internal::MaxReducer<type>>);

#define REGISTER_CPU_KERNELS_ALL(type) \
  REGISTER_CPU_KERNELS(type, int32);   \
  REGISTER_CPU_KERNELS(type, int64);

TF_CALL_REAL_NUMBER_TYPES(REGISTER_CPU_KERNELS_ALL);
#undef REGISTER_CPU_KERNELS
#undef REGISTER_CPU_KERNELS_ALL

// Similar to SegmentReductionOp but can handle unsorted segment definitions and
// specifying size of output.
template <typename Device, class T, class Index>
class UnsortedSegmentSumOp : public OpKernel {
 public:
  explicit UnsortedSegmentSumOp(OpKernelConstruction* context)
      : OpKernel(context) {}

  void Compute(OpKernelContext* context) override {
    const Tensor& data = context->input(0);
    const Tensor& segment_ids = context->input(1);
    const Tensor& num_segments = context->input(2);

    OP_REQUIRES(
        context, TensorShapeUtils::IsLegacyScalar(num_segments.shape()),
        errors::InvalidArgument("num_segments should be a scalar, not shape ",
                                num_segments.shape().ShortDebugString()));

    OP_REQUIRES(context,
                TensorShapeUtils::StartsWith(data.shape(), segment_ids.shape()),
                errors::InvalidArgument(
                    "data.shape = ", data.shape().ShortDebugString(),
                    " does not start with segment_ids.shape = ",
                    segment_ids.shape().ShortDebugString()));

    const auto segment_flat = segment_ids.flat<Index>();
    const int32 N = segment_flat.dimension(0);
    const int32 output_rows = num_segments.scalar<int32>()();

    if (N > 0) {
      Eigen::Tensor<Index, 0, Eigen::RowMajor> m = segment_flat.maximum();
      OP_REQUIRES(
          context, m() < output_rows,
          errors::InvalidArgument("More segments found than output size"));
    }

    TensorShape output_shape;
    output_shape.AddDim(output_rows);
    for (int i = segment_ids.dims(); i < data.dims(); i++) {
      output_shape.AddDim(data.dim_size(i));
    }

    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output));
    auto output_flat = output->flat_outer_dims<T>();
    output_flat.setZero();

    if (data.NumElements() > 0) {
      auto data_flat = data.shaped<T, 2>({N, data.NumElements() / N});
      for (int i = 0; i < N; ++i) {
        output_flat.template chip<0>(segment_flat(i)) +=
            data_flat.template chip<0>(i);
      }
    }
  }
};

#define REGISTER_CPU_UNSORTED_KERNELS(type, index_type)                \
  REGISTER_KERNEL_BUILDER(Name("UnsortedSegmentSum")                   \
                              .Device(DEVICE_CPU)                      \
                              .TypeConstraint<type>("T")               \
                              .TypeConstraint<index_type>("Tindices"), \
                          UnsortedSegmentSumOp<CPUDevice, type, index_type>);

#define REGISTER_CPU_UNSORTED_KERNELS_ALL(type) \
  REGISTER_CPU_UNSORTED_KERNELS(type, int32);   \
  REGISTER_CPU_UNSORTED_KERNELS(type, int64);

TF_CALL_REAL_NUMBER_TYPES(REGISTER_CPU_UNSORTED_KERNELS_ALL);
#undef REGISTER_CPU_UNSORTED_KERNELS
#undef REGISTER_CPU_UNSORTED_KERNELS_ALL

// Same as SegmentReductionOp but takes as input a "sparse" tensor, represented
// by two dense tensors, one containing the data, and the other containing
// indices into the data.
template <typename Device, class T>
class SparseSegmentReductionOpBase : public OpKernel {
 public:
  explicit SparseSegmentReductionOpBase(OpKernelConstruction* context,
                                        bool is_mean)
      : OpKernel(context), is_mean_(is_mean) {}

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& indices = context->input(1);
    const Tensor& segment_ids = context->input(2);

    OP_REQUIRES(context, TensorShapeUtils::IsVector(indices.shape()),
                errors::InvalidArgument("indices should be a vector."));
    OP_REQUIRES(context, TensorShapeUtils::IsVector(segment_ids.shape()),
                errors::InvalidArgument("segment_ids should be a vector."));

    const int32 num_indices = indices.NumElements();
    OP_REQUIRES(context, num_indices == segment_ids.NumElements(),
                errors::InvalidArgument(
                    "segment_ids and indices should have same size."));

    auto input_flat = input.flat_outer_dims<T>();

    const auto indices_vec = indices.vec<int32>();
    const auto segment_vec = segment_ids.vec<int32>();
    // Note that the current implementation assumes that segment_vec values are
    // sorted.
    const int32 output_rows =
        num_indices > 0 ? segment_vec(num_indices - 1) + 1 : 0;

    TensorShape output_shape = input.shape();
    output_shape.set_dim(0, output_rows);

    // Note that we do not initialize the output buffer with a default value.
    // We require that segment ids be sorted and cover all values (otherwise we
    // return an error).
    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output));
    if (num_indices == 0) return;
    auto output_flat = output->flat_outer_dims<T>();

    int32 start = 0, end = 1;
    while (end <= num_indices) {
      if (end < num_indices) {
        if (segment_vec(start) == segment_vec(end)) {
          ++end;
          continue;
        }
        // We have a new segment here.  Verify that the segment ids grow by one
        // each time, so that we cover every possible output value.
        OP_REQUIRES(
            context, segment_vec(start) + 1 == segment_vec(end),
            errors::InvalidArgument("segment ids are not increasing by 1"));
      }

      auto out = output_flat.template chip<0>(segment_vec(start));
#define I(i) input_flat.template chip<0>(indices_vec(start + i))
      int num = end - start;
      if (num == 1) {
        out = I(0);
      } else {
        int r = num % 8;
        T m = (is_mean_ && (num < 10)) ? num : 1;
        switch (r) {
          case 2:
            out = (I(0) + I(1)) / m;
            break;
          case 3:
            out = (I(0) + I(1) + I(2)) / m;
            break;
          case 4:
            out = (I(0) + I(1) + I(2) + I(3)) / m;
            break;
          case 5:
            out = (I(0) + I(1) + I(2) + I(3) + I(4)) / m;
            break;
          case 6:
            out = (I(0) + I(1) + I(2) + I(3) + I(4) + I(5)) / m;
            break;
          case 7:
            out = (I(0) + I(1) + I(2) + I(3) + I(4) + I(5) + I(6)) / m;
            break;
          case 0:
            out = (I(0) + I(1) + I(2) + I(3) + I(4) + I(5) + I(6) + I(7)) / m;
            r = 8;
            break;
          case 1:
            out =
                (I(0) + I(1) + I(2) + I(3) + I(4) + I(5) + I(6) + I(7) + I(8)) /
                m;
            r = 9;
            break;
        }
        for (; r < num; r += 8) {
          out += I(r) + I(r + 1) + I(r + 2) + I(r + 3) + I(r + 4) + I(r + 5) +
                 I(r + 6) + I(r + 7);
        }
#undef I
        if (is_mean_ && num >= 10) {
          out = out / static_cast<T>(num);
        }
      }
      start = end;
      ++end;
    }
  }

 private:
  bool is_mean_;
};

template <typename Device, class T>
class SparseSegmentReductionMeanOp
    : public SparseSegmentReductionOpBase<Device, T> {
 public:
  explicit SparseSegmentReductionMeanOp(OpKernelConstruction* context)
      : SparseSegmentReductionOpBase<Device, T>(context, true /*is_mean*/) {}
};

template <typename Device, class T>
class SparseSegmentReductionSumOp
    : public SparseSegmentReductionOpBase<Device, T> {
 public:
  explicit SparseSegmentReductionSumOp(OpKernelConstruction* context)
      : SparseSegmentReductionOpBase<Device, T>(context, false /*is_mean*/) {}
};

#define REGISTER_CPU_SPARSE_KERNELS(type)                                    \
  REGISTER_KERNEL_BUILDER(                                                   \
      Name("SparseSegmentSum").Device(DEVICE_CPU).TypeConstraint<type>("T"), \
      SparseSegmentReductionSumOp<CPUDevice, type>);

TF_CALL_REAL_NUMBER_TYPES(REGISTER_CPU_SPARSE_KERNELS);
#undef REGISTER_CPU_SPARSE_KERNELS

#define REGISTER_CPU_SPARSE_KERNELS(type)                                     \
  REGISTER_KERNEL_BUILDER(                                                    \
      Name("SparseSegmentMean").Device(DEVICE_CPU).TypeConstraint<type>("T"), \
      SparseSegmentReductionMeanOp<CPUDevice, type>);
REGISTER_CPU_SPARSE_KERNELS(float);
REGISTER_CPU_SPARSE_KERNELS(double);
#undef REGISTER_CPU_SPARSE_KERNELS

template <class T>
class SparseSegmentMeanGradOp : public OpKernel {
 public:
  explicit SparseSegmentMeanGradOp(OpKernelConstruction* context)
      : OpKernel(context) {}

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& indices = context->input(1);
    const Tensor& segment_ids = context->input(2);
    const Tensor& output_dim0 = context->input(3);

    OP_REQUIRES(context, TensorShapeUtils::IsVector(indices.shape()),
                errors::InvalidArgument("indices should be a vector."));
    OP_REQUIRES(context, TensorShapeUtils::IsVector(segment_ids.shape()),
                errors::InvalidArgument("segment_ids should be a vector."));
    OP_REQUIRES(context, TensorShapeUtils::IsLegacyScalar(output_dim0.shape()),
                errors::InvalidArgument("output_dim0 should be a scalar."));

    const int64 N = indices.NumElements();
    OP_REQUIRES(context, N == segment_ids.NumElements(),
                errors::InvalidArgument(
                    "segment_ids and indices should have same size."));
    const int32 M = output_dim0.scalar<int32>()();

    auto input_flat = input.flat_outer_dims<T>();
    const auto indices_vec = indices.vec<int32>();
    const auto segment_vec = segment_ids.vec<int32>();

    TensorShape output_shape = input.shape();
    output_shape.set_dim(0, M);
    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output));
    if (M == 0 || N == 0) return;

    // Note that similar to SparseSegmentMean, we assume that segment_vec is
    // already sorted and has non-negative values.
    int num_segments = segment_vec(N - 1) + 1;
    OP_REQUIRES(context, input.dim_size(0) == num_segments,
                errors::InvalidArgument("Invalid number of segments"));

    // Compute scaling factors for input.
    std::vector<double> scaling(num_segments, 0.0);
    for (int64 i = 0; i < N; ++i) {
      scaling[segment_vec(i)] += 1;
    }
    for (int i = 0; i < scaling.size(); ++i) {
      scaling[i] = 1.0 / std::max(scaling[i], 1.0);
    }

    auto output_flat = output->flat_outer_dims<T>();
    output_flat.setZero();
    std::vector<bool> is_modified(M, false);

    for (int64 i = 0; i < N; ++i) {
      int output_idx = indices_vec(i);
      int idx = segment_vec(i);
      T scale = static_cast<T>(scaling[idx]);
      if (is_modified[output_idx]) {
        if (scale == 1.0) {
          output_flat.template chip<0>(output_idx) +=
              input_flat.template chip<0>(idx);
        } else {
          output_flat.template chip<0>(output_idx) +=
              input_flat.template chip<0>(idx) * scale;
        }
      } else {
        if (scale == 1.0) {
          output_flat.template chip<0>(output_idx) =
              input_flat.template chip<0>(idx);
        } else {
          output_flat.template chip<0>(output_idx) =
              input_flat.template chip<0>(idx) * scale;
        }
      }
      is_modified[output_idx] = true;
    }
  }
};

#define REGISTER_CPU_SPARSE_KERNELS(type)                 \
  REGISTER_KERNEL_BUILDER(Name("SparseSegmentMeanGrad")   \
                              .Device(DEVICE_CPU)         \
                              .TypeConstraint<type>("T"), \
                          SparseSegmentMeanGradOp<type>);

REGISTER_CPU_SPARSE_KERNELS(float);
REGISTER_CPU_SPARSE_KERNELS(double);

#undef REGISTER_CPU_SPARSE_KERNELS
}  // namespace tensorflow