aboutsummaryrefslogtreecommitdiffhomepage
path: root/tensorflow/core/kernels/pooling_ops_common.cc
blob: 35e9bd75fa2ff40d1662be21e528832ae364b939 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#include "tensorflow/core/kernels/pooling_ops_common.h"

#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/public/tensor.h"

#if GOOGLE_CUDA
#include "tensorflow/core/common_runtime/gpu_device_context.h"
#include "tensorflow/core/kernels/conv_2d.h"
#include "tensorflow/core/kernels/maxpooling_op_gpu.h"
#include "tensorflow/core/kernels/pooling_ops_common_gpu.h"
#include "tensorflow/stream_executor/dnn.h"
#include "tensorflow/stream_executor/stream.h"
#endif  // GOOGLE_CUDA

namespace tensorflow {

PoolParameters::PoolParameters(OpKernelContext* context,
                               const std::vector<int32>& ksize,
                               const std::vector<int32>& stride,
                               Padding padding,
                               const TensorShape& tensor_in_shape) {
  // For maxpooling, tensor_in should have 4 dimensions.
  OP_REQUIRES(context, tensor_in_shape.dims() == 4,
              errors::InvalidArgument("tensor_in must be 4-dimensional"));

  depth = tensor_in_shape.dim_size(3);
  tensor_in_cols = tensor_in_shape.dim_size(2);
  tensor_in_rows = tensor_in_shape.dim_size(1);
  tensor_in_batch = tensor_in_shape.dim_size(0);
  window_rows = ksize[1];
  window_cols = ksize[2];
  depth_window = ksize[3];
  row_stride = stride[1];
  col_stride = stride[2];
  depth_stride = stride[3];

  // We only support 2D pooling across width/height and depthwise
  // pooling, not a combination.
  OP_REQUIRES(context,
              (depth_window == 1 || (window_rows == 1 && window_cols == 1)),
              errors::Unimplemented(
                  "MaxPooling supports exactly one of pooling across depth "
                  "or pooling across width/height."));

  if (depth_window == 1) {
    OP_REQUIRES_OK(context, Get2dOutputSize(
                                tensor_in_rows, tensor_in_cols, window_rows,
                                window_cols, row_stride, col_stride, padding,
                                &out_height, &out_width, &pad_rows, &pad_cols));
  } else {
    // Our current version of depthwise max pooling does not support
    // any padding, and expects the depth_window to equal the
    // depth_stride (no overlapping).
    OP_REQUIRES(
        context, depth % depth_window == 0,
        errors::Unimplemented("Depthwise max pooling requires the depth "
                              "window to evenly divide the input depth"));
    OP_REQUIRES(
        context, depth_stride == depth_window,
        errors::Unimplemented("Depthwise max pooling requires the depth "
                              "window to equal the depth stride"));

    // The current version of depthwise max is only implemented on CPU.
    OP_REQUIRES(context,
                (DeviceType(static_cast<Device*>(context->device())
                                ->attributes()
                                .device_type()) == DeviceType(DEVICE_CPU)),
                errors::Unimplemented("Depthwise max pooling is currently "
                                      "only implemented for CPU devices."));

    pad_depth = 0;
    out_depth = depth / depth_window;
  }
}

TensorShape PoolParameters::forward_output_shape() {
  if (depth_window == 1) {
    // Spatial pooling
    return TensorShape({tensor_in_batch, out_height, out_width, depth});
  } else {
    // Depthwise pooling
    return TensorShape(
        {tensor_in_batch, tensor_in_rows, tensor_in_cols, out_depth});
  }
}

#ifdef GOOGLE_CUDA

namespace {
template <typename T>
perftools::gputools::DeviceMemory<T> AsDeviceMemory(const T* cuda_memory,
                                                    uint64 size) {
  perftools::gputools::DeviceMemoryBase wrapped(const_cast<T*>(cuda_memory),
                                                size * sizeof(T));
  perftools::gputools::DeviceMemory<T> typed(wrapped);
  return typed;
}
}  // namespace

// Forward declarations of the functor specializations for GPU.
namespace functor {
#define DECLARE_GPU_SPEC(T)                                      \
  template <>                                                    \
  void TransformDepth<GPUDevice, T>::operator()(                 \
      const GPUDevice& d, typename TTypes<T, 4>::ConstTensor in, \
      const Eigen::DSizes<Eigen::DenseIndex, 4>& shuffle,        \
      typename TTypes<T, 4>::Tensor out);                        \
  extern template struct TransformDepth<GPUDevice, T>;

DECLARE_GPU_SPEC(float);
#undef DECLARE_GPU_SPEC
}  // namespace functor

template <typename T>
void DnnPoolingGradOp<T>::Compute(
    OpKernelContext* context,
    perftools::gputools::dnn::PoolingMode pooling_mode,
    const std::vector<int32>& size, const std::vector<int32>& stride,
    Padding padding, const Tensor* tensor_in, const Tensor* tensor_out,
    const Tensor& out_backprop, const TensorShape& tensor_in_shape) {
  CHECK((pooling_mode == perftools::gputools::dnn::PoolingMode::kMaximum) ||
        (tensor_in && tensor_out))
      << "For MaxPoolGrad, both tensor_in and tensor_out needs to be "
         "specified";

  Tensor* output = nullptr;
  OP_REQUIRES_OK(context,
                 context->allocate_output(0, tensor_in_shape, &output));

  PoolParameters params{context, size, stride, padding, tensor_in_shape};
  if (!context->status().ok()) {
    return;
  }

  /// For now, cudnn does not support NHWC format, so we need to convert it
  /// to NCHW before calling cudnn. We need to get rid of this once it is done
  Tensor transformed_input;
  OP_REQUIRES_OK(context, context->allocate_temp(
                              DataTypeToEnum<T>::value,
                              TensorShape({tensor_in_shape.dim_size(0),
                                           tensor_in_shape.dim_size(3),
                                           tensor_in_shape.dim_size(1),
                                           tensor_in_shape.dim_size(2)}),
                              &transformed_input));
  Tensor transformed_input_backprop;
  OP_REQUIRES_OK(context, context->allocate_temp(
                              DataTypeToEnum<T>::value,
                              TensorShape({tensor_in_shape.dim_size(0),
                                           tensor_in_shape.dim_size(3),
                                           tensor_in_shape.dim_size(1),
                                           tensor_in_shape.dim_size(2)}),
                              &transformed_input_backprop));
  Tensor transformed_output;
  OP_REQUIRES_OK(
      context,
      context->allocate_temp(
          DataTypeToEnum<T>::value,
          TensorShape({out_backprop.dim_size(0), out_backprop.dim_size(3),
                       out_backprop.dim_size(1), out_backprop.dim_size(2)}),
          &transformed_output));
  Tensor transformed_output_backprop;
  OP_REQUIRES_OK(
      context,
      context->allocate_temp(
          DataTypeToEnum<T>::value,
          TensorShape({out_backprop.dim_size(0), out_backprop.dim_size(3),
                       out_backprop.dim_size(1), out_backprop.dim_size(2)}),
          &transformed_output_backprop));

  auto nhwc_to_nchw = Eigen::DSizes<Eigen::DenseIndex, 4>(0, 3, 1, 2);
  if (tensor_in) {
    // For AvgPoolGrad, the original input tensor is not necessary. However,
    // cudnn still requires them to run, although they do not affect the
    // results.
    functor::TransformDepth<GPUDevice, T>()(
        context->eigen_device<Device>(), tensor_in->tensor<T, 4>(),
        nhwc_to_nchw, transformed_input.tensor<T, 4>());
  }
  if (tensor_out) {
    // For AvgPoolGrad, the original output tensor is not necessary. However,
    // cudnn still requires them to run, although they do not affect the
    // results.
    functor::TransformDepth<GPUDevice, T>()(
        context->eigen_device<Device>(), tensor_out->tensor<T, 4>(),
        nhwc_to_nchw, transformed_output.tensor<T, 4>());
  }
  functor::TransformDepth<GPUDevice, T>()(
      context->eigen_device<Device>(), out_backprop.tensor<T, 4>(),
      nhwc_to_nchw, transformed_output_backprop.tensor<T, 4>());

  /// Get ready to call cudnn
  perftools::gputools::dnn::PoolingDescriptor pooling_desc;
  pooling_desc.set_pooling_mode(pooling_mode)
      .set_window_height(params.window_rows)
      .set_window_width(params.window_cols)
      .set_vertical_stride(params.row_stride)
      .set_horizontal_stride(params.col_stride)
      .set_vertical_padding(params.pad_rows)
      .set_horizontal_padding(params.pad_cols);

  perftools::gputools::dnn::BatchDescriptor orig_output_desc;
  orig_output_desc.set_count(params.tensor_in_batch)
      .set_height(params.out_height)
      .set_width(params.out_width)
      .set_feature_map_count(params.depth)
      .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);

  perftools::gputools::dnn::BatchDescriptor orig_input_desc;
  orig_input_desc.set_count(params.tensor_in_batch)
      .set_height(params.tensor_in_rows)
      .set_width(params.tensor_in_cols)
      .set_feature_map_count(params.depth)
      .set_layout(perftools::gputools::dnn::DataLayout::kBatchDepthYX);

  auto orig_output_data =
      AsDeviceMemory(transformed_output.template flat<T>().data(),
                     transformed_output.template flat<T>().size());
  auto orig_input_data =
      AsDeviceMemory(transformed_input.template flat<T>().data(),
                     transformed_input.template flat<T>().size());
  auto output_backprop =
      AsDeviceMemory(transformed_output_backprop.template flat<T>().data(),
                     transformed_output_backprop.template flat<T>().size());
  auto input_backprop =
      AsDeviceMemory(transformed_input_backprop.template flat<T>().data(),
                     transformed_input_backprop.template flat<T>().size());

  auto* stream = context->op_device_context<GPUDeviceContext>()->stream();
  OP_REQUIRES(context, stream, errors::Internal("No GPU stream available."));

  bool status =
      stream->ThenPoolBackward(pooling_desc, orig_input_desc, orig_input_data,
                               orig_output_desc, orig_output_data,
                               output_backprop, &input_backprop)
          .ok();
  OP_REQUIRES(context, status,
              errors::Internal("cudnn PoolBackward launch failed"));

  /// Transform the output data from NCHW back to NHWC
  auto toConstTensor = [](const Tensor& x) -> const Tensor { return x; };
  auto nchw_to_nhwc = Eigen::DSizes<Eigen::DenseIndex, 4>(0, 2, 3, 1);
  functor::TransformDepth<GPUDevice, T>()(
      context->eigen_device<Device>(),
      toConstTensor(transformed_input_backprop).template tensor<T, 4>(),
      nchw_to_nhwc, output->tensor<T, 4>());
}

template class DnnPoolingGradOp<float>;

#endif  // GOOGLE_CUDA

}  // namespace tensorflow