aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/sample_distorted_bounding_box_op.cc
blob: 44a817a5c76d31aa8bde25a5f608b75b81116355 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// See docs in ../ops/image_ops.cc.
#include <math.h>
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/lib/random/simple_philox.h"
#include "tensorflow/core/util/guarded_philox_random.h"

using tensorflow::random::SimplePhilox;

namespace tensorflow {
namespace {

// A simple Rectangle class that supplies intersection.
class Rectangle {
 public:
  Rectangle() { Set(0, 0, 0, 0); }
  Rectangle(int xmin, int ymin, int xmax, int ymax) {
    Set(xmin, ymin, xmax, ymax);
  }

  void Set(int xmin, int ymin, int xmax, int ymax) {
    min_x_ = xmin;
    min_y_ = ymin;
    max_x_ = xmax;
    max_y_ = ymax;
  }

  bool IsEmpty() const { return min_x_ > max_x_ || min_y_ > max_y_; }
  float Area() const {
    return static_cast<float>((max_x_ - min_x_) * (max_y_ - min_y_));
  }

  Rectangle Intersect(const Rectangle& r) const {
    const int pmin_x = std::max(min_x_, r.min_x_);
    const int pmin_y = std::max(min_y_, r.min_y_);
    const int pmax_x = std::min(max_x_, r.max_x_);
    const int pmax_y = std::min(max_y_, r.max_y_);

    if (pmin_x > pmax_x || pmin_y > pmax_y) {
      return Rectangle();
    } else {
      return Rectangle(pmin_x, pmin_y, pmax_x, pmax_y);
    }
  }

  int min_x_;
  int min_y_;
  int max_x_;
  int max_y_;
};

// Determine if the supplied cropping box covers a sufficient fraction of the
// the supplied bounding boxes.
bool SatisfiesOverlapConstraints(const Rectangle& crop,
                                 float minimum_object_covered,
                                 const std::vector<Rectangle>& bounding_boxes) {
  // Reject any bounding box which contains no pixels.
  const float kMinArea = 1.0;
  if (crop.Area() < kMinArea) {
    return false;
  }

  // Loop through all objects and determine if the proposed cropping box covers
  // a sufficient fraction of one of the supplied bounding boxes.
  bool is_object_covered = false;
  for (const auto& bbox : bounding_boxes) {
    const float object_area = bbox.Area();
    if (object_area < kMinArea) {
      continue;
    }

    const float object_covered = crop.Intersect(bbox).Area() / object_area;

    if (object_covered >= minimum_object_covered) {
      is_object_covered = true;
      break;
    }
  }
  return is_object_covered;
}

// Generate a random crop within the rectangle
// (0, 0, original_width, original_height).
// The minimum area of the crop will be between
//   min_relative_crop_area * orig_width * orig_height
// and
//   max_relative_crop_area * orig_width * orig_height
// such that its width = round(aspect_ratio * height).
// The diameter of the generated rectangle will be uniformly distributed between
// its minimum and maximum size. The center of the rectangle will be distributed
// uniformly within the source rectangle. The function returns false if the
// rectangle could not be generated with the given constraints.
bool GenerateRandomCrop(int original_width, int original_height,
                        float min_relative_crop_area,
                        float max_relative_crop_area, float aspect_ratio,
                        SimplePhilox* random, Rectangle* crop_rect) {
  if (max_relative_crop_area <= 0.0 || aspect_ratio <= 0.0 ||
      original_width <= 0 || original_height <= 0 ||
      min_relative_crop_area > max_relative_crop_area) {
    return false;
  }

  const float min_area =
      min_relative_crop_area * original_width * original_height;
  const float max_area =
      max_relative_crop_area * original_width * original_height;

  int height = static_cast<int>(lrintf(sqrt(min_area / aspect_ratio)));
  int max_height = static_cast<int>(lrintf(sqrt(max_area / aspect_ratio)));

  if (lrintf(max_height * aspect_ratio) > original_width) {
    // We must find the smallest max_height satisfying
    // round(max_height * aspect_ratio) <= original_width:
    const float kEps = 0.0000001;
    max_height = static_cast<int>((original_width + 0.5 - kEps) / aspect_ratio);
  }

  if (max_height > original_height) {
    max_height = original_height;
  }

  if (height >= max_height) {
    height = max_height;
  }

  if (height < max_height) {
    // We need to generate a random number in the closed range
    // [0, max_height - height].
    height += random->Uniform(max_height - height + 1);
  }
  int width = static_cast<int>(lrintf(height * aspect_ratio));
  DCHECK_LE(width, original_width);

  // Let us not fail if rounding error causes the area to be
  // outside the constraints.
  // Try first with a slightly bigger rectangle first.
  float area = static_cast<float>(width * height);
  if (area < min_area) {
    height += 1;
    width = static_cast<int>(lrintf(height * aspect_ratio));
    area = width * height;
  }

  // Let us not fail if rounding error causes the area to be
  // outside the constraints.
  // Try first with a slightly smaller rectangle first.
  if (area > max_area) {
    height -= 1;
    width = static_cast<int>(lrintf(height * aspect_ratio));
    area = width * height;
  }

  // Now, we explored all options to rectify small rounding errors.
  // It seems the constraints can't be satisfied: return false.
  if (area < min_area || area > max_area || width > original_width ||
      height > original_height || width <= 0 || height <= 0) {
    return false;
  }

  int y = 0;
  if (height < original_height) {
    y = random->Uniform(original_height - height);
  }
  int x = 0;
  if (width < original_width) {
    x = random->Uniform(original_width - width);
  }

  crop_rect->min_x_ = x;
  crop_rect->min_y_ = y;
  crop_rect->max_x_ = x + width;
  crop_rect->max_y_ = y + height;
  return true;
}
}  // namespace

template <typename T>
class SampleDistortedBoundingBoxV2Op : public OpKernel {
 public:
  explicit SampleDistortedBoundingBoxV2Op(OpKernelConstruction* context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, generator_.Init(context));

    if (context->num_inputs() == 2) {
      OP_REQUIRES_OK(context, context->GetAttr("min_object_covered",
                                               &min_object_covered_));
      OP_REQUIRES(
          context, min_object_covered_ >= 0,
          errors::InvalidArgument("Min object covered must be non-negative: ",
                                  min_object_covered_));
    }

    OP_REQUIRES_OK(context, context->GetAttr("use_image_if_no_bounding_boxes",
                                             &use_image_if_no_bounding_boxes_));

    OP_REQUIRES_OK(
        context, context->GetAttr("aspect_ratio_range", &aspect_ratio_range_));
    OP_REQUIRES(context, aspect_ratio_range_.size() == 2,
                errors::InvalidArgument(
                    "Aspect ratio range field must specify 2 dimensions"));

    OP_REQUIRES(
        context, aspect_ratio_range_[0] > 0 && aspect_ratio_range_[1] > 0,
        errors::InvalidArgument("Aspect ratio range must be non-negative: [",
                                aspect_ratio_range_[0], ", ",
                                aspect_ratio_range_[1], "]"));

    OP_REQUIRES_OK(context, context->GetAttr("area_range", &area_range_));
    OP_REQUIRES(
        context, area_range_.size() == 2,
        errors::InvalidArgument("Area range field must specify 2 dimensions"));

    OP_REQUIRES(
        context, area_range_[0] > 0 && area_range_[1] > 0,
        errors::InvalidArgument("Area range must be non-negative: [",
                                area_range_[0], ", ", area_range_[1], "]"));

    OP_REQUIRES(context, area_range_[0] <= 1 && area_range_[1] <= 1,
                errors::InvalidArgument(
                    "Area range must be less then or equal to 1.0: [",
                    area_range_[0], ", ", area_range_[1], "]"));

    OP_REQUIRES_OK(context, context->GetAttr("max_attempts", &max_attempts_));
    OP_REQUIRES(context, max_attempts_ > 0,
                errors::InvalidArgument("Max attempts must be non-negative: ",
                                        max_attempts_));
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& image_size = context->input(0);

    OP_REQUIRES(context, image_size.dims() == 1,
                errors::InvalidArgument("image_size must be 1-dimensional",
                                        image_size.shape().DebugString()));
    OP_REQUIRES(context, image_size.dim_size(0) == 3,
                errors::InvalidArgument("image_size must contain 3 elements",
                                        image_size.shape().DebugString()));

    // Note image_size_data(2) is the depth and unused.
    const uint64 height_raw = internal::SubtleMustCopy(image_size.flat<T>()(0));
    const uint64 width_raw = internal::SubtleMustCopy(image_size.flat<T>()(1));
    OP_REQUIRES(context,
                FastBoundsCheck(height_raw, std::numeric_limits<int32>::max()),
                errors::InvalidArgument("image height cannot be >= int32 max"));
    OP_REQUIRES(context,
                FastBoundsCheck(width_raw, std::numeric_limits<int32>::max()),
                errors::InvalidArgument("image width cannot be >= int32 max"));
    const int32 height = static_cast<int32>(height_raw);
    const int32 width = static_cast<int32>(width_raw);

    // Ensure that the supplied bounding boxes are sane and convert them to
    // Rectangles.
    const Tensor& input_boxes = context->input(1);
    OP_REQUIRES(context, input_boxes.dims() == 3,
                errors::InvalidArgument("input boxes must be 3-dimensional "
                                        "[batch, num_boxes, coords]: ",
                                        input_boxes.shape().DebugString()));
    OP_REQUIRES(context, input_boxes.dim_size(input_boxes.dims() - 1) == 4,
                errors::InvalidArgument(
                    "bounding boxes must have shape [4] or [*, 4], got ",
                    input_boxes.shape().DebugString()));

    float min_object_covered_val = 0.0;
    if (context->num_inputs() == 3) {
      const Tensor& min_object_covered = context->input(2);

      OP_REQUIRES(
          context, TensorShapeUtils::IsScalar(min_object_covered.shape()),
          errors::InvalidArgument("min_object_covered must be 0-D, got shape ",
                                  min_object_covered.shape().DebugString()));

      min_object_covered_val = min_object_covered.scalar<float>()();

      OP_REQUIRES(
          context, min_object_covered_val >= 0,
          errors::InvalidArgument("Min object covered must be non-negative: ",
                                  min_object_covered_val));
    } else {
      min_object_covered_val = min_object_covered_;
    }

    std::vector<Rectangle> bounding_boxes;
    if (input_boxes.NumElements() > 0) {
      TTypes<float>::ConstMatrix boxes = input_boxes.flat_inner_dims<float>();
      for (int b = 0; b < boxes.dimension(0); ++b) {
        for (int i = 0; i < 4; ++i) {
          OP_REQUIRES(
              context, boxes(b, i) >= 0.0 && boxes(b, i) <= 1.0,
              errors::InvalidArgument("All bounding box coordinates must "
                                      "be in [0.0, 1.0]: ",
                                      boxes(b, i)));
        }

        const int32 x_min = static_cast<int32>(boxes(b, 1) * width);
        const int32 y_min = static_cast<int32>(boxes(b, 0) * height);
        const int32 x_max = static_cast<int32>(boxes(b, 3) * width);
        const int32 y_max = static_cast<int32>(boxes(b, 2) * height);

        bounding_boxes.push_back(Rectangle(x_min, y_min, x_max, y_max));
      }
    }

    // Insert the entire image if no bounding boxes are supplied.
    const Rectangle image_rect(0, 0, width, height);
    if (bounding_boxes.empty()) {
      OP_REQUIRES(context, use_image_if_no_bounding_boxes_,
                  errors::InvalidArgument(
                      "No bounding boxes provided as input. One must "
                      "enable use_image_if_no_bounding_boxes if you wish "
                      "to not provide any bounding boxes."));
      bounding_boxes.push_back(image_rect);
    }

    const float min_sample_area = area_range_[0];
    const float max_sample_area = area_range_[1];
    const float min_sample_aspect_ratio = aspect_ratio_range_[0];
    const float max_sample_aspect_ratio = aspect_ratio_range_[1];

    auto local_gen = generator_.ReserveSamples32(4 * max_attempts_);
    random::SimplePhilox random(&local_gen);

    Rectangle crop_rect;
    bool sample_generated = false;
    for (int i = 0; i < max_attempts_; ++i) {
      const float sample_aspect_ratio =
          random.RandFloat() *
              (max_sample_aspect_ratio - min_sample_aspect_ratio) +
          min_sample_aspect_ratio;

      if (GenerateRandomCrop(width, height, min_sample_area, max_sample_area,
                             sample_aspect_ratio, &random, &crop_rect)) {
        if (SatisfiesOverlapConstraints(crop_rect, min_object_covered_val,
                                        bounding_boxes)) {
          sample_generated = true;
          break;
        }
      }
    }

    if (!sample_generated) {
      crop_rect = image_rect;
    }

    // Determine the cropping parameters from the bounding box.
    const int target_width = crop_rect.max_x_ - crop_rect.min_x_;
    const int target_height = crop_rect.max_y_ - crop_rect.min_y_;

    const int offset_width = crop_rect.min_x_;
    const int offset_height = crop_rect.min_y_;

    // Ensure that the bounding box fits in the image dimensions.
    OP_REQUIRES(context, width >= target_width + offset_width,
                errors::FailedPrecondition(
                    "width must be > target_width + offset_width: ", width,
                    "vs ", target_width, " + ", offset_width));
    OP_REQUIRES(context, height >= target_height + offset_height,
                errors::FailedPrecondition(
                    "height must be >= target_height: height = ", height, "vs ",
                    target_height, " + ", offset_height));

    // Create two vectors, each 3 elements, to provide as arguments to Slice.
    // See Slice() operation for details.
    Tensor* begin = nullptr;
    OP_REQUIRES_OK(context,
                   context->allocate_output(0, TensorShape({3}), &begin));
    Tensor* size = nullptr;
    OP_REQUIRES_OK(context,
                   context->allocate_output(1, TensorShape({3}), &size));
    Tensor* bboxes = nullptr;
    OP_REQUIRES_OK(
        context, context->allocate_output(2, TensorShape({1, 1, 4}), &bboxes));

    typename TTypes<T, 1>::Tensor begin_data = begin->tensor<T, 1>();
    typename TTypes<T, 1>::Tensor size_data = size->tensor<T, 1>();
    typename TTypes<float, 3>::Tensor bboxes_data = bboxes->tensor<float, 3>();

    begin_data(0) = T(offset_height);
    size_data(0) = T(target_height);

    begin_data(1) = T(offset_width);
    size_data(1) = T(target_width);

    bboxes_data(0, 0, 0) =
        static_cast<float>(crop_rect.min_y_) / static_cast<float>(height);
    bboxes_data(0, 0, 1) =
        static_cast<float>(crop_rect.min_x_) / static_cast<float>(width);
    bboxes_data(0, 0, 2) =
        static_cast<float>(crop_rect.max_y_) / static_cast<float>(height);
    bboxes_data(0, 0, 3) =
        static_cast<float>(crop_rect.max_x_) / static_cast<float>(width);

    // Retain all of the channels.
    begin_data(2) = T(0);
    size_data(2) = T(-1);
  }

 private:
  GuardedPhiloxRandom generator_;
  int32 max_attempts_;
  std::vector<float> area_range_;
  std::vector<float> aspect_ratio_range_;
  float min_object_covered_;
  bool use_image_if_no_bounding_boxes_;
};

#define REGISTER_KERNELS(type)                                  \
  REGISTER_KERNEL_BUILDER(Name("SampleDistortedBoundingBox")    \
                              .Device(DEVICE_CPU)               \
                              .TypeConstraint<type>("T"),       \
                          SampleDistortedBoundingBoxV2Op<type>) \
  REGISTER_KERNEL_BUILDER(Name("SampleDistortedBoundingBoxV2")  \
                              .Device(DEVICE_CPU)               \
                              .TypeConstraint<type>("T"),       \
                          SampleDistortedBoundingBoxV2Op<type>)

TF_CALL_INTEGRAL_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS

}  // namespace tensorflow