aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/ragged_gather_op.cc
blob: b2a342f63783a72369e63d77c2ba9fde407a3511 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <limits>
#include <memory>
#include <string>
#include <vector>

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/util/util.h"

namespace tensorflow {

namespace {

// For each slice in `(start, limit)` in `value_slices`, append
// `params_dense_values_in[start:limit] to `values_out`.  `value_size` indicates
// the number of scalars contained in each value params_dense_values_in[i].
template <typename VALUE_TYPE>
void WriteValueSlices(const Tensor& params_dense_values_in,
                      const std::vector<std::pair<int64, int64>>& value_slices,
                      int64 value_size, Tensor* values_out) {
  const auto& params_dense_values =
      params_dense_values_in.flat_outer_dims<VALUE_TYPE, 2>();
  auto values = values_out->flat_outer_dims<VALUE_TYPE, 2>();
  int out_pos = 0;
  for (const auto& slice : value_slices) {
    for (int i = slice.first; i < slice.second; ++i) {
      for (int j = 0; j < value_size; ++j) {
        values(out_pos, j) = params_dense_values(i, j);
      }
      ++out_pos;
    }
  }
}

}  // namespace

template <typename INDEX_TYPE>
class RaggedGatherOpBase : public OpKernel {
 public:
  using OpKernel::OpKernel;

  void Compute(OpKernelContext* context) override {
    // Get the input Tensors.
    OpInputList params_nested_splits_in;
    OP_REQUIRES_OK(context, context->input_list("params_nested_splits",
                                                &params_nested_splits_in));
    const Tensor& params_dense_values_in =
        context->input(params_nested_splits_in.size());
    const Tensor& indices_in =
        context->input(params_nested_splits_in.size() + 1);

    DCHECK_GT(params_nested_splits_in.size(), 0);  // Enforced by REGISTER_OP.
    int64 num_params = params_nested_splits_in[0].dim_size(0) - 1;
    OP_REQUIRES_OK(context, ValidateIndices(indices_in, num_params));

    OP_REQUIRES(context, params_dense_values_in.dims() > 0,
                errors::InvalidArgument("params.rank must be nonzero"));
    int64 num_params_dense_values = params_dense_values_in.dim_size(0);

    // Calculate the `splits`, and store the value slices that we need to
    // copy in `value_slices`.
    std::vector<std::pair<int64, int64>> value_slices;
    int64 num_values = 0;
    std::vector<std::vector<int64>> out_splits;
    OP_REQUIRES_OK(context, MakeSplits(indices_in, params_nested_splits_in,
                                       num_params_dense_values, &out_splits,
                                       &value_slices, &num_values));

    // Write the output tensors.
    OP_REQUIRES_OK(context, WriteSplits(out_splits, context));
    OP_REQUIRES_OK(context,
                   WriteValues(params_dense_values_in, value_slices,
                               out_splits.size(), num_values, context));
  }

 private:
  // Check if any indices are out-of-bounds.
  ::tensorflow::Status ValidateIndices(const Tensor& indices_in,
                                       int64 num_params) {
    const auto& indices = indices_in.flat<INDEX_TYPE>();
    for (int64 i = 0; i < indices.size(); ++i) {
      int64 index = indices(i);
      if (index < 0 || index >= num_params) {
        return errors::InvalidArgument(
            "indices", SliceDebugString(indices_in.shape(), i), " = ", index,
            " is not in [0, ", num_params, ")");
      }
    }
    return ::tensorflow::Status::OK();
  }

  // Construct the `splits` output tensors, encoded using a nested vector.
  // Also find the slices of values that need to be copied, and store them
  // in `value_slices`.  The total number of values that will be copied (which
  // we need for allocating the output values tensor) is stored in `num_values`.
  ::tensorflow::Status MakeSplits(
      const Tensor& indices_in, const OpInputList& params_nested_splits_in,
      int64 num_params_dense_values,
      std::vector<std::vector<int64>>* out_splits,
      std::vector<std::pair<int64, int64>>* value_slices, int64* num_values) {
    *num_values = 0;
    value_slices->clear();

    int num_splits = indices_in.dims() - 1 + params_nested_splits_in.size();
    out_splits->assign(num_splits, {0});

    // Get Eigen tensors.
    const auto& indices = indices_in.flat<INDEX_TYPE>();
    std::vector<TTypes<int64>::ConstFlat> params_nested_splits;
    params_nested_splits.reserve(params_nested_splits_in.size());
    for (const auto& splits_in : params_nested_splits_in) {
      params_nested_splits.push_back(splits_in.flat<int64>());
    }

    TF_RETURN_IF_ERROR(
        ValidateSplits(params_nested_splits, num_params_dense_values));

    // Add `splits` that come from all but the last dimension of the dense
    // Tensor `indices`.  In particular, for each dimension D, we add a
    // splits tensor whose values are:
    //   range(splits.shape[D]*splits.shape[D+1] + 1, step=splits.shape[D+1])
    // E.g., if indices.shape=[5, 3] then we will add a splits tensor
    // [0, 3, 6, 9, 12, 15], since the outermost dimension has 5 elements,
    // each of which contains 3 values.
    for (int dim = 0; dim < indices_in.dims() - 1; ++dim) {
      int stride = indices_in.dim_size(dim + 1);
      int index = stride;
      for (int i = 0; i < indices_in.dim_size(dim); ++i) {
        out_splits->at(dim).push_back(index);
        index += stride;
      }
    }

    // Add `splits` that come from `params_nested_splits`.  Starting with the
    // outermost ragged dimension (i.e., the first `splits` tensor), we work
    // our way in, finding the range of values that should be copied.  As we
    // go, we update the output `splits` for each dimension with the appropriate
    // values.  In particular, the *lengths* of the slices from `param_splits`
    // should be copied to generate corresponding slice lengths in the output
    // splits.  E.g., if we are copying a ragged row with length 4, then we
    // should add a new split point to out_splits that is 4 greater than the
    // previous split point in out_splits.
    for (int i = 0; i < indices.size(); ++i) {
      int start = indices(i);
      int limit = indices(i) + 1;

      // Copy splits.
      for (int dim = 0; dim < params_nested_splits.size(); ++dim) {
        const auto& splits = params_nested_splits[dim];
        int out_dim = dim + indices_in.dims() - 1;
        if (out_dim >= 0) {
          int64 delta = out_splits->at(out_dim).back() - splits(start);
          for (int j = start; j < limit; ++j) {
            out_splits->at(out_dim).push_back(splits(j + 1) + delta);
          }
        }
        start = splits(start);
        limit = splits(limit);
      }
      if (limit != start) {
        value_slices->emplace_back(start, limit);
        *num_values += limit - start;
      }
    }
    return ::tensorflow::Status::OK();
  }

  ::tensorflow::Status ValidateSplits(
      const std::vector<TTypes<int64>::ConstFlat>& params_nested_splits,
      int64 num_params_dense_values) {
    // Validate
    for (int dim = 0; dim < params_nested_splits.size(); ++dim) {
      const auto& splits = params_nested_splits[dim];
      int64 last_split = (dim == params_nested_splits.size() - 1)
                             ? num_params_dense_values
                             : params_nested_splits[dim + 1].size();
      if (splits.size() == 0) {
        return errors::InvalidArgument("Ragged splits may not be empty");
      }
      if (splits(0) < 0) {
        return errors::InvalidArgument("Ragged splits must be non-negative");
      }
      if (splits(splits.size() - 1) > last_split) {
        return errors::InvalidArgument(
            "Ragged splits must not point past values");
      }
      for (int i = 1; i < splits.size(); ++i) {
        if (splits(i - 1) > splits(i)) {
          return errors::InvalidArgument("Ragged splits must be sorted");
        }
      }
    }
    return ::tensorflow::Status::OK();
  }

  ::tensorflow::Status WriteSplits(
      const std::vector<std::vector<int64>>& out_splits,
      OpKernelContext* context) {
    OpOutputList splits_out;
    TF_RETURN_IF_ERROR(
        context->output_list("output_nested_splits", &splits_out));
    for (int i = 0; i < out_splits.size(); ++i) {
      Tensor* splits;
      int64 num_splits = out_splits[i].size();
      TF_RETURN_IF_ERROR(
          splits_out.allocate(i, TensorShape({num_splits}), &splits));
      auto splits_flat = splits->flat<int64>();
      std::copy_n(out_splits[i].data(), out_splits[i].size(),
                  splits_flat.data());
    }
    return ::tensorflow::Status::OK();
  }

  ::tensorflow::Status WriteValues(
      const Tensor& params_dense_values_in,
      const std::vector<std::pair<int64, int64>>& value_slices,
      int values_index, int64 num_values, OpKernelContext* context) const {
    Tensor* values_out = nullptr;
    TensorShape values_shape = params_dense_values_in.shape();
    values_shape.set_dim(0, num_values);
    TF_RETURN_IF_ERROR(
        context->allocate_output(values_index, values_shape, &values_out));
    int64 value_size = params_dense_values_in.NumElements() /
                       params_dense_values_in.dim_size(0);
    CallWriteValueSlices(params_dense_values_in, value_slices, value_size,
                         values_out);
    return ::tensorflow::Status::OK();
  }

 protected:
  // Call WriteValueSlices() using the appropriate VALUE_TYPE template
  // parameter.  This pattern is used to reduce binary size.  In particular,
  // this allows us to have two instantiations of this class (one for each
  // index type), rather than 14 (one for each index type and value type),
  // which cuts the binary size of this op from ~300k to <90k.
  virtual void CallWriteValueSlices(
      const Tensor& params_dense_values_in,
      const std::vector<std::pair<int64, int64>>& value_slices,
      int64 value_size, Tensor* values_out) const = 0;
};

template <typename INDEX_TYPE, typename VALUE_TYPE>
class RaggedGatherOp : public RaggedGatherOpBase<INDEX_TYPE> {
 public:
  using RaggedGatherOpBase<INDEX_TYPE>::RaggedGatherOpBase;

 private:
  void CallWriteValueSlices(
      const Tensor& params_dense_values_in,
      const std::vector<std::pair<int64, int64>>& value_slices,
      int64 value_size, Tensor* values_out) const override {
    WriteValueSlices<VALUE_TYPE>(params_dense_values_in, value_slices,
                                 value_size, values_out);
  }
};

#define REGISTER_CPU_KERNEL_WITH_INDEX_TYPE(index_type, value_type)   \
  REGISTER_KERNEL_BUILDER(Name("RaggedGather")                        \
                              .Device(DEVICE_CPU)                     \
                              .TypeConstraint<index_type>("Tindices") \
                              .TypeConstraint<value_type>("Tvalues"), \
                          RaggedGatherOp<index_type, value_type>);
#define REGISTER_CPU_KERNEL(value_type)                  \
  REGISTER_CPU_KERNEL_WITH_INDEX_TYPE(int32, value_type) \
  REGISTER_CPU_KERNEL_WITH_INDEX_TYPE(int64, value_type)
TF_CALL_POD_TYPES(REGISTER_CPU_KERNEL);
TF_CALL_string(REGISTER_CPU_KERNEL);
TF_CALL_QUANTIZED_TYPES(REGISTER_CPU_KERNEL);
TF_CALL_quint16(REGISTER_CPU_KERNEL);
TF_CALL_qint16(REGISTER_CPU_KERNEL);
TF_CALL_uint32(REGISTER_CPU_KERNEL);
TF_CALL_uint64(REGISTER_CPU_KERNEL);
#undef REGISTER_CPU_KERNEL
#undef REGISTER_CPU_KERNEL_WITH_INDEX_TYPE

}  // namespace tensorflow