aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/quantization_utils_test.cc
blob: 176720c22cc54ea8d9b79dacfc77f6cd2532f93a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#define EIGEN_USE_THREADS

#include <limits>

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/common_runtime/eigen_thread_pool.h"
#include "tensorflow/core/framework/allocator.h"
#include "tensorflow/core/framework/tensor_testutil.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/quantization_utils.h"
#include "tensorflow/core/lib/core/threadpool.h"
#include "tensorflow/core/lib/random/simple_philox.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/platform/test.h"

namespace tensorflow {
namespace {

void TestRequantizeMany(Eigen::ThreadPoolDevice* eigen_device, float input_min,
                        float input_max, float output_min, float output_max,
                        const std::vector<qint32>& values_quantized,
                        int tolerance = 1) {
  const int values_count = values_quantized.size();
  std::vector<quint8> expected_values;
  expected_values.reserve(values_count);
  for (int value_index = 0; value_index < values_count; ++value_index) {
    expected_values.push_back(FloatToQuantized<quint8>(
        QuantizedToFloat(values_quantized[value_index], input_min, input_max),
        output_min, output_max));
  }

  Tensor i_tensor =
      tensorflow::test::AsTensor(gtl::ArraySlice<qint32>(values_quantized));
  Tensor o_tensor(DT_QUINT8, TensorShape{values_count});
  auto output_values = o_tensor.flat<quint8>();

  if (eigen_device == nullptr) {
    auto input_array = i_tensor.flat<qint32>();
    RequantizeManyInNewRange(input_array.data(), input_array.size(), input_min,
                             input_max, output_min, output_max,
                             output_values.data());
  } else {
    RequantizeManyInNewRangeUsingEigen<qint32, quint8>(
        *eigen_device, i_tensor, input_min, input_max, output_min, output_max,
        &o_tensor);
  }

  const string tolerance_str = strings::StrCat("+-", tolerance);
  for (size_t value_index = 0; value_index < values_count; ++value_index) {
    int e = expected_values[value_index];
    int v = output_values(value_index);
    ASSERT_TRUE(std::abs(e - v) <= tolerance)
        << "actual=" << v << ", expected=" << e << tolerance_str
        << ", values_quantized[" << value_index
        << "]=" << values_quantized[value_index] << ", input_min=" << input_min
        << ", input_max=" << input_max << ", output_min=" << output_min
        << ", output_max=" << output_max << ", value_index=" << value_index;
  }
}

void TestRequantizeMany8To32Bit(float input_min, float input_max,
                                float output_min, float output_max,
                                const std::vector<quint8>& values_quantized,
                                int tolerance = 256) {
  const int values_count = values_quantized.size();
  std::vector<qint32> expected_values;
  expected_values.reserve(values_count);
  for (int value_index = 0; value_index < values_count; ++value_index) {
    expected_values.push_back(FloatToQuantized<qint32>(
        QuantizedToFloat(values_quantized[value_index], input_min, input_max),
        output_min, output_max));
  }

  const Tensor i_tensor =
      tensorflow::test::AsTensor(gtl::ArraySlice<quint8>(values_quantized));
  Tensor o_tensor(DT_QINT32, TensorShape{values_count});
  auto output_values = o_tensor.flat<qint32>();

  const auto input_array = i_tensor.flat<quint8>();
  RequantizeManyInNewRange(input_array.data(), input_array.size(), input_min,
                           input_max, output_min, output_max,
                           output_values.data());

  const string tolerance_str = strings::StrCat("+-", tolerance);
  for (int value_index = 0; value_index < values_count; ++value_index) {
    const qint32 e = expected_values[value_index];
    const qint32 v = output_values(value_index);
    ASSERT_TRUE(std::abs(e - v) <= tolerance)
        << "actual=" << v << ", expected=" << e << tolerance_str
        << ", values_quantized[" << value_index
        << "]=" << values_quantized[value_index] << ", input_min=" << input_min
        << ", input_max=" << input_max << ", output_min=" << output_min
        << ", output_max=" << output_max << ", value_index=" << value_index;
  }
}

// If eigen_device is NULL, then the reference implementation is tested.
void TestRequantizeManyInNewRange32To8Bit(
    Eigen::ThreadPoolDevice* eigen_device) {
  if (true) {
    // These are the float values we're going to test the conversions on.
    const size_t values_count = 6;
    const float values[values_count] = {0.0f,  0.45f,  1.0f,
                                        -1.0f, 127.0f, 255.0f};
    // These are the input and output ranges we'll test.
    const size_t ranges_count = 6;
    const float ranges[ranges_count][4] = {
        {0.0f, 255.0f, 0.0f, 255.0f},    //
        {0.0f, 1.0f, 0.0f, 1.0f},        //
        {-1.0f, 1.0f, -1.0f, 1.0f},      //
        {-1.0f, 1.0f, -255.0f, 255.0f},  //
        {3.0f, 3.0f, 0.0f, 255.0f},      // input min == max
        {0.0f, 255.0f, 5.0f, 5.0f},      // output min == max
    };
    for (int i = 0; i < ranges_count; ++i) {
      const auto& r = ranges[i];
      std::vector<qint32> values_quantized;
      for (int value_index = 0; value_index < values_count; ++value_index) {
        const float v = values[value_index];
        values_quantized.push_back(FloatToQuantized<qint32>(v, r[0], r[1]));
      }
      TestRequantizeMany(eigen_device, r[0], r[1], r[2], r[3],
                         values_quantized);
    }

    // Test with many different values in the input quantized range.
    qint32 low = Eigen::NumTraits<qint32>::lowest();
    qint32 high = Eigen::NumTraits<qint32>::highest();
    std::vector<qint32> vals{low, high};
    int num_steps = 14419;
    qint32 step = static_cast<int32>((1LL << 32) / num_steps);
    qint32 v = low + static_cast<qint32>(1);
    for (int i = 0; i < num_steps; ++i) {
      vals.push_back(v);
      v += step;
    }
    TestRequantizeMany(eigen_device, -1.0f, 1.0f, -1.0f, 1.0f, vals);
    TestRequantizeMany(eigen_device, -255.0f, 255.0f, -255.0f, 255.0f, vals);
    TestRequantizeMany(eigen_device, -1.0f, 1.0f, -12345678.0f, 12345678.0f,
                       vals);
    TestRequantizeMany(eigen_device, -1.0f, 12345678.0f, -12345678.0f,
                       12345678.0f, vals);
  }
  // Test when the input range is large and output range is small.
  // Use all quantized values where the float is in the output range.
  const float out_min = -29.1234;
  const float out_max = 23.1234;
  const float in_min = -1e6;
  const float in_max = 1e6;

  qint32 low = FloatToQuantized<qint32>(out_min, in_min, in_max);
  qint32 high = FloatToQuantized<qint32>(out_max, in_min, in_max);
  std::vector<qint32> vals;
  vals.clear();
  for (int32 i = low; i <= high; ++i) vals.push_back(i);
  TestRequantizeMany(eigen_device, in_min, in_max, out_min, out_max, vals);
}

void TestRequantizeManyInNewRange8To32Bit() {
  // These are the float values we're going to test the conversions on.
  const size_t values_count = 6;
  const float values[values_count] = {0.0f, 0.45f, 1.0f, -1.0f, 127.0f, 255.0f};
  // These are the input and output ranges we'll test.
  const size_t ranges_count = 6;
  const float ranges[ranges_count][4] = {
      {0.0f, 255.0f, 0.0f, 255.0f},    //
      {0.0f, 1.0f, 0.0f, 1.0f},        //
      {-1.0f, 1.0f, -1.0f, 1.0f},      //
      {-1.0f, 1.0f, -255.0f, 255.0f},  //
      {3.0f, 3.0f, 0.0f, 255.0f},      // input min == max
      {0.0f, 255.0f, 5.0f, 5.0f},      // output min == max
  };
  for (int i = 0; i < ranges_count; ++i) {
    const auto& r = ranges[i];
    std::vector<quint8> values_quantized;
    for (int value_index = 0; value_index < values_count; ++value_index) {
      const float v = values[value_index];
      values_quantized.push_back(FloatToQuantized<quint8>(v, r[0], r[1]));
    }
    TestRequantizeMany8To32Bit(r[0], r[1], r[2], r[3], values_quantized);
  }

  // Test with many different values in the input quantized range.
  int low = Eigen::NumTraits<quint8>::lowest();
  int high = Eigen::NumTraits<quint8>::highest();
  std::vector<quint8> vals;
  for (int val = low; val <= high; ++val) {
    vals.push_back(val);
  }
  TestRequantizeMany8To32Bit(-1.0f, 1.0f, -1.0f, 1.0f, vals);
  TestRequantizeMany8To32Bit(-255.0f, 255.0f, -255.0f, 255.0f, vals);
  TestRequantizeMany8To32Bit(-1.0f, 1.0f, -12345678.0f, 12345678.0f, vals);
  TestRequantizeMany8To32Bit(-1.0f, 12345678.0f, -12345678.0f, 12345678.0f,
                             vals);
}

template <typename InputType, typename OutputType>
void TestRequantizeManyInNewRangeEigenVsNonEigen() {
  thread::ThreadPool threadpool(Env::Default(), "test", 2 /* num_threads */);
  EigenThreadPoolWrapper wrapper(&threadpool);
  Eigen::ThreadPoolDevice eigen_device(&wrapper, 2 /* num_threads */);

  const size_t ranges_count = 6;
  const float ranges[ranges_count][4] = {
      {0.0f, 255.0f, 0.0f, 255.0f},    //
      {0.0f, 1.0f, 0.0f, 1.0f},        //
      {-1.0f, 1.0f, -1.0f, 1.0f},      //
      {-1.0f, 1.0f, -255.0f, 255.0f},  //
      {3.0f, 3.0f, 0.0f, 255.0f},      // input min == max
      {0.0f, 255.0f, 5.0f, 5.0f},      // output min == max
  };

  // Random values.
  for (size_t range_index = 0; range_index < ranges_count; ++range_index) {
    const float input_min = ranges[range_index][0];
    const float input_max = ranges[range_index][1];
    const float output_min = ranges[range_index][2];
    const float output_max = ranges[range_index][3];
    const int values_count = 10000;
    random::PhiloxRandom philox(testing::RandomSeed(), 17);
    random::SimplePhilox rnd(&philox);
    std::vector<InputType> values_quantized;
    for (int i = 0; i < values_count; ++i) {
      float v = (rnd.RandFloat() * (input_max - input_min)) + input_min;
      values_quantized.push_back(
          FloatToQuantized<InputType>(v, input_min, input_max));
    }

    Tensor i_tensor = tensorflow::test::AsTensor(
        gtl::ArraySlice<InputType>(values_quantized));
    const auto i_array = i_tensor.flat<InputType>();
    Tensor o_tensor_eigen(DataTypeToEnum<OutputType>::v(),
                          TensorShape{values_count});
    auto output_values_eigen = o_tensor_eigen.flat<OutputType>();
    Tensor o_tensor_ref(DataTypeToEnum<OutputType>::v(),
                        TensorShape{values_count});
    auto output_values_ref = o_tensor_ref.flat<OutputType>();

    RequantizeManyInNewRange(i_array.data(), i_array.size(), input_min,
                             input_max, output_min, output_max,
                             output_values_ref.data());
    RequantizeManyInNewRangeUsingEigen<InputType, OutputType>(
        eigen_device, i_tensor, input_min, input_max, output_min, output_max,
        &o_tensor_eigen);

    const int tolerance = 1;
    for (int i = 0; i < values_quantized.size(); ++i) {
      auto expected = output_values_ref(i);
      auto actual = output_values_eigen(i);
      // The eigen computation uses float for constants and computation
      // instead of doubles, so can be different by 1 or 2 in some cases
      // (e.g., input value 144.062744140625, min -1, max 255, type quint8).
      ASSERT_TRUE(std::abs(expected - actual) <= tolerance)
          << "expected=" << expected << " actual=" << actual
          << " tolerance=" << tolerance << " v=" << values_quantized[i]
          << " i=" << i << " input_min=" << input_min
          << " input_max=" << input_max
          << " input_type=" << DataTypeString(DataTypeToEnum<InputType>::v())
          << " output_type=" << DataTypeString(DataTypeToEnum<OutputType>::v());
    }
  }
}

template <typename InputType, typename OutputType>
void TimeRequantizeManyInNewRange(int64 num_elements, int64 iterations,
                                  bool use_eigen) {
  const float input_min = -100.0f;
  const float input_max = 100.0f;
  const float output_min = -1000000.0f;
  const float output_max = 1000000.0f;

  random::PhiloxRandom philox(testing::RandomSeed(), 17);
  random::SimplePhilox rnd(&philox);
  std::vector<InputType> values_quantized;
  for (int i = 0; i < num_elements; ++i) {
    float v = (rnd.RandFloat() * (input_max - input_min)) + input_min;
    values_quantized.push_back(
        FloatToQuantized<InputType>(v, input_min, input_max));
  }

  thread::ThreadPool threadpool(Env::Default(), "test", 4 /* num_threads */);
  EigenThreadPoolWrapper wrapper(&threadpool);
  Eigen::ThreadPoolDevice eigen_device(&wrapper, 4 /* num_threads */);

  Tensor i_tensor =
      tensorflow::test::AsTensor(gtl::ArraySlice<InputType>(values_quantized));
  const auto i_array = i_tensor.flat<InputType>();
  Tensor o_tensor_eigen(DataTypeToEnum<OutputType>::v(),
                        TensorShape{num_elements});
  Tensor o_tensor_ref(DataTypeToEnum<OutputType>::v(),
                      TensorShape{num_elements});
  auto output_values_ref = o_tensor_ref.flat<OutputType>();

  int64 total_duration = 0;
  for (int i = 0; i < iterations; ++i) {
    const int64 start_time = Env::Default()->NowMicros();
    if (use_eigen) {
      RequantizeManyInNewRangeUsingEigen<InputType, OutputType>(
          eigen_device, i_tensor, input_min, input_max, output_min, output_max,
          &o_tensor_eigen);
    } else {
      RequantizeManyInNewRange<InputType, OutputType>(
          i_array.data(), i_array.size(), input_min, input_max, output_min,
          output_max, output_values_ref.data());
    }
    const int64 end_time = Env::Default()->NowMicros();
    total_duration += end_time - start_time;
  }
  const int64 one_run_duration = total_duration / iterations;

  const int64 num_ops = num_elements;

  const double million_ops_per_second =
      (iterations * num_ops) / static_cast<double>(total_duration);

  LOG(INFO) << "TimeRequantizeManyInNewRange: " << num_elements
            << (use_eigen ? " eigen" : " ref") << ": iterations=" << iterations
            << ", MOps/s=" << million_ops_per_second
            << ", one_run_duration=" << one_run_duration
            << ", total_duration=" << total_duration;
}

template <typename T>
void TestFloatToQuantizedInPlaceUsingEigen(
    Eigen::ThreadPoolDevice* eigen_device) {
  // These are the float values we're going to test the conversions on.
  typedef std::pair<float, float> FPair;
  for (FPair min_and_max : std::vector<FPair>{FPair(-255.0f, 255.0f),  //
                                              FPair(-1.0f, 1.0f),      //
                                              FPair(-1.0f, 255.0f),    //
                                              FPair(0.0f, 1e6),        //
                                              FPair(0.0f, 1.0f),       //
                                              FPair(-31.0f, 13.0f)}) {
    const float f_min = min_and_max.first;
    const float f_max = min_and_max.second;
    const float f_range = f_max - f_min;
    const int values_count = 50000;
    Tensor input(DT_FLOAT, TensorShape{values_count});
    auto input_array = input.flat<float>();
    for (int i = 0; i < values_count; ++i) {
      input_array(i) = f_min + f_range * i / (values_count - 1);
    }

    Tensor output(DataTypeToEnum<T>::v(), TensorShape{values_count});
    FloatTensorToQuantizedInPlaceUsingEigen<T>(*eigen_device, input, f_min,
                                               f_max, &output);
    auto output_array = output.flat<T>();

    const int tolerance = 1;
    for (int i = 0; i < values_count; ++i) {
      int32 expected = FloatToQuantized<T>(input_array(i), f_min, f_max);
      int32 actual = output_array(i);

      // The eigen computation uses float for constants and computation
      // instead
      // of doubles, so can be different by 1 or 2 in some cases (e.g., input
      // value 144.062744140625, min -1, max 255, type quint8).
      ASSERT_TRUE(std::abs(expected - actual) <= tolerance)
          << "expected=" << expected << " actual=" << actual
          << " tolerance=" << tolerance << " v=" << input_array(i) << " i=" << i
          << " f_min=" << f_min << " f_max=" << f_max
          << " type=" << DataTypeString(DataTypeToEnum<T>::v());
    }
  }
}

template <typename T>
void TestQuantizedToFloatInPlaceUsingEigen(
    Eigen::ThreadPoolDevice* eigen_device) {
  // These are the float values we're going to test the conversions on.
  typedef std::pair<float, float> FPair;
  for (FPair min_and_max : std::vector<FPair>{
           FPair(-255.0f, 255.0f),
           FPair(-1.0f, 1.0f),
           FPair(-1.0f, 255.0f),
           FPair(0.0f, 1e6),
           FPair(0.0f, 1.0f),
           FPair(-31.0f, 13.0f),
           FPair(-5.89505e+08, 5.89505e+08),
       }) {
    const float f_min = min_and_max.first;
    const float f_max = min_and_max.second;
    const int values_count = sizeof(T) == 1 ? 256 : 50000;
    Tensor input(DataTypeToEnum<T>::v(), TensorShape{values_count});
    auto input_array = input.flat<T>();
    const double q_range = static_cast<double>(Eigen::NumTraits<T>::highest()) -
                           Eigen::NumTraits<T>::lowest();
    for (int i = 0; i < values_count; ++i) {
      if (sizeof(T) == 1) {
        input_array(i) = Eigen::NumTraits<T>::lowest() + i;
      } else {
        int64 offset = static_cast<int64>(q_range / values_count * i);
        input_array(i) = static_cast<int32>(
            std::min<int64>(Eigen::NumTraits<T>::lowest() + offset,
                            Eigen::NumTraits<T>::highest()));
      }
    }

    Tensor output(DT_FLOAT, TensorShape{values_count});
    QuantizedTensorToFloatInPlaceUsingEigen<T>(*eigen_device, input, f_min,
                                               f_max, &output);
    auto output_array = output.flat<float>();
    const double range = static_cast<double>(f_max) - f_min;
    for (int i = 0; i < values_count; ++i) {
      float expected = QuantizedToFloat<T>(input_array(i), f_min, f_max);
      float actual = output_array(i);
      ASSERT_NEAR(expected, actual, range * 1.1e-7)
          << "expected=" << expected << " actual=" << actual
          << " v=" << input_array(i) << " i=" << i << " f_min=" << f_min
          << " f_max=" << f_max
          << " type=" << DataTypeString(DataTypeToEnum<T>::v());
    }
  }
}

}  // namespace

void TestFloatToQuantized() {
  EXPECT_EQ(quint8(0), FloatToQuantized<quint8>(0.0f, 0.0f, 1.0f));
  EXPECT_EQ(quint8(0), FloatToQuantized<quint8>(0.0f, 0.0f, 2.0f));
  EXPECT_EQ(quint8(128), FloatToQuantized<quint8>(0.5f, 0.0f, 1.0f));
  EXPECT_EQ(quint8(128), FloatToQuantized<quint8>(1.0f, 0.0f, 2.0f));
  EXPECT_EQ(quint8(255), FloatToQuantized<quint8>(1.0f, 0.0f, 1.0f));
  EXPECT_EQ(quint8(255), FloatToQuantized<quint8>(2.0f, 0.0f, 2.0f));
  EXPECT_EQ(quint8(0), FloatToQuantized<quint8>(-128.0f, -128.0f, 127.0f));
  EXPECT_EQ(quint8(128), FloatToQuantized<quint8>(0.0f, -128.0f, 127.0f));
  EXPECT_EQ(quint8(255), FloatToQuantized<quint8>(127.0f, -128.0f, 127.0f));
  EXPECT_EQ(quint8(0), FloatToQuantized<quint8>(1.0f, 1.0f, 256.0f));
  EXPECT_EQ(quint8(127), FloatToQuantized<quint8>(128.0f, 1.0f, 256.0f));
  EXPECT_EQ(quint8(255), FloatToQuantized<quint8>(256.0f, 1.0f, 256.0f));

  const int int32_min = std::numeric_limits<int>::min();
  const int int32_max = std::numeric_limits<int>::max();

  EXPECT_EQ(qint32(int32_min),
            FloatToQuantized<qint32>(-128.0f, -128.0f, 128.0f));
  EXPECT_EQ(qint32(0), FloatToQuantized<qint32>(0.0f, -128.0f, 128.0f));
  EXPECT_EQ(qint32(int32_max),
            FloatToQuantized<qint32>(128.0f, -128.0f, 128.0f));
}

void TestQuantizedToFloat() {
  EXPECT_LT(fabsf(0.0f - QuantizedToFloat<quint8>(0, 0.0f, 1.0f)), 1 / 255.0f);
  EXPECT_LT(fabsf(0.0f - QuantizedToFloat<quint8>(0, 0.0f, 2.0f)), 1 / 255.0f);
  EXPECT_LT(fabsf(0.5f - QuantizedToFloat<quint8>(127, 0.0f, 1.0f)),
            1 / 255.0f);
  EXPECT_LT(fabsf(1.0f - QuantizedToFloat<quint8>(127, 0.0f, 2.0f)),
            1 / 255.0f);
  EXPECT_LT(fabsf(1.0f - QuantizedToFloat<quint8>(255, 0.0f, 1.0f)),
            1 / 255.0f);
  EXPECT_LT(fabsf(2.0f - QuantizedToFloat<quint8>(255, 0.0f, 2.0f)),
            1 / 255.0f);
  EXPECT_LT(fabsf(1.0f - QuantizedToFloat<quint8>(0, 1.0f, 256.0f)),
            1 / 255.0f);
  EXPECT_LT(fabsf(128.0f - QuantizedToFloat<quint8>(127, 1.0f, 256.0f)),
            1 / 255.0f);
  EXPECT_LT(fabsf(256.0f - QuantizedToFloat<quint8>(255, 1.0f, 256.0f)),
            1 / 255.0f);

  const int int32_min = std::numeric_limits<int>::min();
  const int int32_max = std::numeric_limits<int>::max();

  EXPECT_NEAR(-1.0f, QuantizedToFloat<qint32>(qint32(int32_min), -1.0f, 1.0f),
              1e-5f);
  EXPECT_NEAR(0.0f, QuantizedToFloat<qint32>(qint32(0), -1.0f, 1.0f), 1e-5f);
  EXPECT_NEAR(1.0f, QuantizedToFloat<qint32>(qint32(int32_max), -1.0f, 1.0f),
              1e-5f);

  EXPECT_NEAR(32.0f, QuantizedToFloat<qint32>(qint32(32), int32_min, int32_max),
              1.0);
}

void TestAvoidBias() {
  for (int i = 0; i < 256; ++i) {
    const float as_float = QuantizedToFloat<quint8>(i, 0.0f, 2.0f);
    const int back_to_int = FloatToQuantized<quint8>(as_float, 0.0f, 2.0f);
    EXPECT_EQ(i, back_to_int);
  }

  // All perfectly representable floats should survive quantization, even
  // if we pick a range where min is not itself perfectly representable.
  const float min = -0.1375f;
  const float max = 1.1385f;
  const float step_size = (max - min) / 255.0f;
  const float tolerance = step_size / 1000.0f;
  // This is the smallest perfectly representable float in the range.
  float first_float = ceil(min / step_size) * step_size;
  for (float f = first_float; f <= max; f += step_size) {
    const int as_int = FloatToQuantized<quint8>(f, min, max);
    const float back_to_float = QuantizedToFloat<quint8>(as_int, min, max);
    EXPECT_NEAR(f, back_to_float, tolerance);
  }
}

void TestRequantizeInNewRange() {
  // These are the float values we're going to test the conversions on.
  const size_t values_count = 6;
  const float values[values_count] = {0.0f, 0.5f, 1.0f, -1.0f, 127.0f, 255.0f};
  // These are the input and output ranges we'll test.
  const size_t ranges_count = 4;
  const float ranges[ranges_count][4] = {
      {0.0f, 255.0f, 0.0f, 255.0f},
      {0.0f, 1.0f, 0.0f, 1.0f},
      {-1.0f, 1.0f, -1.0f, 1.0f},
      {-1.0f, 1.0f, -255.0f, 255.0f},
  };
  for (size_t value_index = 0; value_index < values_count; ++value_index) {
    const float value_float = values[value_index];
    for (size_t range_index = 0; range_index < ranges_count; ++range_index) {
      const float input_min = ranges[range_index][0];
      const float input_max = ranges[range_index][1];
      const float output_min = ranges[range_index][2];
      const float output_max = ranges[range_index][3];
      const quint8 input_value =
          FloatToQuantized<quint8>(value_float, input_min, input_max);
      // Here we convert the quantized input value to what we expect
      // to get in the output range.
      const qint32 expected_value = FloatToQuantized<qint32>(
          QuantizedToFloat(input_value, input_min, input_max), output_min,
          output_max);
      EXPECT_EQ(expected_value,
                (RequantizeInNewRange<quint8, qint32>(
                    input_value, input_min, input_max, output_min, output_max)))
          << "value_float=" << value_float << ", input_min=" << input_min
          << ", input_max=" << input_max << ", output_min=" << output_min
          << ", output_max=" << output_max;
    }
  }
}

void TestRequantizeInNewRangeRealData() {
  const float input_min = -0.739539f;
  const float input_max = 0.641057f;
  const float output_min = -2381.49f;
  const float output_max = 2207.6f;

  // Start with a value that can be perfectly represented in 8 bits. This
  // ensures minimal quantization error, and allows us to use EXPECT_LT below.
  const float value_as_float =
      QuantizedToFloat<quint8>(83, input_min, input_max);

  const quint8 value_as_quint8 =
      FloatToQuantized<quint8>(value_as_float, input_min, input_max);
  EXPECT_EQ(quint8(83), value_as_quint8);
  const qint32 actual_output = RequantizeInNewRange<quint8, qint32>(
      value_as_quint8, input_min, input_max, output_min, output_max);
  const qint32 value_as_qint32 =
      FloatToQuantized<qint32>(value_as_float, output_min, output_max);
  EXPECT_LT(std::abs(value_as_qint32 - actual_output), 10);
}

void TestRequantizeInNewRange32To8Bit() {
  // These are the float values we're going to test the conversions on.
  const size_t values_count = 6;
  const float values[values_count] = {0.0f, 0.45f, 1.0f, -1.0f, 127.0f, 255.0f};
  // These are the input and output ranges we'll test.
  const size_t ranges_count = 4;
  const float ranges[ranges_count][4] = {
      {0.0f, 255.0f, 0.0f, 255.0f},
      {0.0f, 1.0f, 0.0f, 1.0f},
      {-1.0f, 1.0f, -1.0f, 1.0f},
      {-1.0f, 1.0f, -255.0f, 255.0f},
  };
  for (size_t value_index = 0; value_index < values_count; ++value_index) {
    const float value_float = values[value_index];
    for (size_t range_index = 0; range_index < ranges_count; ++range_index) {
      const float input_min = ranges[range_index][0];
      const float input_max = ranges[range_index][1];
      const float output_min = ranges[range_index][2];
      const float output_max = ranges[range_index][3];
      const qint32 input_value =
          FloatToQuantized<qint32>(value_float, input_min, input_max);
      // Here we convert the quantized input value to what we expect
      // to get in the output range.
      const quint8 expected_value = FloatToQuantized<quint8>(
          QuantizedToFloat(input_value, input_min, input_max), output_min,
          output_max);
      EXPECT_EQ(expected_value,
                (RequantizeInNewRange<qint32, quint8>(
                    input_value, input_min, input_max, output_min, output_max)))
          << "input_value=" << input_value << ", value_float=" << value_float
          << ", input_min=" << input_min << ", input_max=" << input_max
          << ", output_min=" << output_min << ", output_max=" << output_max;
    }
  }
}

void TestRequantizeManyInNewRange32To8Bit() {
  TestRequantizeManyInNewRange32To8Bit(nullptr /* eigen_device */);
}

void TestRequantizeManyInNewRange32To8BitUsingEigen() {
  thread::ThreadPool threadpool(Env::Default(), "test", 2 /* num_threads */);
  EigenThreadPoolWrapper wrapper(&threadpool);
  Eigen::ThreadPoolDevice eigen_device(&wrapper, 2 /* num_threads */);
  TestRequantizeManyInNewRange32To8Bit(&eigen_device);
}

void TestRequantizeManyInNewRange32To8BitEigenVsNonEigen() {
  TestRequantizeManyInNewRangeEigenVsNonEigen<qint32, quint8>();
}

void TestRequantizeManyInNewRange32To8BitSignedEigenVsNonEigen() {
  TestRequantizeManyInNewRangeEigenVsNonEigen<qint32, qint8>();
}

void TestFloatTensorToQuantized() {
  const int input_width = 3;
  const int input_height = 3;
  const float input_min = 0.0f;
  const float input_max = 255.0f;
  Tensor input(DT_FLOAT, TensorShape({input_height, input_width}));
  test::FillValues<float>(&input, {1.0f, -1.0f, 10.0f, 10.25f, 127.0f, 255.0f,
                                   512.0f, 0.0f, 23.0f});
  Tensor expected(DT_QUINT8, TensorShape({input_height, input_width}));
  test::FillValues<quint8>(&expected, {1, 0, 10, 10, 127, 255, 255, 0, 23});
  Tensor output = FloatTensorToQuantized<quint8>(input, input_min, input_max);
  test::ExpectTensorEqual<quint8>(expected, output);
}

// Verify that FloatToQuantizedInPlaceUsingEigen is same result as
// FloatToQuantized.
void TestFloatToQuantizedInPlaceUsingEigen() {
  thread::ThreadPool threadpool(Env::Default(), "test", 2 /* num_threads */);
  EigenThreadPoolWrapper wrapper(&threadpool);
  Eigen::ThreadPoolDevice eigen_device(&wrapper, 2 /* num_threads */);

  TestFloatToQuantizedInPlaceUsingEigen<quint8>(&eigen_device);
  TestFloatToQuantizedInPlaceUsingEigen<qint8>(&eigen_device);
  TestFloatToQuantizedInPlaceUsingEigen<quint16>(&eigen_device);
  TestFloatToQuantizedInPlaceUsingEigen<qint16>(&eigen_device);
}

void TestOverflowWithEigen() {
  thread::ThreadPool threadpool(Env::Default(), "test", 2 /* num_threads */);
  EigenThreadPoolWrapper wrapper(&threadpool);
  Eigen::ThreadPoolDevice eigen_device(&wrapper, 2 /* num_threads */);

  const int num_vals = 4;
  const float input_min = 0.0f;
  const float input_max = 2400.0f;
  TensorShape shape({num_vals});
  Tensor input(DT_FLOAT, shape);
  test::FillValues<float>(&input, {-100.f, 0.f, 2400.0f, 2400.0f});
  Tensor expected(DT_QINT32, shape);
  // Note that the positive expected values are not the highest int32 value,
  // because the implementation does a bounds check using float, not int32.
  test::FillValues<qint32>(
      &expected,
      {static_cast<int32>(-2147483648), static_cast<int32>(-2147483648),
       static_cast<int32>(2147483520), static_cast<int32>(2147483520)});

  FloatToQuantizedStruct<qint32> f2q(input_min, input_max);
  Tensor output(DT_QINT32, shape);
  auto input_array = input.flat<float>();
  output.flat<qint32>() = QUANTIZE_WITH_EIGEN(input_array, f2q, qint32);
  test::ExpectTensorEqual<qint32>(expected, output);
}

void TestQuantizedTensorToFloat() {
  const int input_width = 3;
  const int input_height = 3;
  const float input_min = -128.0f;
  const float input_max = 127.0f;
  Tensor input(DT_QUINT8, TensorShape({input_height, input_width}));
  test::FillValues<quint8>(&input, {0, 128, 255, 23, 24, 25, 243, 244, 245});
  Tensor expected(DT_FLOAT, TensorShape({input_height, input_width}));
  test::FillValues<float>(&expected, {-128.0f, 0.0f, 127.0f, -105.0f, -104.0f,
                                      -103.0f, 115.0f, 116.0f, 117.0f});
  Tensor output = QuantizedTensorToFloat<quint8>(input, input_min, input_max);
  test::ExpectTensorEqual<float>(expected, output);

  // Test for signed 32 bit.
  // Note that we cannot use input mins and maxes that match the range because
  // there are 7 too few bits of mantissa accuracy in floats to represent
  // 2**31-1 accurately.  Also there is no good fraction to use because 2**31-1
  // is a mersenne prime.
  Tensor input32(DT_QINT32, TensorShape({input_height, input_width}));

  // Use a quantizer centered at 0.
  float input_range = 1LL << 25;
  int64 num_levels = (1LL << 32) - 1;
  float step_size =
      static_cast<float>(static_cast<double>(input_range) / num_levels);
  float q_compatible_min_value =
      roundf(-(input_range / 2.0) / step_size) * step_size;
  float q_compatible_max_value = q_compatible_min_value + input_range;
  test::FillValues<qint32>(&input32, {-16384, 0, 16256, -13440, -13312, -13184,
                                      14720, 14848, 14976});

  Tensor output32 = QuantizedTensorToFloat<qint32>(
      input32, q_compatible_min_value, q_compatible_max_value);
  test::FillValues<float>(&expected, {-128.0f, 0.0f, 127.0f, -105.0f, -104.0f,
                                      -103.0f, 115.0f, 116.0f, 117.0f});
  // The quantization error in going between 1<<25 and 1<<32 levels.
  const double kTolerance = .5 / 128.0;
  test::ExpectTensorNear<float>(expected, output32, kTolerance);
}

// Verify that QuantizedToFloatInPlaceUsingEigen is same result as
// QuantizedToFloat.
void TestQuantizedToFloatInPlaceUsingEigen() {
  thread::ThreadPool threadpool(Env::Default(), "test", 2 /* num_threads */);
  EigenThreadPoolWrapper wrapper(&threadpool);
  Eigen::ThreadPoolDevice eigen_device(&wrapper, 2 /* num_threads */);

  TestQuantizedToFloatInPlaceUsingEigen<quint8>(&eigen_device);
  TestQuantizedToFloatInPlaceUsingEigen<qint8>(&eigen_device);
  TestQuantizedToFloatInPlaceUsingEigen<quint16>(&eigen_device);
  TestQuantizedToFloatInPlaceUsingEigen<qint16>(&eigen_device);
  TestQuantizedToFloatInPlaceUsingEigen<qint32>(&eigen_device);
}

void BenchmarkRequantizeManyInNewRange() {
  TimeRequantizeManyInNewRange<qint32, quint8>(1000, 1000, false);
  TimeRequantizeManyInNewRange<qint32, quint8>(1000, 1000, true);
  TimeRequantizeManyInNewRange<qint32, quint8>(100000, 100, false);
  TimeRequantizeManyInNewRange<qint32, quint8>(100000, 100, true);
  TimeRequantizeManyInNewRange<qint32, quint8>(1000000, 10, false);
  TimeRequantizeManyInNewRange<qint32, quint8>(1000000, 10, true);

  TimeRequantizeManyInNewRange<quint8, qint32>(1000, 1000, false);
  TimeRequantizeManyInNewRange<quint8, qint32>(1000, 1000, true);
  TimeRequantizeManyInNewRange<quint8, qint32>(100000, 100, false);
  TimeRequantizeManyInNewRange<quint8, qint32>(100000, 100, true);
  TimeRequantizeManyInNewRange<quint8, qint32>(1000000, 10, false);
  TimeRequantizeManyInNewRange<quint8, qint32>(1000000, 10, true);
}

#ifdef QUANTIZATION_UTILS_USE_NEON
template <int POW>
void TestDivide64x2Pow(int64 val, int64 ref) {
  const int64x2_t val_64x2 = vmovq_n_s64(val);
  const int64x2_t ret = Divide64x2Pow<POW>(val_64x2);
  // TODO(b/70947959) Change back to int64 when possible
  int64_t rets[2];
  vst1q_s64(rets, ret);
  EXPECT_EQ(rets[0], ref);
  EXPECT_EQ(rets[1], ref);
  VLOG(1) << "div: val " << val << ", " << ref;
}

template <int POW>
void TestDivide64x2PowRound(int64 val, int64 ref) {
  const int64x2_t val_64x2 = vmovq_n_s64(val);
  const int64x2_t shifted = Divide64x2PowRound<POW>(val_64x2);
  // TODO(b/70947959) Change back to int64 when possible
  int64_t rets[2];
  vst1q_s64(rets, shifted);
  EXPECT_EQ(rets[0], ref) << "in = " << val << ", " << POW
                          << ", act = " << rets[0] << ", ref = " << ref;
  EXPECT_EQ(rets[1], ref);
  VLOG(1) << "div round: " << val << ", " << rets[0];
}

void TestDivide64x2PowAll() {
  for (int64 i = 0; i < 1000; ++i) {
    TestDivide64x2PowRound<1>(
        i, static_cast<int64>(static_cast<float>(i) / 2.0f + 0.5f));
    TestDivide64x2PowRound<1>(
        -i, static_cast<int64>(static_cast<float>(-i) / 2.0f - 0.5f));
    TestDivide64x2PowRound<2>(
        i, static_cast<int64>(static_cast<float>(i) / 4.0f + 0.5f));
    TestDivide64x2PowRound<2>(
        -i, static_cast<int64>(static_cast<float>(-i) / 4.0f - 0.5f));
    TestDivide64x2PowRound<4>(
        i, static_cast<int64>(static_cast<float>(i) / 16.0f + 0.5f));
    TestDivide64x2PowRound<4>(
        -i, static_cast<int64>(static_cast<float>(-i) / 16.0f - 0.5f));
    TestDivide64x2PowRound<8>(
        i, static_cast<int64>(static_cast<float>(i) / 256.0f + 0.5f));
    TestDivide64x2PowRound<8>(
        -i, static_cast<int64>(static_cast<float>(-i) / 256.0f - 0.5f));
    TestDivide64x2PowRound<16>(
        i, static_cast<int64>(static_cast<float>(i) / 65536.0f + 0.5f));
    TestDivide64x2PowRound<16>(
        -i, static_cast<int64>(static_cast<float>(-i) / 65536.0f - 0.5f));
  }

  TestDivide64x2Pow<2>(100, 25);
  TestDivide64x2Pow<2>(-100, -25);
  TestDivide64x2Pow<4>(100, 6);
  TestDivide64x2Pow<4>(-100, -6);

  for (int64 i = 0; i < 1000; ++i) {
    TestDivide64x2Pow<1>(i, i / 2);
    TestDivide64x2Pow<1>(-i, -i / 2);
    TestDivide64x2Pow<2>(i, i / 4);
    TestDivide64x2Pow<2>(-i, -i / 4);
    TestDivide64x2Pow<4>(i, i / 16);
    TestDivide64x2Pow<4>(-i, -i / 16);
    TestDivide64x2Pow<8>(i, i / 256);
    TestDivide64x2Pow<8>(-i, -i / 256);
    TestDivide64x2Pow<16>(i, i / 65536);
    TestDivide64x2Pow<16>(-i, -i / 65536);
  }
}

uint8x8_t To8x8(uint8 val) { return vmov_n_u8(val); }

int16x8_t To16x8(int16 val) { return vmovq_n_s16(val); }

int32x2_t To32x2(int32 val) {
  int32 vals[2];
  vals[0] = val;
  vals[1] = val;
  return vld1_s32(vals);
}

template <int RESOLUTION, typename T_CALC>
T_CALC ComputeRefLerp(T_CALC top_left, T_CALC top_right, T_CALC bottom_left,
                      T_CALC bottom_right, T_CALC x_lerp, T_CALC y_lerp) {
  constexpr T_CALC RESOLUTION_POW = (1 << RESOLUTION);
  const T_CALC top =
      top_left * RESOLUTION_POW + (top_right - top_left) * x_lerp;
  const T_CALC bottom =
      bottom_left * RESOLUTION_POW + (bottom_right - bottom_left) * x_lerp;
  const T_CALC out = top + (bottom - top) / RESOLUTION_POW * y_lerp;
  return (out + RESOLUTION_POW / 2) / RESOLUTION_POW;
}

template <int RESOLUTION>
void TestComputeLerp8x8(uint8 top_left, uint8 top_right, uint8 bottom_left,
                        uint8 bottom_right, int16 x_lerp, int16 y_lerp) {
  uint8x8_t top_left8x8 = To8x8(top_left);
  uint8x8_t top_right8x8 = To8x8(top_right);
  uint8x8_t bottom_left8x8 = To8x8(bottom_left);
  uint8x8_t bottom_right8x8 = To8x8(bottom_right);
  int16x8_t x_lerp16x8 = To16x8(x_lerp);
  int16x8_t y_lerp16x8 = To16x8(y_lerp);
  const uint8x8_t ret =
      ComputeLerp8x8<RESOLUTION>(top_left8x8, top_right8x8, bottom_left8x8,
                                 bottom_right8x8, x_lerp16x8, y_lerp16x8);

  uint8 rets[8];
  vst1_u8(rets, ret);

  const int16 ref = ComputeRefLerp<RESOLUTION, int16>(
      static_cast<int16>(top_left), static_cast<int16>(top_right),
      static_cast<int16>(bottom_left), static_cast<int16>(bottom_right), x_lerp,
      y_lerp);

  for (int i = 0; i < 8; ++i) {
    EXPECT_EQ(ref, static_cast<int16>(rets[i]));
  }

  VLOG(1) << "Lerp(8): " << static_cast<int>(top_left) << ", "
          << static_cast<int>(top_right) << ", "
          << static_cast<int>(bottom_left) << ", "
          << static_cast<int>(bottom_right) << ", " << x_lerp << ", " << y_lerp
          << ", " << static_cast<int>(rets[0]) << ", " << ref;
}

template <int RESOLUTION>
void TestComputeLerp32x2(int32 top_left, int32 top_right, int32 bottom_left,
                         int32 bottom_right, int32 x_lerp, int32 y_lerp) {
  int32x2_t top_left32x2 = To32x2(top_left);
  int32x2_t top_right32x2 = To32x2(top_right);
  int32x2_t bottom_left32x2 = To32x2(bottom_left);
  int32x2_t bottom_right32x2 = To32x2(bottom_right);
  int32x2_t x_lerp32x2 = To32x2(x_lerp);
  int32x2_t y_lerp32x2 = To32x2(y_lerp);
  const int32x2_t ret =
      ComputeLerp32x2<RESOLUTION>(top_left32x2, top_right32x2, bottom_left32x2,
                                  bottom_right32x2, x_lerp32x2, y_lerp32x2);
  int32 rets[2];
  vst1_s32(rets, ret);
  const int64 ref = ComputeRefLerp<RESOLUTION, int64>(
      static_cast<int64>(top_left), static_cast<int64>(top_right),
      static_cast<int64>(bottom_left), static_cast<int64>(bottom_right),
      static_cast<int64>(x_lerp), static_cast<int64>(y_lerp));
  EXPECT_EQ(static_cast<int64>(rets[0]), ref);
  VLOG(1) << "Lerp(32): " << top_left << ", " << top_right << ", "
          << bottom_left << ", " << bottom_right << ", " << x_lerp << ", "
          << y_lerp << ", " << rets[0] << ", " << ref;
}

void TestComputeLerp4xAll() {
  constexpr int32 RESOLUTION_32 = 30;
  constexpr int32 RESOLUTION_MULT_32 = (1 << RESOLUTION_32);
  constexpr int32 HALF_32 = RESOLUTION_MULT_32 / 2;
  TestComputeLerp32x2<RESOLUTION_32>(100, 200, 300, 400, HALF_32, HALF_32);
  TestComputeLerp32x2<RESOLUTION_32>(100, 100, 200, 200, HALF_32, HALF_32);
  TestComputeLerp32x2<RESOLUTION_32>(200, 200, 100, 100, HALF_32, HALF_32);
  TestComputeLerp32x2<RESOLUTION_32>(100, 200, 100, 200, HALF_32, HALF_32);
  TestComputeLerp32x2<RESOLUTION_32>(200, 100, 200, 100, HALF_32, HALF_32);
  TestComputeLerp32x2<RESOLUTION_32>(200, 200, 200, 200, HALF_32, HALF_32);

  constexpr int32 RESOLUTION_8 = 7;
  constexpr int32 RESOLUTION_MULT_8 = (1 << RESOLUTION_8);
  constexpr int32 HALF_8 = RESOLUTION_MULT_8 / 2;
  TestComputeLerp8x8<RESOLUTION_8>(10, 20, 30, 40, HALF_8, HALF_8);
  TestComputeLerp8x8<RESOLUTION_8>(100, 100, 200, 200, HALF_8, HALF_8);
  TestComputeLerp8x8<RESOLUTION_8>(200, 200, 100, 100, HALF_8, HALF_8);
  TestComputeLerp8x8<RESOLUTION_8>(100, 200, 100, 200, HALF_8, HALF_8);
  TestComputeLerp8x8<RESOLUTION_8>(200, 100, 200, 100, HALF_8, HALF_8);
  TestComputeLerp8x8<RESOLUTION_8>(200, 200, 200, 200, HALF_8, HALF_8);
}

#endif

}  // namespace tensorflow

#define RUN_TEST(t) \
  TEST(QuantizationUtilsTest, t) { tensorflow::t(); }

RUN_TEST(TestFloatToQuantized);
RUN_TEST(TestQuantizedToFloat);
RUN_TEST(TestAvoidBias);
RUN_TEST(TestRequantizeInNewRange);
RUN_TEST(TestRequantizeInNewRangeRealData);
RUN_TEST(TestRequantizeInNewRange32To8Bit);
RUN_TEST(TestRequantizeManyInNewRange32To8Bit);
RUN_TEST(TestRequantizeManyInNewRange32To8BitUsingEigen);
RUN_TEST(TestRequantizeManyInNewRange32To8BitEigenVsNonEigen);
RUN_TEST(TestRequantizeManyInNewRange32To8BitSignedEigenVsNonEigen);
RUN_TEST(TestFloatTensorToQuantized);
RUN_TEST(TestRequantizeManyInNewRange8To32Bit);
RUN_TEST(TestFloatToQuantizedInPlaceUsingEigen);
RUN_TEST(TestOverflowWithEigen);
RUN_TEST(TestQuantizedTensorToFloat);
RUN_TEST(TestQuantizedToFloatInPlaceUsingEigen);

#if defined(__ANDROID__)

RUN_TEST(BenchmarkRequantizeManyInNewRange);

#ifdef QUANTIZATION_UTILS_USE_NEON

RUN_TEST(TestDivide64x2PowAll);
RUN_TEST(TestComputeLerp4xAll);

#endif  // QUANTIZATION_UTILS_USE_NEON

#endif  // __ANDROID__

int main(int argc, char** argv) {
  // On Linux, add: FLAGS_logtostderr = true;
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}