aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/resize_nearest_neighbor_op.cc
blob: f1627135c585509e678ec32b117271c2c53990c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/image_ops.cc
#define EIGEN_USE_THREADS

#include <memory>
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/image_resizer_state.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/platform/logging.h"

#if GOOGLE_CUDA
#include "tensorflow/core/kernels/resize_nearest_neighbor_op_gpu.h"
#endif  // GOOGLE_CUDA

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;

template <typename Device, typename T>
class ResizeNearestNeighborOp : public OpKernel {
 public:
  explicit ResizeNearestNeighborOp(OpKernelConstruction* context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("align_corners", &align_corners_));
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    ImageResizerState st(align_corners_);
    st.ValidateAndCreateOutput(context, input);

    if (!context->status().ok()) return;

    OP_REQUIRES(context, st.in_height < (1 << 24) && st.in_width < (1 << 24),
                errors::InvalidArgument("nearest neighbor requires max height "
                                        "& width of 2^24"));

    typename TTypes<T, 4>::ConstTensor input_data = input.tensor<T, 4>();
    typename TTypes<T, 4>::Tensor output_data = st.output->tensor<T, 4>();

    for (int b = 0; b < st.batch_size; ++b) {
      for (int y = 0; y < st.out_height; ++y) {
        const int64 in_y =
            std::min(static_cast<int64>(floorf(y * st.height_scale)),
                     (st.in_height - 1));
        for (int x = 0; x < st.out_width; ++x) {
          const int64 in_x =
              std::min(static_cast<int64>(floorf(x * st.width_scale)),
                       (st.in_width - 1));
          std::copy_n(&input_data(b, in_y, in_x, 0), st.channels, &output_data(b, y, x, 0));
        }
      }
    }
  }

 private:
  bool align_corners_;
};

template <typename Device, typename T>
class ResizeNearestNeighborOpGrad : public OpKernel {
 public:
  explicit ResizeNearestNeighborOpGrad(OpKernelConstruction* context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("align_corners", &align_corners_));
  }

  void Compute(OpKernelContext* context) override {
    // Grab and validate the input:
    const Tensor& input = context->input(0);
    OP_REQUIRES(context, input.dims() == 4,
                errors::InvalidArgument("input must be 4-dimensional",
                                        input.shape().DebugString()));

    // Grab and validate the output shape:
    const Tensor& shape_t = context->input(1);
    OP_REQUIRES(context, shape_t.dims() == 1,
                errors::InvalidArgument("shape_t must be 1-dimensional",
                                        shape_t.shape().DebugString()));
    OP_REQUIRES(context, shape_t.NumElements() == 2,
                errors::InvalidArgument("shape_t must have two elements",
                                        shape_t.shape().DebugString()));

    auto sizes = shape_t.vec<int32>();
    OP_REQUIRES(context, sizes(0) > 0 && sizes(1) > 0,
                errors::InvalidArgument("shape_t's elements must be positive"));

    // Initialize shape to the batch size of the input, then add
    // the rest of the dimensions
    Tensor* output = nullptr;
    OP_REQUIRES_OK(
        context, context->allocate_output(0, TensorShape({input.dim_size(0), sizes(0),
                                                          sizes(1), input.dim_size(3)}),
                                          &output));

    const int64 batch_size = input.dim_size(0);
    const int64 in_height = input.dim_size(1);
    const int64 in_width = input.dim_size(2);
    const int64 channels = input.dim_size(3);

    const int64 out_height = output->dim_size(1);
    const int64 out_width = output->dim_size(2);

    typename TTypes<T, 4>::ConstTensor input_data = input.tensor<T, 4>();
    typename TTypes<T, 4>::Tensor output_data = output->tensor<T, 4>();

    const float height_scale =
        CalculateResizeScale(out_height, in_height, align_corners_);
    const float width_scale =
        CalculateResizeScale(out_width, in_width, align_corners_);
    output_data.setZero();

    for (int c = 0; c < channels; ++c) {
      for (int y = 0; y < in_height; ++y) {
        const int64 out_y = std::min(
            static_cast<int64>(floorf(y * height_scale)), (out_height - 1));

        for (int x = 0; x < in_width; ++x) {
          const int64 out_x = std::min(
              static_cast<int64>(floorf(x * width_scale)), (out_width - 1));

          for (int b = 0; b < batch_size; ++b) {
            output_data(b, out_y, out_x, c) += input_data(b, y, x, c);
          }
        }
      }
    }
  }

 private:
  bool align_corners_;
};

#define REGISTER_KERNEL(T)                                        \
  REGISTER_KERNEL_BUILDER(Name("ResizeNearestNeighbor")           \
                              .Device(DEVICE_CPU)                 \
                              .TypeConstraint<T>("T")             \
                              .HostMemory("size"),                \
                          ResizeNearestNeighborOp<CPUDevice, T>); \
  REGISTER_KERNEL_BUILDER(Name("ResizeNearestNeighborGrad")       \
                              .Device(DEVICE_CPU)                 \
                              .TypeConstraint<T>("T")             \
                              .HostMemory("size"),                \
                          ResizeNearestNeighborOpGrad<CPUDevice, T>);

TF_CALL_REAL_NUMBER_TYPES(REGISTER_KERNEL);

#undef REGISTER_KERNEL

#if GOOGLE_CUDA

template <typename T>
class ResizeNearestNeighborGPUOp : public OpKernel {
 public:
  explicit ResizeNearestNeighborGPUOp(OpKernelConstruction* context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("align_corners", &align_corners_));
  }

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    ImageResizerState st(align_corners_);
    st.ValidateAndCreateOutput(context, input);
    if (!context->status().ok()) return;

    bool status = ResizeNearestNeighbor<T>(
        input.flat<T>().data(), st.batch_size, st.in_height, st.in_width,
        st.channels, st.out_height, st.out_width, st.height_scale,
        st.width_scale, st.output->flat<T>().data(),
        context->eigen_gpu_device());

    if (!status) {
      context->SetStatus(
          errors::Internal("Failed launching ResizeNearestNeighbor"));
    }
  }
 private:
  bool align_corners_;
};

#define REGISTER_KERNEL(T)                                        \
  REGISTER_KERNEL_BUILDER(Name("ResizeNearestNeighbor")           \
                              .Device(DEVICE_GPU)                 \
                              .TypeConstraint<T>("T")             \
                              .HostMemory("size"),                \
                          ResizeNearestNeighborGPUOp<T>);

TF_CALL_GPU_NUMBER_TYPES(REGISTER_KERNEL);

#undef REGISTER_KERNEL

template <typename T>
class ResizeNearestNeighborGPUOpGrad : public OpKernel {
 public:
  explicit ResizeNearestNeighborGPUOpGrad(OpKernelConstruction* context)
      : OpKernel(context) {
    OP_REQUIRES_OK(context, context->GetAttr("align_corners", &align_corners_));
  }

  void Compute(OpKernelContext* context) override {
    // Grab and validate the input:
    const Tensor& input = context->input(0);
    OP_REQUIRES(context, input.dims() == 4,
                errors::InvalidArgument("input must be 4-dimensional",
                                        input.shape().DebugString()));

    // Grab and validate the output shape:
    const Tensor& shape_t = context->input(1);
    OP_REQUIRES(context, shape_t.dims() == 1,
                errors::InvalidArgument("shape_t must be 1-dimensional",
                                        shape_t.shape().DebugString()));
    OP_REQUIRES(context, shape_t.NumElements() == 2,
                errors::InvalidArgument("shape_t must have two elements",
                                        shape_t.shape().DebugString()));

    auto sizes = shape_t.vec<int32>();
    OP_REQUIRES(context, sizes(0) > 0 && sizes(1) > 0,
                errors::InvalidArgument("shape_t's elements must be positive"));

    // Initialize shape to the batch size of the input, then add
    // the rest of the dimensions
    Tensor* output = nullptr;
    OP_REQUIRES_OK(
        context, context->allocate_output(0, TensorShape({input.dim_size(0), sizes(0),
                                                          sizes(1), input.dim_size(3)}),
                                          &output));

    const int64 batch_size = input.dim_size(0);
    const int64 in_height = input.dim_size(1);
    const int64 in_width = input.dim_size(2);
    const int64 channels = input.dim_size(3);

    const int64 out_height = output->dim_size(1);
    const int64 out_width = output->dim_size(2);

    const float height_scale =
        CalculateResizeScale(out_height, in_height, align_corners_);
    const float width_scale =
        CalculateResizeScale(out_width, in_width, align_corners_);

    bool status = ResizeNearestNeighborBackward(
        input.flat<T>().data(), batch_size, in_height,
        in_width, channels, out_height, out_width,
        height_scale, width_scale, output->flat<T>().data(),
        context->eigen_gpu_device());

    if (!status) {
      context->SetStatus(
          errors::Internal("Failed launching ResizeNearestNeighborGrad"));
    }
  }
  bool align_corners_;
};

#define REGISTER_KERNEL(T)                                           \
  REGISTER_KERNEL_BUILDER(Name("ResizeNearestNeighborGrad")          \
                            .Device(DEVICE_GPU)                      \
                            .TypeConstraint<T>("T")                  \
                            .HostMemory("size"),                     \
                          ResizeNearestNeighborGPUOpGrad<T>);

TF_CALL_GPU_NUMBER_TYPES_NO_HALF(REGISTER_KERNEL);

#undef REGISTER_KERNEL

#endif  // GOOGLE_CUDA

}  // namespace tensorflow