aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/resize_area_op.cc
blob: 2b22d38ad6ccd183d3f2c271e03a5abfe2405885 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// See docs in ../ops/image_ops.cc
#define EIGEN_USE_THREADS

#include <algorithm>
#include <memory>
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/public/status.h"
#include "tensorflow/core/public/tensor.h"
#include "tensorflow/core/public/tensor_shape.h"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;

template <typename Device, typename T>
class ResizeAreaOp : public OpKernel {
 public:
  explicit ResizeAreaOp(OpKernelConstruction* context) : OpKernel(context) {}

  void Compute(OpKernelContext* context) override {
    const Tensor& input = context->input(0);
    OP_REQUIRES(context, input.dims() == 4,
                errors::InvalidArgument("input must be 4-dimensional",
                                        input.shape().ShortDebugString()));
    const Tensor& shape_t = context->input(1);
    OP_REQUIRES(context, shape_t.dims() == 1,
                errors::InvalidArgument("shape_t must be 1-dimensional",
                                        shape_t.shape().ShortDebugString()));
    OP_REQUIRES(context, shape_t.NumElements() == 2,
                errors::InvalidArgument("shape_t must have two elements",
                                        shape_t.shape().ShortDebugString()));

    auto Svec = shape_t.vec<int32>();
    Tensor* output = nullptr;
    OP_REQUIRES_OK(context, context->allocate_output(
                                0, TensorShape({input.dim_size(0), Svec(0),
                                                Svec(1), input.dim_size(3)}),
                                &output));
    const int64 batch_size = input.dim_size(0);
    const int64 in_height = input.dim_size(1);
    const int64 in_width = input.dim_size(2);
    const int64 channels = input.dim_size(3);
    const int64 out_height = output->dim_size(1);
    const int64 out_width = output->dim_size(2);

    typename TTypes<T, 4>::ConstTensor input_data = input.tensor<T, 4>();
    typename TTypes<float, 4>::Tensor output_data = output->tensor<float, 4>();

    // A temporary tensor for computing the sum.
    Tensor sum_tensor;
    OP_REQUIRES_OK(
        context, context->allocate_temp(DataTypeToEnum<float>::value,
                                        TensorShape({channels}), &sum_tensor));
    typename TTypes<float, 1>::Tensor sum_data = sum_tensor.vec<float>();

    const float height_scale = in_height / static_cast<float>(out_height);
    const float width_scale = in_width / static_cast<float>(out_width);

    // When using this algorithm for downsizing, the target pixel value is the
    // weighted average of all the source pixels. The weight is determined by
    // the contribution percentage of the source pixel.
    //
    // Let "scale" be "target_image_size/source_image_size". If 1/n of the
    // source pixel contributes to the target pixel, then the weight is (1/n *
    // scale); if the complete source pixel contributes to the target pixel,
    // then the weight is scale.
    //
    // To visualize the implementation, use one dimension as an example:
    // Resize in[4] to out[3].
    //   scale = 3/4 = 0.75
    //   out[0]: in[0] and 1/3 of in[1]
    //   out[1]: 2/3 of in[1] and 2/3 of in[2]
    //   out[2]: 1/3 of in[2] and in[1]
    // Hence, the output pixel values are:
    //   out[0] = (in[0] * 1.0 + in[1] * 1/3) * scale
    //   out[1] = (in[1] * 2/3 + in[2] * 2/3 * scale
    //   out[2] = (in[3] * 1/3 + in[3] * 1.0) * scale
    float scale = 1.0 / (height_scale * width_scale);
    for (int64 b = 0; b < batch_size; ++b) {
      for (int64 y = 0; y < out_height; ++y) {
        const float in_y = y * height_scale;
        const float in_y1 = (y + 1) * height_scale;
        // The start and end height indices of all the cells that could
        // contribute to the target cell.
        int64 y_start = floor(in_y);
        int64 y_end = ceil(in_y1);

        for (int64 x = 0; x < out_width; ++x) {
          const float in_x = x * width_scale;
          const float in_x1 = (x + 1) * width_scale;
          // The start and end width indices of all the cells that could
          // contribute to the target cell.
          int64 x_start = floor(in_x);
          int64 x_end = ceil(in_x1);

          sum_data.setConstant(0.0);
          for (int64 i = y_start; i < y_end; ++i) {
            float scale_y =
                i < in_y ? i + 1 - in_y : (i + 1 > in_y1 ? in_y1 - i : 1.0);
            for (int64 j = x_start; j < x_end; ++j) {
              float scale_x =
                  j < in_x ? j + 1 - in_x : (j + 1 > in_x1 ? in_x1 - j : 1.0);
              for (int64 c = 0; c < channels; ++c) {
#define BOUND(val, limit) std::min(((limit)-1ll), (std::max(0ll, (val))))
                sum_data(c) +=
                    input_data(b, BOUND(i, in_height), BOUND(j, in_width), c) *
                    scale_y * scale_x * scale;
#undef BOUND
              }
            }
          }
          for (int64 c = 0; c < channels; ++c) {
            output_data(b, y, x, c) = sum_data(c);
          }
        }
      }
    }
  }
};

#define REGISTER_KERNEL(T)                            \
  REGISTER_KERNEL_BUILDER(Name("ResizeArea")          \
                              .Device(DEVICE_CPU)     \
                              .TypeConstraint<T>("T") \
                              .HostMemory("size"),    \
                          ResizeAreaOp<CPUDevice, T>);

REGISTER_KERNEL(uint8);
REGISTER_KERNEL(int8);
REGISTER_KERNEL(int32);
REGISTER_KERNEL(float);
REGISTER_KERNEL(double);
#undef REGISTER_KERNEL

}  // namespace tensorflow