aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/random_shuffle_queue_op.cc
blob: 31e8ce944fef913fd241801f4931fcb4dfd2025c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

// See docs in ../ops/data_flow_ops.cc.

#include <deque>
#include <vector>

#include "tensorflow/core/framework/node_def.pb.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/resource_mgr.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/queue_op.h"
#include "tensorflow/core/kernels/typed_queue.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/random/philox_random.h"
#include "tensorflow/core/lib/random/random.h"
#include "tensorflow/core/lib/random/random_distributions.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/thread_annotations.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/util/batch_util.h"

namespace tensorflow {

class RandomShuffleQueue : public TypedQueue<std::vector<PersistentTensor> > {
 public:
  RandomShuffleQueue(int32 capacity, int32 min_after_dequeue, int64 seed,
                     int64 seed2, const DataTypeVector& component_dtypes,
                     const std::vector<TensorShape>& component_shapes,
                     const string& name);

  Status Initialize() override;  // Must be called before any other method.

  // Implementations of QueueInterface methods --------------------------------
  void TryEnqueue(const Tuple& tuple, OpKernelContext* ctx,
                  DoneCallback callback) override;
  void TryEnqueueMany(const Tuple& tuple, OpKernelContext* ctx,
                      DoneCallback callback) override;
  void TryDequeue(OpKernelContext* ctx, CallbackWithTuple callback) override;
  void TryDequeueMany(int num_elements, OpKernelContext* ctx,
                      bool allow_small_batch,
                      CallbackWithTuple callback) override;
  Status MatchesNodeDef(const NodeDef& node_def) override;

  int32 size() override {
    mutex_lock lock(mu_);
    return queues_[0].size();
  }

 private:
  ~RandomShuffleQueue() override {}

  // Helper for dequeuing a single random element from queues_.
  void DequeueLocked(OpKernelContext* ctx, Tuple* tuple)
      EXCLUSIVE_LOCKS_REQUIRED(mu_);

  static Status GetElementComponentFromBatch(const Tuple& tuple, int64 index,
                                             int component,
                                             OpKernelContext* ctx,
                                             PersistentTensor* out_tensor);

  const int32 min_after_dequeue_;
  const int64 original_seed_;
  const int64 original_seed2_;

  random::PhiloxRandom parent_generator_ GUARDED_BY(mu_);
  random::SingleSampleAdapter<random::PhiloxRandom> generator_ GUARDED_BY(mu_);

  TF_DISALLOW_COPY_AND_ASSIGN(RandomShuffleQueue);
};

RandomShuffleQueue::RandomShuffleQueue(
    int32 capacity, int32 min_after_dequeue, int64 seed, int64 seed2,
    const DataTypeVector& component_dtypes,
    const std::vector<TensorShape>& component_shapes, const string& name)
    : TypedQueue(capacity, component_dtypes, component_shapes, name),
      min_after_dequeue_(min_after_dequeue),
      original_seed_(seed),
      original_seed2_(seed2),
      generator_(&parent_generator_) {
  if (seed == 0 && seed2 == 0) {
    // If both seeds are unspecified, use completely random seeds.
    seed = random::New64();
    seed2 = random::New64();
  }
  parent_generator_ = random::PhiloxRandom(seed, seed2);
}

Status RandomShuffleQueue::Initialize() {
  TF_RETURN_IF_ERROR(TypedQueue::Initialize());

  mutex_lock lock(mu_);
  for (int i = 0; i < num_components(); ++i) {
    queues_[i].reserve(min_after_dequeue_);
  }
  return Status::OK();
}

void RandomShuffleQueue::DequeueLocked(OpKernelContext* ctx, Tuple* tuple) {
  DCHECK_GT(queues_[0].size(), size_t{0});
  int64 index = generator_() % queues_[0].size();
  (*tuple).reserve(num_components());
  for (int i = 0; i < num_components(); ++i) {
    (*tuple).push_back(*queues_[i][index].AccessTensor(ctx));
    queues_[i][index] = queues_[i].back();
    queues_[i].pop_back();
  }
}

void RandomShuffleQueue::TryEnqueue(const Tuple& tuple, OpKernelContext* ctx,
                                    DoneCallback callback) {
  CancellationManager* cm = ctx->cancellation_manager();
  CancellationToken token = cm->get_cancellation_token();
  bool already_cancelled;
  {
    mutex_lock l(mu_);
    already_cancelled = !cm->RegisterCallback(
        token, [this, cm, token]() { Cancel(kEnqueue, cm, token); });
    if (!already_cancelled) {
      enqueue_attempts_.emplace_back(
          1, callback, ctx, cm, token,
          [tuple, this](Attempt* attempt) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
            if (closed_) {
              attempt->context->SetStatus(errors::Cancelled(
                  "RandomShuffleQueue '", name_, "' is closed."));
              return kComplete;
            }
            if (queues_[0].size() < static_cast<size_t>(capacity_)) {
              for (int i = 0; i < num_components(); ++i) {
                queues_[i].push_back(PersistentTensor(tuple[i]));
              }
              return kComplete;
            } else {
              return kNoProgress;
            }
          });
    }
  }
  if (!already_cancelled) {
    FlushUnlocked();
  } else {
    ctx->SetStatus(errors::Cancelled("Enqueue operation was cancelled"));
    callback();
  }
}

/* static */
Status RandomShuffleQueue::GetElementComponentFromBatch(
    const Tuple& tuple, int64 index, int component, OpKernelContext* ctx,
    PersistentTensor* out_tensor) {
  TensorShape element_shape(tuple[component].shape());
  element_shape.RemoveDim(0);
  Tensor* element_access = nullptr;
  TF_RETURN_IF_ERROR(ctx->allocate_persistent(
      tuple[component].dtype(), element_shape, out_tensor, &element_access));
  TF_RETURN_IF_ERROR(
      batch_util::CopySliceToElement(tuple[component], element_access, index));
  return Status::OK();
}

void RandomShuffleQueue::TryEnqueueMany(const Tuple& tuple,
                                        OpKernelContext* ctx,
                                        DoneCallback callback) {
  const int64 batch_size = tuple[0].dim_size(0);
  if (batch_size == 0) {
    callback();
    return;
  }

  CancellationManager* cm = ctx->cancellation_manager();
  CancellationToken token = cm->get_cancellation_token();
  bool already_cancelled;
  {
    mutex_lock l(mu_);
    already_cancelled = !cm->RegisterCallback(
        token, [this, cm, token]() { Cancel(kEnqueue, cm, token); });
    if (!already_cancelled) {
      enqueue_attempts_.emplace_back(
          batch_size, callback, ctx, cm, token,
          [tuple, this](Attempt* attempt) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
            if (closed_) {
              attempt->context->SetStatus(errors::Cancelled(
                  "RandomShuffleQueue '", name_, "' is closed."));
              return kComplete;
            }
            RunResult result = kNoProgress;
            while (queues_[0].size() < static_cast<size_t>(capacity_)) {
              result = kProgress;
              const int index =
                  tuple[0].dim_size(0) - attempt->elements_requested;
              for (int i = 0; i < num_components(); ++i) {
                PersistentTensor element;
                attempt->context->SetStatus(GetElementComponentFromBatch(
                    tuple, index, i, attempt->context, &element));
                if (!attempt->context->status().ok()) return kComplete;
                queues_[i].push_back(element);
              }
              --attempt->elements_requested;
              if (attempt->elements_requested == 0) {
                return kComplete;
              }
            }
            return result;
          });
    }
  }
  if (!already_cancelled) {
    FlushUnlocked();
  } else {
    ctx->SetStatus(errors::Cancelled("Enqueue operation was cancelled"));
    callback();
  }
}

void RandomShuffleQueue::TryDequeue(OpKernelContext* ctx,
                                    CallbackWithTuple callback) {
  CancellationManager* cm = ctx->cancellation_manager();
  CancellationToken token = cm->get_cancellation_token();
  bool already_cancelled;
  {
    mutex_lock l(mu_);
    already_cancelled = !cm->RegisterCallback(
        token, [this, cm, token]() { Cancel(kDequeue, cm, token); });
    if (!already_cancelled) {
      // TODO(josh11b): This makes two copies of callback, avoid this if possible.
      dequeue_attempts_.emplace_back(
          1, [callback]() { callback(Tuple()); }, ctx, cm, token,
          [callback, this](Attempt* attempt) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
            int32 queue_size = queues_[0].size();
            if (closed_ && queue_size == 0) {
              attempt->context->SetStatus(errors::OutOfRange(
                  "RandomShuffleQueue '", name_, "' is closed and has ",
                  "insufficient elements (requested ", 1, ", current size ",
                  queue_size, ")"));
              return kComplete;
            }
            if (!closed_) queue_size -= min_after_dequeue_;
            if (queue_size > 0) {
              Tuple tuple;
              DequeueLocked(attempt->context, &tuple);
              attempt->done_callback = [callback, tuple]() { callback(tuple); };
              return kComplete;
            } else {
              return kNoProgress;
            }
          });
    }
  }
  if (!already_cancelled) {
    FlushUnlocked();
  } else {
    ctx->SetStatus(errors::Cancelled("Dequeue operation was cancelled"));
    callback(Tuple());
  }
}

void RandomShuffleQueue::TryDequeueMany(int num_elements, OpKernelContext* ctx,
                                        bool allow_small_batch,
                                        CallbackWithTuple callback) {
  if (!specified_shapes()) {
    ctx->SetStatus(errors::InvalidArgument(
        "RandomShuffleQueue's DequeueMany and DequeueUpTo require the "
        "components to have specified shapes."));
    callback(Tuple());
    return;
  }
  if (num_elements == 0) {
    Tuple tuple;
    tuple.reserve(num_components());
    for (int i = 0; i < num_components(); ++i) {
      // TODO(josh11b,misard): Switch to allocate_output().  Problem is
      // this breaks the abstraction boundary since we don't *really*
      // know if and how the Tensors in the tuple we pass to callback
      // correspond to the outputs of *ctx.  For example, the
      // ReaderRead Op uses TryDequeue() to get a filename out of a
      // queue that is used internally by the reader and is not
      // associated with any output of the ReaderRead.
      // mrry@ adds:
      // Maybe we need to pass a std::function<Tensor*(...)> (or
      // better signature) that calls the appropriate allocator
      // function in addition to ctx?  (Or support a shim Allocator
      // that has an internal OpKernelContext*, and dispatches to the
      // appropriate method?)
      // misard@ adds:
      // I don't see that a std::function would help. The problem is
      // that at this point (allocation time) the system doesn't know
      // what is going to happen to the element read out of the
      // queue. As long as we keep the generality that TensorFlow Ops
      // do their own dynamic allocation in arbitrary C++ code, we
      // need to preserve robustness to allocating output Tensors with
      // the 'wrong' attributes, and fixing up with a copy. The only
      // improvement I can see here in the future would be to support
      // an optimized case where the queue 'knows' what attributes to
      // use, and plumbs them through here.
      Tensor element;
      Status s = ctx->allocate_temp(component_dtypes_[i], ManyOutShape(i, 0),
                                    &element);
      if (!s.ok()) {
        ctx->SetStatus(s);
        callback(Tuple());
        return;
      }
      tuple.emplace_back(element);
    }
    callback(tuple);
    return;
  }

  CancellationManager* cm = ctx->cancellation_manager();
  CancellationToken token = cm->get_cancellation_token();
  bool already_cancelled;
  {
    mutex_lock l(mu_);
    already_cancelled = !cm->RegisterCallback(
        token, [this, cm, token]() { Cancel(kDequeue, cm, token); });
    if (!already_cancelled) {
      // TODO(josh11b): This makes two copies of callback, avoid this if possible.
      dequeue_attempts_.emplace_back(
          num_elements, [callback]() { callback(Tuple()); }, ctx, cm, token,
          [callback, allow_small_batch,
           this](Attempt* attempt) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
            int32 queue_size = queues_[0].size();
            if (closed_ && queue_size < attempt->elements_requested) {
              // If we don't have enough for a full dequeue, we have
              // to reset the attempt tuple.
              if (!attempt->tuple.empty()) {
                // Restore already-dequeued elements to the queue.
                for (int64 i = attempt->tuple[0].dim_size(0) -
                               attempt->elements_requested - 1;
                     i >= 0; --i) {
                  for (int j = 0; j < num_components(); ++j) {
                    PersistentTensor element;
                    Status s = GetElementComponentFromBatch(
                        attempt->tuple, i, j, attempt->context, &element);
                    if (!s.ok()) {
                      attempt->context->SetStatus(
                          errors::DataLoss("Failed to restore element from "
                                           "partially-dequeued batch "
                                           "to RandomShuffleQueue: ",
                                           s.error_message()));
                    }
                    queues_[j].push_back(element);
                  }
                }
              }
              if (allow_small_batch && !queues_[0].empty()) {
                // Request all remaining elements in the queue.
                queue_size = queues_[0].size();
                attempt->tuple.clear();
                attempt->elements_requested = queue_size;
              } else {
                if (allow_small_batch) {
                  // There may be some other attempts containing
                  // values.  If so, we'll yield and wait for them
                  // to add elements to the queue.
                  if (!enqueue_attempts_.empty()) return kProgress;
                }
                if (attempt->context->status().ok()) {
                  attempt->context->SetStatus(errors::OutOfRange(
                      "RandomShuffleQueue '", name_, "' is closed and has ",
                      "insufficient elements (requested ",
                      attempt->elements_requested, ", current size ",
                      queue_size, ")"));
                }
                return kComplete;
              }
            }

            RunResult result = kNoProgress;
            if (!closed_) queue_size -= min_after_dequeue_;
            for (; queue_size > 0; --queue_size) {
              if (attempt->tuple.empty()) {
                // Only allocate tuple when we have something to dequeue
                // so we don't use excessive memory when there are many
                // blocked dequeue attempts waiting.
                attempt->tuple.reserve(num_components());
                for (int i = 0; i < num_components(); ++i) {
                  const TensorShape shape =
                      ManyOutShape(i, attempt->elements_requested);
                  Tensor element;
                  attempt->context->SetStatus(attempt->context->allocate_temp(
                      component_dtypes_[i], shape, &element));
                  if (!attempt->context->status().ok()) return kComplete;
                  attempt->tuple.emplace_back(element);
                }
              }
              result = kProgress;
              Tuple tuple;
              DequeueLocked(attempt->context, &tuple);
              const int index =
                  attempt->tuple[0].dim_size(0) - attempt->elements_requested;
              for (int i = 0; i < num_components(); ++i) {
                attempt->context->SetStatus(batch_util::CopyElementToSlice(
                    std::move(tuple[i]), &attempt->tuple[i], index));
                if (!attempt->context->status().ok()) return kComplete;
              }
              tuple.clear();
              --attempt->elements_requested;
              if (attempt->elements_requested == 0) {
                tuple = attempt->tuple;
                attempt->done_callback = [callback, tuple]() {
                  callback(tuple);
                };
                return kComplete;
              }
            }
            return result;
          });
    }
  }
  if (!already_cancelled) {
    FlushUnlocked();
  } else {
    ctx->SetStatus(errors::Cancelled("Dequeue operation was cancelled"));
    callback(Tuple());
  }
}

Status RandomShuffleQueue::MatchesNodeDef(const NodeDef& node_def) {
  if (!MatchesNodeDefOp(node_def, "RandomShuffleQueue").ok() &&
      !MatchesNodeDefOp(node_def, "RandomShuffleQueueV2").ok()) {
    return errors::InvalidArgument("Expected RandomShuffleQueue, found ",
                                   node_def.op());
  }
  TF_RETURN_IF_ERROR(MatchesNodeDefCapacity(node_def, capacity_));

  int32 min_after_dequeue = -1;
  TF_RETURN_IF_ERROR(
      GetNodeAttr(node_def, "min_after_dequeue", &min_after_dequeue));
  if (min_after_dequeue != min_after_dequeue_) {
    return errors::InvalidArgument(
        "Shared queue '", name_, "' has min_after_dequeue ", min_after_dequeue_,
        " but requested min_after_dequeue was ", min_after_dequeue, ".");
  }

  int64 seed = -1;
  int64 seed2 = -1;
  TF_RETURN_IF_ERROR(GetNodeAttr(node_def, "seed", &seed));
  TF_RETURN_IF_ERROR(GetNodeAttr(node_def, "seed2", &seed2));
  if ((seed != 0 || seed2 != 0) &&
      (seed != original_seed_ || seed2 != original_seed2_)) {
    return errors::InvalidArgument(
        "Shared queue '", name_, "' has random seeds (", original_seed_, ", ",
        original_seed2_, ") but requested seeds are (", seed, ", ", seed2,
        ").");
  }

  TF_RETURN_IF_ERROR(MatchesNodeDefTypes(node_def));
  TF_RETURN_IF_ERROR(MatchesNodeDefShapes(node_def));

  return Status::OK();
}

// Defines a RandomShuffleQueueOp, which produces a Queue (specifically, one
// backed by RandomShuffleQueue) that persists across different graph
// executions, and sessions. Running this op produces a single-element
// tensor of handles to Queues in the corresponding device.
class RandomShuffleQueueOp : public TypedQueueOp {
 public:
  explicit RandomShuffleQueueOp(OpKernelConstruction* context)
      : TypedQueueOp(context) {
    OP_REQUIRES_OK(context,
                   context->GetAttr("min_after_dequeue", &min_after_dequeue_));
    OP_REQUIRES(context, min_after_dequeue_ >= 0,
                errors::InvalidArgument("min_after_dequeue ",
                                        min_after_dequeue_, " must be >= 0"));
    OP_REQUIRES(
        context, min_after_dequeue_ < capacity_,
        errors::InvalidArgument("min_after_dequeue ", min_after_dequeue_,
                                " must be < capacity ", capacity_));
    OP_REQUIRES_OK(context, context->GetAttr("seed", &seed_));
    OP_REQUIRES_OK(context, context->GetAttr("seed2", &seed2_));

    OP_REQUIRES_OK(context, context->GetAttr("shapes", &component_shapes_));
  }

 private:
  Status CreateResource(QueueInterface** ret) override
      EXCLUSIVE_LOCKS_REQUIRED(mu_) {
    RandomShuffleQueue* queue = new RandomShuffleQueue(
        capacity_, min_after_dequeue_, seed_, seed2_, component_types_,
        component_shapes_, cinfo_.name());
    return CreateTypedQueue(queue, ret);
  }

  int32 min_after_dequeue_;
  int64 seed_;
  int64 seed2_;
  std::vector<TensorShape> component_shapes_;

  TF_DISALLOW_COPY_AND_ASSIGN(RandomShuffleQueueOp);
};

REGISTER_KERNEL_BUILDER(Name("RandomShuffleQueue").Device(DEVICE_CPU),
                        RandomShuffleQueueOp);
REGISTER_KERNEL_BUILDER(Name("RandomShuffleQueueV2").Device(DEVICE_CPU),
                        RandomShuffleQueueOp);

}  // namespace tensorflow