aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/sdca_ops.cc
blob: 3bd4168dc78314ce583b876502777ea0f50a3632 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/sdca_ops.cc.

#define EIGEN_USE_THREADS

#include <stdint.h>
#include <atomic>
#include <limits>
#include <memory>
#include <new>
#include <string>
#include <vector>

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/device_base.h"
#include "tensorflow/core/framework/kernel_def_builder.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_def_builder.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/tensor_types.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/hinge-loss.h"
#include "tensorflow/core/kernels/logistic-loss.h"
#include "tensorflow/core/kernels/loss.h"
#include "tensorflow/core/kernels/poisson-loss.h"
#include "tensorflow/core/kernels/sdca_internal.h"
#include "tensorflow/core/kernels/smooth-hinge-loss.h"
#include "tensorflow/core/kernels/squared-loss.h"
#include "tensorflow/core/lib/core/coding.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/core/stringpiece.h"
#include "tensorflow/core/lib/gtl/inlined_vector.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/fingerprint.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/util/work_sharder.h"

namespace tensorflow {

namespace {

using sdca::Example;
using sdca::Examples;
using sdca::ExampleStatistics;
using sdca::ModelWeights;
using sdca::Regularizations;

struct ComputeOptions {
  explicit ComputeOptions(OpKernelConstruction* const context) {
    string loss_type;
    OP_REQUIRES_OK(context, context->GetAttr("loss_type", &loss_type));
    if (loss_type == "logistic_loss") {
      loss_updater.reset(new LogisticLossUpdater);
    } else if (loss_type == "squared_loss") {
      loss_updater.reset(new SquaredLossUpdater);
    } else if (loss_type == "hinge_loss") {
      loss_updater.reset(new HingeLossUpdater);
    } else if (loss_type == "smooth_hinge_loss") {
      loss_updater.reset(new SmoothHingeLossUpdater);
    } else if (loss_type == "poisson_loss") {
      loss_updater.reset(new PoissonLossUpdater);
    } else {
      OP_REQUIRES(
          context, false,
          errors::InvalidArgument("Unsupported loss type: ", loss_type));
    }
    OP_REQUIRES_OK(context, context->GetAttr("adaptative", &adaptive));
    OP_REQUIRES_OK(
        context, context->GetAttr("num_sparse_features", &num_sparse_features));
    OP_REQUIRES_OK(context, context->GetAttr("num_sparse_features_with_values",
                                             &num_sparse_features_with_values));
    OP_REQUIRES_OK(context,
                   context->GetAttr("num_dense_features", &num_dense_features));
    OP_REQUIRES(
        context, num_sparse_features + num_dense_features > 0,
        errors::InvalidArgument("Requires at least one feature to train."));

    OP_REQUIRES(context,
                static_cast<int64>(num_sparse_features) +
                        static_cast<int64>(num_dense_features) <=
                    std::numeric_limits<int>::max(),
                errors::InvalidArgument(
                    strings::Printf("Too many feature groups: %lld > %d",
                                    static_cast<int64>(num_sparse_features) +
                                        static_cast<int64>(num_dense_features),
                                    std::numeric_limits<int>::max())));
    OP_REQUIRES_OK(
        context, context->GetAttr("num_loss_partitions", &num_loss_partitions));
    OP_REQUIRES_OK(context, context->GetAttr("num_inner_iterations",
                                             &num_inner_iterations));
    OP_REQUIRES_OK(context, regularizations.Initialize(context));
  }

  std::unique_ptr<DualLossUpdater> loss_updater;
  int num_sparse_features = 0;
  int num_sparse_features_with_values = 0;
  int num_dense_features = 0;
  int num_inner_iterations = 0;
  int num_loss_partitions = 0;
  bool adaptive = true;
  Regularizations regularizations;
};

// TODO(shengx): The helper classes/methods are changed to support multiclass
// SDCA, which lead to changes within this function. Need to revisit the
// convergence once the multiclass SDCA is in.
void DoCompute(const ComputeOptions& options, OpKernelContext* const context) {
  ModelWeights model_weights;
  OP_REQUIRES_OK(context, model_weights.Initialize(context));

  Examples examples;
  OP_REQUIRES_OK(
      context,
      examples.Initialize(context, model_weights, options.num_sparse_features,
                          options.num_sparse_features_with_values,
                          options.num_dense_features));

  const Tensor* example_state_data_t;
  OP_REQUIRES_OK(context,
                 context->input("example_state_data", &example_state_data_t));
  TensorShape expected_example_state_shape({examples.num_examples(), 4});
  OP_REQUIRES(context,
              example_state_data_t->shape() == expected_example_state_shape,
              errors::InvalidArgument(
                  "Expected shape ", expected_example_state_shape.DebugString(),
                  " for example_state_data, got ",
                  example_state_data_t->shape().DebugString()));

  Tensor mutable_example_state_data_t(*example_state_data_t);
  auto example_state_data = mutable_example_state_data_t.matrix<float>();
  OP_REQUIRES_OK(context, context->set_output("out_example_state_data",
                                              mutable_example_state_data_t));

  if (options.adaptive) {
    OP_REQUIRES_OK(context,
                   examples.SampleAdaptiveProbabilities(
                       options.num_loss_partitions, options.regularizations,
                       model_weights, example_state_data, options.loss_updater,
                       /*num_weight_vectors =*/1));
  } else {
    examples.RandomShuffle();
  }
  struct {
    mutex mu;
    Status value GUARDED_BY(mu);
  } train_step_status;
  std::atomic<std::int64_t> atomic_index(-1);
  auto train_step = [&](const int64 begin, const int64 end) {
    // The static_cast here is safe since begin and end can be at most
    // num_examples which is an int.
    for (int id = static_cast<int>(begin); id < end; ++id) {
      const int64 example_index = examples.sampled_index(++atomic_index);
      const Example& example = examples.example(example_index);
      const float dual = example_state_data(example_index, 0);
      const float example_weight = example.example_weight();
      float example_label = example.example_label();
      const Status conversion_status =
          options.loss_updater->ConvertLabel(&example_label);
      if (!conversion_status.ok()) {
        mutex_lock l(train_step_status.mu);
        train_step_status.value = conversion_status;
        // Return from this worker thread - the calling thread is
        // responsible for checking context status and returning on error.
        return;
      }

      // Compute wx, example norm weighted by regularization, dual loss,
      // primal loss.
      // For binary SDCA, num_weight_vectors should be one.
      const ExampleStatistics example_statistics =
          example.ComputeWxAndWeightedExampleNorm(
              options.num_loss_partitions, model_weights,
              options.regularizations, 1 /* num_weight_vectors */);

      const double new_dual = options.loss_updater->ComputeUpdatedDual(
          options.num_loss_partitions, example_label, example_weight, dual,
          example_statistics.wx[0], example_statistics.normalized_squared_norm);

      // Compute new weights.
      const double normalized_bounded_dual_delta =
          (new_dual - dual) * example_weight /
          options.regularizations.symmetric_l2();
      model_weights.UpdateDeltaWeights(
          context->eigen_cpu_device(), example,
          std::vector<double>{normalized_bounded_dual_delta});

      // Update example data.
      example_state_data(example_index, 0) = new_dual;
      example_state_data(example_index, 1) =
          options.loss_updater->ComputePrimalLoss(
              example_statistics.prev_wx[0], example_label, example_weight);
      example_state_data(example_index, 2) =
          options.loss_updater->ComputeDualLoss(dual, example_label,
                                                example_weight);
      example_state_data(example_index, 3) = example_weight;
    }
  };
  // TODO(sibyl-Aix6ihai): Tune this properly based on sparsity of the data,
  // number of cpus, and cost per example.
  const int64 kCostPerUnit = examples.num_features();
  const DeviceBase::CpuWorkerThreads& worker_threads =
      *context->device()->tensorflow_cpu_worker_threads();

  Shard(worker_threads.num_threads, worker_threads.workers,
        examples.num_examples(), kCostPerUnit, train_step);
  mutex_lock l(train_step_status.mu);
  OP_REQUIRES_OK(context, train_step_status.value);
}

}  // namespace

class SdcaOptimizer : public OpKernel {
 public:
  explicit SdcaOptimizer(OpKernelConstruction* const context)
      : OpKernel(context), options_(context) {}

  void Compute(OpKernelContext* context) override {
    DoCompute(options_, context);
  }

 private:
  // TODO(sibyl-Aix6ihai): We could use the type-constraint on loss_type, and
  // template the entire class to avoid the virtual table lookup penalty in
  // the inner loop.
  ComputeOptions options_;
};
REGISTER_KERNEL_BUILDER(Name("SdcaOptimizer").Device(DEVICE_CPU),
                        SdcaOptimizer);

class SdcaShrinkL1 : public OpKernel {
 public:
  explicit SdcaShrinkL1(OpKernelConstruction* const context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, regularizations_.Initialize(context));
  }

  void Compute(OpKernelContext* context) override {
    OpMutableInputList weights_inputs;
    OP_REQUIRES_OK(context,
                   context->mutable_input_list("weights", &weights_inputs));

    auto do_work = [&](const int64 begin, const int64 end) {
      for (int i = begin; i < end; ++i) {
        auto prox_w = weights_inputs.at(i, /*lock_held=*/true).flat<float>();
        prox_w.device(context->eigen_cpu_device()) =
            regularizations_.EigenShrinkVector(prox_w);
      }
    };

    if (weights_inputs.size() > 0) {
      int64 num_weights = 0;
      for (int i = 0; i < weights_inputs.size(); ++i) {
        num_weights += weights_inputs.at(i, /*lock_held=*/true).NumElements();
      }
      // TODO(sibyl-Aix6ihai): Tune this value.
      const int64 kCostPerUnit = (num_weights * 50) / weights_inputs.size();
      const DeviceBase::CpuWorkerThreads& worker_threads =
          *context->device()->tensorflow_cpu_worker_threads();
      Shard(worker_threads.num_threads, worker_threads.workers,
            weights_inputs.size(), kCostPerUnit, do_work);
    }
  }

 private:
  Regularizations regularizations_;
};
REGISTER_KERNEL_BUILDER(Name("SdcaShrinkL1").Device(DEVICE_CPU), SdcaShrinkL1);

// Computes platform independent, compact and unique (with very high
// probability) representation of an example id. It shouldn't be put in
// persistent storage, as its implementation may change in the future.
//
// The current probability of at least one collision for 1B example_ids is
// approximately 10^-21 (ie 2^60 / 2^129).
class SdcaFprint : public OpKernel {
 public:
  explicit SdcaFprint(OpKernelConstruction* const context)
      : OpKernel(context) {}

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    OP_REQUIRES(context, TensorShapeUtils::IsVector(input.shape()),
                errors::InvalidArgument("Input must be a vector, got shape ",
                                        input.shape().DebugString()));
    Tensor* out;
    const int64 num_elements = input.NumElements();
    OP_REQUIRES_OK(context, context->allocate_output(
                                0, TensorShape({num_elements, 2}), &out));

    const auto in_values = input.flat<string>();
    auto out_values = out->matrix<int64>();

    for (int64 i = 0; i < num_elements; ++i) {
      const Fprint128 fprint = Fingerprint128(in_values(i));
      // Never return 0 or 1 as the first value of the hash to allow these to
      // safely be used as sentinel values (e.g. dense hash table empty key).
      out_values(i, 0) = TF_PREDICT_TRUE(fprint.low64 >= 2)
                             ? fprint.low64
                             : fprint.low64 + ~static_cast<uint64>(1);
      out_values(i, 1) = fprint.high64;
    }
  }
};
REGISTER_KERNEL_BUILDER(Name("SdcaFprint").Device(DEVICE_CPU), SdcaFprint);

}  // namespace tensorflow