aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/priority_queue.cc
blob: 4c406fc1ed9f86477a7c0eb7c88f7dd7833f796c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// See docs in ../ops/data_flow_ops.cc.

#include <deque>
#include <queue>
#include <vector>

#include "tensorflow/core/framework/node_def.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/kernels/priority_queue.h"
#include "tensorflow/core/kernels/queue_base.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/priority_queue_util.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/types.h"

namespace tensorflow {

PriorityQueue::PriorityQueue(int32 capacity,
                             const DataTypeVector& component_dtypes,
                             const std::vector<TensorShape>& component_shapes,
                             const string& name)
    : TypedQueue(capacity, component_dtypes, component_shapes, name) {}

Status PriorityQueue::Initialize() {
  Status s = TypedQueue::Initialize();
  if (!s.ok()) return s;

  mutex_lock lock(mu_);
  if (component_dtypes_[0] != DT_INT64) {
    return errors::InvalidArgument(
        "PriorityQueue priority index component must be type int64, but "
        "dtype is: ",
        DataTypeString(component_dtypes_[0]));
  }
  if (specified_shapes() && !TensorShapeUtils::IsScalar(component_shapes_[0])) {
    return errors::InvalidArgument(
        "PriorityQueue priority index component must be a scalar, but shape "
        "is: ",
        component_shapes_[0].DebugString());
  }
  return Status::OK();
}

void PriorityQueue::DequeueLocked(OpKernelContext* ctx, Tuple* tuple) {
  DCHECK_GT(queues_[0].size(), 0);
  (*tuple).reserve(num_components());
  for (int i = 0; i < num_components(); ++i) {
    PersistentTensor persistent_tensor = gtl::ConsumeTop(&queues_[i]).second;
    (*tuple).push_back(*persistent_tensor.AccessTensor(ctx));
  }
}

void PriorityQueue::TryEnqueue(const Tuple& tuple, OpKernelContext* ctx,
                               DoneCallback callback) {
  CancellationManager* cm = ctx->cancellation_manager();
  CancellationToken token = cm->get_cancellation_token();
  bool already_cancelled;
  {
    mutex_lock l(mu_);
    already_cancelled = !cm->RegisterCallback(
        token, [this, cm, token]() { Cancel(kEnqueue, cm, token); });
    if (!already_cancelled) {
      enqueue_attempts_.emplace_back(
          1, callback, ctx, cm, token,
          [tuple, this](Attempt* attempt) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
            if (closed_) {
              attempt->context->SetStatus(
                  errors::Cancelled("PriorityQueue '", name_, "' is closed."));
              return kComplete;
            }
            if (queues_[0].size() < static_cast<size_t>(capacity_)) {
              if (!TensorShapeUtils::IsScalar(tuple[0].shape())) {
                attempt->context->SetStatus(errors::InvalidArgument(
                    "Expected the priority element to be a scalar, but "
                    "received shape: ",
                    tuple[0].shape().DebugString()));
                return kComplete;
              }
              const int64 priority = tuple[0].scalar<int64>()();
              for (int i = 0; i < num_components(); ++i) {
                queues_[i].emplace(priority, PersistentTensor(tuple[i]));
              }
              return kComplete;
            } else {
              return kNoProgress;
            }
          });
    }
  }
  if (!already_cancelled) {
    FlushUnlocked();
  } else {
    ctx->SetStatus(errors::Cancelled("Enqueue operation was cancelled"));
    callback();
  }
}

/* static */
Status PriorityQueue::GetElementComponentFromBatch(
    const PriorityQueue::Tuple& tuple, int index, int component,
    OpKernelContext* ctx, PersistentTensor* out_tensor) {
  TensorShape element_shape(tuple[component].shape());
  element_shape.RemoveDim(0);
  Tensor* element_access = nullptr;
  TF_RETURN_IF_ERROR(ctx->allocate_persistent(
      tuple[component].dtype(), element_shape, out_tensor, &element_access));
  TF_RETURN_IF_ERROR(
      CopySliceToElement(tuple[component], element_access, index));
  return Status::OK();
}

void PriorityQueue::TryEnqueueMany(const Tuple& tuple, OpKernelContext* ctx,
                                   DoneCallback callback) {
  const int64 batch_size = tuple[0].dim_size(0);
  if (batch_size == 0) {
    callback();
    return;
  }

  CancellationManager* cm = ctx->cancellation_manager();
  CancellationToken token = cm->get_cancellation_token();
  bool already_cancelled;
  {
    mutex_lock l(mu_);
    already_cancelled = !cm->RegisterCallback(
        token, [this, cm, token]() { Cancel(kEnqueue, cm, token); });
    if (!already_cancelled) {
      enqueue_attempts_.emplace_back(
          batch_size, callback, ctx, cm, token,
          [tuple, this, ctx](Attempt* attempt) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
            if (closed_) {
              attempt->context->SetStatus(
                  errors::Cancelled("PriorityQueue '", name_, "' is closed."));
              return kComplete;
            }
            RunResult result = kNoProgress;
            while (queues_[0].size() < static_cast<size_t>(capacity_)) {
              result = kProgress;
              const int index =
                  tuple[0].dim_size(0) - attempt->elements_requested;

              PersistentTensor priority_element;
              attempt->context->SetStatus(GetElementComponentFromBatch(
                  tuple, index, 0, attempt->context, &priority_element));
              if (!attempt->context->status().ok()) return kComplete;
              Tensor* priority_tensor = priority_element.AccessTensor(ctx);
              if (!TensorShapeUtils::IsScalar(priority_tensor->shape())) {
                attempt->context->SetStatus(errors::InvalidArgument(
                    "Expected the priority element to be a scalar, but "
                    "received shape: ",
                    priority_tensor->shape().DebugString()));
                return kComplete;
              }
              const int64 priority = priority_tensor->scalar<int64>()();
              for (int i = 0; i < num_components(); ++i) {
                PersistentTensor element;
                attempt->context->SetStatus(GetElementComponentFromBatch(
                    tuple, index, i, attempt->context, &element));
                if (!attempt->context->status().ok()) return kComplete;
                queues_[i].emplace(priority, element);
              }
              --attempt->elements_requested;
              if (attempt->elements_requested == 0) {
                return kComplete;
              }
            }
            return result;
          });
    }
  }
  if (!already_cancelled) {
    FlushUnlocked();
  } else {
    ctx->SetStatus(errors::Cancelled("Enqueue operation was cancelled"));
    callback();
  }
}

void PriorityQueue::TryDequeue(OpKernelContext* ctx,
                               CallbackWithTuple callback) {
  CancellationManager* cm = ctx->cancellation_manager();
  CancellationToken token = cm->get_cancellation_token();
  bool already_cancelled;
  {
    mutex_lock l(mu_);
    already_cancelled = !cm->RegisterCallback(
        token, [this, cm, token]() { Cancel(kDequeue, cm, token); });
    if (!already_cancelled) {
      // TODO(josh11b): This makes two copies of callback, avoid this if possible.
      dequeue_attempts_.emplace_back(
          1, [callback]() { callback(Tuple()); }, ctx, cm, token,
          [callback, this](Attempt* attempt) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
            const int32 s = queues_[0].size();
            if (closed_ && s == 0) {
              attempt->context->SetStatus(errors::OutOfRange(
                  "PriorityQueue '", name_, "' is closed and has ",
                  "insufficient elements (requested ", 1, ", current size ", s,
                  ")"));
              return kComplete;
            }
            if (s > 0) {
              Tuple tuple;
              DequeueLocked(attempt->context, &tuple);
              attempt->done_callback = [callback, tuple]() { callback(tuple); };
              return kComplete;
            } else {
              return kNoProgress;
            }
          });
    }
  }
  if (!already_cancelled) {
    FlushUnlocked();
  } else {
    ctx->SetStatus(errors::Cancelled("Dequeue operation was cancelled"));
    callback(Tuple());
  }
}

void PriorityQueue::TryDequeueMany(int num_elements, OpKernelContext* ctx,
                                   bool allow_small_batch,
                                   CallbackWithTuple callback) {
  if (!specified_shapes()) {
    ctx->SetStatus(
        errors::InvalidArgument("PriorityQueue's DequeueMany requires the "
                                "components to have specified shapes."));
    callback(Tuple());
    return;
  }
  if (num_elements == 0) {
    Tuple tuple;
    tuple.reserve(num_components());
    for (int i = 0; i < num_components(); ++i) {
      // TODO(josh11b,misard): Switch to allocate_output().  Problem is
      // this breaks the abstraction boundary since we don't *really*
      // know if and how the Tensors in the tuple we pass to callback
      // correspond to the outputs of *ctx.  For example, the
      // ReaderRead Op uses TryDequeue() to get a filename out of a
      // queue that is used internally by the reader and is not
      // associated with any output of the ReaderRead.
      // mrry@ adds:
      // Maybe we need to pass a std::function<Tensor*(...)> (or
      // better signature) that calls the appropriate allocator
      // function in addition to ctx?  (Or support a shim Allocator
      // that has an internal OpKernelContext*, and dispatches to the
      // appropriate method?)
      // misard@ adds:
      // I don't see that a std::function would help. The problem is
      // that at this point (allocation time) the system doesn't know
      // what is going to happen to the element read out of the
      // queue. As long as we keep the generality that TensorFlow Ops
      // do their own dynamic allocation in arbitrary C++ code, we
      // need to preserve robustness to allocating output Tensors with
      // the 'wrong' attributes, and fixing up with a copy. The only
      // improvement I can see here in the future would be to support
      // an optimized case where the queue 'knows' what attributes to
      // use, and plumbs them through here.
      Tensor element;
      Status status = ctx->allocate_temp(component_dtypes_[i],
                                         ManyOutShape(i, 0), &element);
      if (!status.ok()) {
        ctx->SetStatus(status);
        callback(Tuple());
        return;
      }
      tuple.emplace_back(element);
    }
    callback(tuple);
    return;
  }

  CancellationManager* cm = ctx->cancellation_manager();
  CancellationToken token = cm->get_cancellation_token();
  bool already_cancelled;
  {
    mutex_lock l(mu_);
    already_cancelled = !cm->RegisterCallback(
        token, [this, cm, token]() { Cancel(kDequeue, cm, token); });
    if (!already_cancelled) {
      // TODO(josh11b): This makes two copies of callback, avoid this if possible.
      dequeue_attempts_.emplace_back(
          num_elements, [callback]() { callback(Tuple()); }, ctx, cm, token,
          [callback, this,
           allow_small_batch](Attempt* attempt) EXCLUSIVE_LOCKS_REQUIRED(mu_) {
            int32 s = queues_[0].size();
            // Return OutOfRange if closed and there are fewer elements
            // available than requested.  *Unless* allow_small_batch
            // is true, in which case we return as many elements as
            // possible.
            if (closed_) {
              if (s == 0 ||
                  (!allow_small_batch && s < attempt->elements_requested)) {
                attempt->context->SetStatus(errors::OutOfRange(
                    "PriorityQueue '", name_, "' is closed and has ",
                    "insufficient elements (requested ",
                    attempt->elements_requested, ", current size ", s, ")"));
                return kComplete;
              }
            }

            // The PriorityQueue is expected to always return a
            // sorted set of entries.  In order to do this, the underlying
            // queue must have at least this many entries already.
            // Doing the dynamic thing and pulling out a portion at a
            // time leads to unordered output in calls to DequeueMany.
            //
            // An alternative solution is to store the attempt tuple
            // entries in an identical priority_queue and push onto
            // this queue dynamically, then when it is full, do all
            // the Tensor concatenation at the very end.
            // TODO(ebrevdo): Change approach if this leads to locking issues.
            if (s < attempt->elements_requested) {
              // If we have no elements at all, then wait.
              // Otherwise proceed if closed and allow small batch is true.
              // Otherwise wait until we have more enqueued elements.
              if (s == 0 || !(closed_ && allow_small_batch)) {
                return kNoProgress;
              }
            }

            RunResult result = kNoProgress;
            for (; s > 0; --s) {
              if (attempt->tuple.empty()) {
                // Only allocate tuple when we have something to dequeue
                // so we don't use excessive memory when there are many
                // blocked dequeue attempts waiting.
                attempt->tuple.reserve(num_components());
                for (int i = 0; i < num_components(); ++i) {
                  const TensorShape shape =
                      ManyOutShape(i, attempt->elements_requested);
                  Tensor element;
                  attempt->context->SetStatus(attempt->context->allocate_temp(
                      component_dtypes_[i], shape, &element));
                  if (!attempt->context->status().ok()) return kComplete;
                  attempt->tuple.emplace_back(element);
                }
              }
              result = kProgress;
              Tuple tuple;
              DequeueLocked(attempt->context, &tuple);
              const int index =
                  attempt->tuple[0].dim_size(0) - attempt->elements_requested;
              for (int i = 0; i < num_components(); ++i) {
                attempt->context->SetStatus(
                    CopyElementToSlice(tuple[i], &attempt->tuple[i], index));
                if (!attempt->context->status().ok()) return kComplete;
              }
              tuple.clear();
              --attempt->elements_requested;
              if (attempt->elements_requested == 0) {
                tuple = attempt->tuple;
                attempt->done_callback = [callback, tuple]() {
                  callback(tuple);
                };
                return kComplete;
              }
            }
            return result;
          });
    }
  }
  if (!already_cancelled) {
    FlushUnlocked();
  } else {
    ctx->SetStatus(errors::Cancelled("Dequeue operation was cancelled"));
    callback(Tuple());
  }
}

Status PriorityQueue::MatchesNodeDef(const NodeDef& node_def) {
  if (!MatchesNodeDefOp(node_def, "PriorityQueue").ok() &&
      !MatchesNodeDefOp(node_def, "PriorityQueueV2").ok()) {
    return errors::InvalidArgument("Expected PriorityQueue, found ",
                                   node_def.op());
  }
  TF_RETURN_IF_ERROR(MatchesNodeDefCapacity(node_def, capacity_));
  TF_RETURN_IF_ERROR(MatchesPriorityNodeDefTypes(node_def));
  TF_RETURN_IF_ERROR(MatchesPriorityNodeDefShapes(node_def));
  return Status::OK();
}

Status PriorityQueue::MatchesPriorityNodeDefTypes(
    const NodeDef& node_def) const {
  DataTypeVector requested_dtypes;
  TF_RETURN_IF_ERROR(
      GetNodeAttr(node_def, "component_types", &requested_dtypes));
  requested_dtypes.insert(requested_dtypes.begin(), DT_INT64);
  if (requested_dtypes != component_dtypes_) {
    return errors::InvalidArgument("Shared queue '", name_,
                                   "' has component types ",
                                   DataTypeSliceString(component_dtypes_),
                                   " but requested component types were ",
                                   DataTypeSliceString(requested_dtypes));
  }
  return Status::OK();
}

Status PriorityQueue::MatchesPriorityNodeDefShapes(
    const NodeDef& node_def) const {
  std::vector<TensorShape> requested_shapes;
  TF_RETURN_IF_ERROR(GetNodeAttr(node_def, "shapes", &requested_shapes));
  requested_shapes.insert(requested_shapes.begin(), TensorShape({}));
  if (requested_shapes != component_shapes_) {
    return errors::InvalidArgument("Shared queue '", name_,
                                   "' has component shapes ",
                                   ShapeListString(component_shapes_),
                                   " but requested component shapes were ",
                                   ShapeListString(requested_shapes));
  }
  return Status::OK();
}

}  // namespace tensorflow