aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/reverse_op.cc
blob: 24b3ba31b8aaa49d93fa7b8782a3bfd6a63331f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/array_ops.cc
#define EIGEN_USE_THREADS

#include "tensorflow/core/kernels/reverse_op.h"
#include <memory>
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/bounds_check.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/util/work_sharder.h"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;
typedef Eigen::GpuDevice GPUDevice;
#ifdef TENSORFLOW_USE_SYCL
typedef Eigen::SyclDevice SYCLDevice;
#endif // TENSORFLOW_USE_SYCL

namespace {

// Reverse rows (middle dimension) of a three dimensional tensor.
// NUM_CHANNELS can be <= 0 to compute it dynamically from <input>
// Otherwise, it must equal input.dim_size(2) and is used as a compile-time
// constant.
template <int NUM_CHANNELS>
void ReverseRows(OpKernelContext* context, const Tensor& input,
                 Tensor* result) {
  auto work = [&input, result](int64 start, int64 end) {
    const int64 inner_size =
        NUM_CHANNELS > 0 ? NUM_CHANNELS : input.dim_size(2);
    const int64 middle_size = input.dim_size(1);
    const int64 row_size = inner_size * middle_size;
    DCHECK_EQ(input.dim_size(2), inner_size);

    const int32* in_ptr = input.bit_casted_tensor<int32, 3>().data();
    int32* out_ptr = result->bit_casted_tensor<int32, 3>().data();

    in_ptr += start * row_size;
    out_ptr += start * row_size;

    for (int outer_dim = start; outer_dim < end; ++outer_dim) {
      out_ptr += row_size;
      int remaining = middle_size;
      while (remaining > 0) {
        out_ptr -= inner_size;
        memcpy(out_ptr, in_ptr, inner_size * sizeof(float));
        in_ptr += inner_size;
        --remaining;
      }

      out_ptr += row_size;
    }
  };

  // Shard across outer dimension.
  const int64 N = input.dim_size(0);
  const int64 cost_per_unit = input.NumElements() / N;
  auto worker_threads = context->device()->tensorflow_cpu_worker_threads();
  Shard(worker_threads->num_threads, worker_threads->workers, N, cost_per_unit,
        std::move(work));
}

}  // namespace

template <typename Device, typename T, int NDIMS>
void HandleReverseCase(OpKernelContext* context,
                       typename TTypes<bool, 1>::ConstTensor dims,
                       Tensor* result) {
  const Tensor& input = context->input(0);

  // Use optimized reverse if possible.
  if (NDIMS == 3 && std::is_same<Device, CPUDevice>::value &&
      std::is_same<T, float>::value && (!dims(0) && dims(1) && !dims(2))) {
    if (input.dim_size(2) == 3) {
      ReverseRows<3>(context, input, result);
    } else {
      ReverseRows<-1>(context, input, result);
    }
    return;
  }

  typename Eigen::array<bool, NDIMS> axes_di;
  for (int i = 0; i < NDIMS; i++) {
    axes_di[i] = dims(i);
  }
  functor::Reverse<Device, T, NDIMS>()(context->eigen_device<Device>(),
                                       input.tensor<T, NDIMS>(), axes_di,
                                       result->tensor<T, NDIMS>());
}

template <typename Device, typename T>
class ReverseOp : public OpKernel {
 public:
  explicit ReverseOp(OpKernelConstruction* context) : OpKernel(context) {}

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& dims = context->input(1);

    if (TensorShapeUtils::IsScalar(input.shape())) {
      context->set_output(0, input);
    } else {
      const int input_dims = input.dims();
      OP_REQUIRES(context, TensorShapeUtils::IsVector(dims.shape()),
                  errors::InvalidArgument("'dims' must be 1-dimension, not ",
                                          dims.dims()));

      OP_REQUIRES(
          context, input_dims == dims.dim_size(0),
          errors::InvalidArgument(
              "'dims' must have the same number of values as 'input' has "
              "dimensions. 'input' has ",
              input_dims, "'dims' has ", dims.dim_size(0), " values"));
      OP_REQUIRES(context, input_dims <= 8,
                  errors::Unimplemented(
                      "reverse is not implemented for tensors of rank > 8."));

      Tensor* output = nullptr;
      OP_REQUIRES_OK(context,
                     context->allocate_output(0, input.shape(), &output));

#define HANDLE_REVERSE(NDIMS)                                               \
  case NDIMS:                                                               \
    HandleReverseCase<Device, T, NDIMS>(context, dims.vec<bool>(), output); \
    return;

      switch (input_dims) {
        HANDLE_REVERSE(0);
        HANDLE_REVERSE(1);
        HANDLE_REVERSE(2);
        HANDLE_REVERSE(3);
        HANDLE_REVERSE(4);
        HANDLE_REVERSE(5);
        HANDLE_REVERSE(6);
        HANDLE_REVERSE(7);
        HANDLE_REVERSE(8);
      }
#undef HANDLE_REVERSE
    }
  }
};

template <typename Device, typename T, int NDIMS>
void HandleReverseV2Case(OpKernelContext* context,
                         const gtl::ArraySlice<bool>& axes, Tensor* result) {
  const Tensor& input = context->input(0);

  // Use optimized reverse if possible.
  if (NDIMS == 3 && std::is_same<Device, CPUDevice>::value &&
      std::is_same<T, float>::value && (!axes[0] && axes[1] && !axes[2])) {
    if (input.dim_size(2) == 3) {
      ReverseRows<3>(context, input, result);
    } else {
      ReverseRows<-1>(context, input, result);
    }
    return;
  }

  typename Eigen::array<bool, NDIMS> axes_di;
  for (int i = 0; i < NDIMS; i++) {
    axes_di[i] = axes[i];
  }
  functor::Reverse<Device, T, NDIMS>()(context->eigen_device<Device>(),
                                       input.tensor<T, NDIMS>(), axes_di,
                                       result->tensor<T, NDIMS>());
}

template <typename Device, typename T>
class ReverseV2Op : public OpKernel {
 public:
  explicit ReverseV2Op(OpKernelConstruction* context) : OpKernel(context) {}

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    const Tensor& sparse_dims = context->input(1);

    if (TensorShapeUtils::IsScalar(input.shape())) {
      context->set_output(0, input);
    } else {
      const int input_dims = input.dims();
      const TensorShape& sparse_dims_shape = sparse_dims.shape();
      const auto& axes_sparse_flat = sparse_dims.flat<int32>();

      OP_REQUIRES(context, TensorShapeUtils::IsVector(sparse_dims_shape),
                  errors::InvalidArgument("'dims' must be 1-dimension, not ",
                                          sparse_dims.dims()));
      gtl::InlinedVector<bool, 8> axes_dense(input_dims, false);
      for (int dummy = 0; dummy < axes_sparse_flat.size(); dummy++) {
        int32 axis = internal::SubtleMustCopy<int32>(axes_sparse_flat(dummy));
        int32 canonical_axis = axis < 0 ? input_dims + axis : axis;
        OP_REQUIRES(context, canonical_axis >= 0 && canonical_axis < input_dims,
                    errors::InvalidArgument("'axis'[", dummy, "] = ", axis,
                                            " is out of valid range [", 0, ", ",
                                            input_dims - 1));
        OP_REQUIRES(context, !axes_dense[canonical_axis],
                    errors::InvalidArgument("axis ", canonical_axis,
                                            " specified more than once."));
        axes_dense[canonical_axis] = true;
      }

      OP_REQUIRES(context, input_dims <= 8,
                  errors::Unimplemented(
                      "reverse is not implemented for tensors of rank > 8."));

      Tensor* output = nullptr;
      OP_REQUIRES_OK(context,
                     context->allocate_output(0, input.shape(), &output));

// TODO(cwhipkey): we can do dimension folding to reduce, e.g., a reverse of
// a single dimension to the dims=3 or dims=2 case, regardless of the number
// of dimensions in the tensor. This would let some ops use faster
// lower-dimension code (and use optimized versions).

#define HANDLE_REVERSE(NDIMS)                                           \
  case NDIMS:                                                           \
    HandleReverseV2Case<Device, T, NDIMS>(context, axes_dense, output); \
    return;

      switch (input_dims) {
        HANDLE_REVERSE(0);
        HANDLE_REVERSE(1);
        HANDLE_REVERSE(2);
        HANDLE_REVERSE(3);
        HANDLE_REVERSE(4);
        HANDLE_REVERSE(5);
        HANDLE_REVERSE(6);
        HANDLE_REVERSE(7);
        HANDLE_REVERSE(8);
      }
#undef HANDLE_REVERSE
    }
  }
};

#define REGISTER_KERNELS(T)                                  \
  REGISTER_KERNEL_BUILDER(Name("Reverse")                    \
                              .Device(DEVICE_CPU)            \
                              .TypeConstraint<T>("T")        \
                              .HostMemory("dims"),           \
                          ReverseOp<CPUDevice, T>)           \
  REGISTER_KERNEL_BUILDER(Name("ReverseV2")                  \
                              .Device(DEVICE_CPU)            \
                              .TypeConstraint<T>("T")        \
                              .TypeConstraint<int32>("Tidx") \
                              .HostMemory("axis"),           \
                          ReverseV2Op<CPUDevice, T>)
TF_CALL_POD_TYPES(REGISTER_KERNELS);
#undef REGISTER_KERNELS

#if GOOGLE_CUDA

// Forward declarations of the function specializations for GPU (to prevent
// building the GPU versions here, they will be built compiling _gpu.cu.cc).
namespace functor {
#define DECLARE_GPU_SPEC_DIM(T, DIM)                                  \
  template <>                                                         \
  void Reverse<GPUDevice, T, DIM>::operator()(                        \
      const GPUDevice& d, typename TTypes<T, DIM>::ConstTensor input, \
      const Eigen::array<bool, DIM>& reverse_dims,                    \
      typename TTypes<T, DIM>::Tensor output);                        \
  extern template struct Reverse<GPUDevice, T, DIM>;
#define DECLARE_GPU_SPEC(T)  \
  DECLARE_GPU_SPEC_DIM(T, 0) \
  DECLARE_GPU_SPEC_DIM(T, 1) \
  DECLARE_GPU_SPEC_DIM(T, 2) \
  DECLARE_GPU_SPEC_DIM(T, 3) \
  DECLARE_GPU_SPEC_DIM(T, 4) \
  DECLARE_GPU_SPEC_DIM(T, 5) \
  DECLARE_GPU_SPEC_DIM(T, 6) \
  DECLARE_GPU_SPEC_DIM(T, 7) \
  DECLARE_GPU_SPEC_DIM(T, 8)

TF_CALL_uint8(DECLARE_GPU_SPEC);
TF_CALL_int8(DECLARE_GPU_SPEC);
TF_CALL_bool(DECLARE_GPU_SPEC);
TF_CALL_half(DECLARE_GPU_SPEC);
TF_CALL_float(DECLARE_GPU_SPEC);
TF_CALL_double(DECLARE_GPU_SPEC);
TF_CALL_complex64(DECLARE_GPU_SPEC);
TF_CALL_complex128(DECLARE_GPU_SPEC);
#undef DECLARE_GPU_SPEC
#undef DECLARE_GPU_SPEC_DIM
}  // namespace functor

// Registration of the GPU implementations.
#define REGISTER_GPU_KERNELS(T)                              \
  REGISTER_KERNEL_BUILDER(Name("Reverse")                    \
                              .Device(DEVICE_GPU)            \
                              .TypeConstraint<T>("T")        \
                              .HostMemory("dims"),           \
                          ReverseOp<GPUDevice, T>)           \
  REGISTER_KERNEL_BUILDER(Name("ReverseV2")                  \
                              .Device(DEVICE_GPU)            \
                              .TypeConstraint<T>("T")        \
                              .TypeConstraint<int32>("Tidx") \
                              .HostMemory("axis"),           \
                          ReverseV2Op<GPUDevice, T>)
TF_CALL_uint8(REGISTER_GPU_KERNELS);
TF_CALL_int8(REGISTER_GPU_KERNELS);
// TODO decide whether we want to enable the bool kernel.
// TF_CALL_bool(REGISTER_GPU_KERNELS);
TF_CALL_half(REGISTER_GPU_KERNELS);
TF_CALL_float(REGISTER_GPU_KERNELS);
TF_CALL_double(REGISTER_GPU_KERNELS);
TF_CALL_complex64(REGISTER_GPU_KERNELS);
TF_CALL_complex128(REGISTER_GPU_KERNELS);
#undef REGISTER_GPU_KERNEL

// A special GPU kernel for int32.
// TODO(b/25387198): Also enable int32 in device memory. This kernel
// registration requires all int32 inputs and outputs to be in host memory.
REGISTER_KERNEL_BUILDER(Name("Reverse")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int32>("T")
                            .HostMemory("tensor")
                            .HostMemory("dims")
                            .HostMemory("output"),
                        ReverseOp<CPUDevice, int32>);
REGISTER_KERNEL_BUILDER(Name("ReverseV2")
                            .Device(DEVICE_GPU)
                            .TypeConstraint<int32>("T")
                            .TypeConstraint<int32>("Tidx")
                            .HostMemory("tensor")
                            .HostMemory("axis")
                            .HostMemory("output"),
                        ReverseV2Op<CPUDevice, int32>);
#endif  // GOOGLE_CUDA

#ifdef TENSORFLOW_USE_SYCL
#define REGISTER_SYCL_KERNELS(T)                             \
  REGISTER_KERNEL_BUILDER(Name("Reverse")                    \
                              .Device(DEVICE_SYCL)           \
                              .TypeConstraint<T>("T")        \
                              .HostMemory("dims"),           \
                          ReverseOp<SYCLDevice, T>)          \
  REGISTER_KERNEL_BUILDER(Name("ReverseV2")                  \
                              .Device(DEVICE_SYCL)           \
                              .TypeConstraint<T>("T")        \
                              .TypeConstraint<int32>("Tidx") \
                              .HostMemory("axis"),           \
                          ReverseV2Op<SYCLDevice, T>)
TF_CALL_float(REGISTER_SYCL_KERNELS);

REGISTER_KERNEL_BUILDER(Name("Reverse")
                            .Device(DEVICE_SYCL)
                            .TypeConstraint<int32>("T")
                            .HostMemory("tensor")
                            .HostMemory("dims")
                            .HostMemory("output"),
                        ReverseOp<CPUDevice, int32>);
REGISTER_KERNEL_BUILDER(Name("ReverseV2")
                            .Device(DEVICE_SYCL)
                            .TypeConstraint<int32>("T")
                            .TypeConstraint<int32>("Tidx")
                            .HostMemory("tensor")
                            .HostMemory("axis")
                            .HostMemory("output"),
                        ReverseV2Op<CPUDevice, int32>);
#endif // TENSORFLOW_USE_SYCL

}  // namespace tensorflow